Transportation Impact Analysis

Hudson Ranch Mineral Recovery

County of Imperial, California

June 22, 2021

LLG Ref. 3-19-3152

Prepared by:
Jose R. Nunez Jr.
Transportation Planner II
Under the Supervision of:
John A. Boarman, P.E.
Principal

Table of Contents

SECTION Page
Appendices ii
List of Figures iii
List of Tables iv
1.0 Introduction 1
2.0 Project Description 2
3.0 Existing Conditions 1
3.1 Existing Street Network 1
3.2 Existing Traffic Volumes 1
4.0 Analysis Approach and Methodology 5
4.1 Project Study Area 5
Analysis Scenarios 5
4.2 Analysis Methodology 5
4.3 Street Segments 7
5.0 Significance Criteria 8
6.0 Analysis of Existing Conditions 9
6.1 Peak Hour Intersection Levels of Service 9
6.2 Daily Street Segment Levels of Service 10
7.0 Trip Generation/Distribution/Assignment 11
7.1 Construction Trip Generation 11
7.2 Day-to-Day Operations Trip Generation 11
7.3 Trip Distribution 13
7.3.1 During Construction - Employee and Truck Construction Traffic Distribution 13
7.3.2 Day-to-Day Operations - Employee and Truck Traffic Distribution 13
7.4 Trip Assignment 13
8.0 Analysis 24
8.1 Existing + Construction Project Analysis 24
8.1.1 Intersection Operations 24
8.1.2 Segment Analysis 24
9.0 Project Operations Analysis 27
9.1 Existing + Project Operations Analysis 27

Table of Contents (CONTINUED)

Section Page
9.1.1 Intersection Operations 27
9.1.2 Segment Analysis. 27
9.2 Cumulative Growth. 27
9.3 Existing + Project Operations + Cumulative Analysis 27
9.3.1 Intersection Operations 27
9.3.2 Segment Analysis. 27
10.0 Intersection Control Evaluation (ICE) 32
11.0 Vehicle Miles Traveled (VMT) 33
11.1 VMT Background 33
11.2 Significance Threshold 33
11.3 VMT Methodology 33
11.4 Assessment: 34
11.5 Result 35
11.6 Mitigation 35
12.0 Conclusions \& Recommendations 36
12.1 Operational Deficiencies 36
12.2 VMT Analysis 36

ApPENDICES

APPENDIX

A. Intersection Count Sheets \& Caltrans Traffic Volumes
B. Peak Hour Intersection Analysis Worksheets

LISt of Figures

Section-Figure\# Page
Figure 2-1 Project Vicinity Map 3
Figure 2-2 Project Area Map 4
Figure 2-3 Site Plan 5
Figure 3-1 Existing Conditions Diagram 3
Figure 3-2 Existing Traffic Volumes 4
Figure 7-1a Construction Trip Distribution - Employee \& Miscellaneous Trips. 14
Figure 7-1b Construction Trip Distribution - Truck Trips 15
Figure 7-2a Operations Project Traffic Distribution - Employee \& Miscellaneous Trips 16
Figure 7-2b Operations Project Traffic Distribution - Truck Trips 17
Figure 7-3 Construction Project Traffic Volumes - Employee \& Miscellaneous Trips 18
Figure 7-4 Construction Traffic Volumes - Truck Trips 19
Figure 7-5 Construction Traffic Volumes - Total Trips 20
Figure 7-6 Operations Traffic Volumes - Employees \& Miscellaneous Trips 21
Figure 7-7 Operations Traffic Volumes - Truck Trips 22
Figure 7-8 Operations Traffic Volumes - Total Trips 23
Figure 8-1 Existing + Construction Traffic Volumes 26
Figure 9-1 Existing + Project Operations Traffic Volumes 30
Figure 9-2 Existing + Project Operations + Cumulative Traffic Volumes 31

LISt OF Tables

Section-TAble\# Page
Table 3-1 Existing Traffic Volumes 2
Table 4-1 Intersection Level of Service Descriptions 6
Table 4-2 Unsignalized Intersection LOS \& Delay Ranges 7
Table 4-3 Imperial County Standard Street Classification Average Daily Vehicle Trips 7
Table 5-1 Traffic Impact Significant Thresholds 8
Table 6-1 Existing Intersection Operations 9
Table 6-2 Existing Street Segment Operations 10
Table 7-1 Construction Trip Generation 12
Table 7-2 Day-to-Day Operations Trip Generation 12
Table 8-1 Existing + Construction Intersection Operations 24
Table 8-2 Existing + Construction Traffic Street Segment Operations 25
Table 9-1 Intersection Operations 28
Table 9-2 Street Segment Operations 29
Table 10-1 SR-111 / McDonald Road intersection ICE Analysis 32
Table 11-1 Regional VMT per Employee and Threshold 35
Table 11-2 VMT per Employee Comparison 35

Transportation Impact Analysis Hudson Ranch Mineral Recovery
 County of Imperial, California
 June 22, 2021

1.0 INTRODUCTION

The following traffic impact analysis has been prepared to determine the potential impacts to the local circulation system due to the addition of truck and employee traffic related to construction and post construction Day-to-Day Operations of the proposed Hudson Ranch Mineral Recovery project in the County of Imperial, California. This report includes the following sections:

- Project Description
- Existing Conditions
- Analysis Approach and Methodology
- Significance Criteria
- Analysis of Existing Conditions
- Trip Generation / Distribution / Assignment
- During Construction Analysis
- Day-to-Day Operations Analysis
- Project Access Discussion
- Vehicle Miles Travelled (VMT) Assessment
- Conclusions and Recommendations

2.0 PROJECT DESCRIPTION

Energy-Source Minerals LLC (ES Minerals), is proposing to construct and operate a commercial lithium hydroxide production plant in the Salton Sea geothermal field known as Project ATLiS. The facility will process geothermal brine from the neighboring Hudson Ranch Power I Geothermal Plant (HR1) to produce lithium hydroxide, and zinc and manganese products which will be sold commercially.

The proposed Project consists of the following:

- Construction and operation of a facility to extract lithium, manganese, zinc and other commercially viable substances from geothermal brine and process the extracted substances to produce commercial quantities of lithium, and to the extent possible, manganese and zinc products and other products;
- Construction and operation of brine supply and return pipelines and other associated interconnection facilities with the HR1 powerplant;
- Construction of a primary access road from McDonald Road (approximately 500 ft . west of the HR 1 entrance) and an emergency access entrance only from Davis Road;
- Paving of McDonald Road from Highway 111 to English Road;
- Construction of a "laydown yard" that will also support temporary offices during construction as well as serving as a truck management yard during operations, and
- Construction of offices, repair facilities, shipping and receiving facilities and other infrastructure components.

The ATLiS plant \& facilities will be located about 3 miles west-southwest of the community of Niland near the southwest corner of the existing HR1 power plant site. The property is zoned for manufacturing (medium industrial) (M2G-PE), and is located entirely within the existing Salton Sea Geothermal Overlay Zone (see Figure 3). The proposed ATLiS plant site and associated plant facilities would be built within an existing approximately 37 -acre project area, with the addition of the 15 acres located at the southeast corner of Davis Road and McDonald Road, and approximately 40 acres on the south of the current HR 1 plant site.

Access is via McDonald Road.
Figure 2-1 depicts the project vicinity with Figure 2-2 depicts a more details project area map and Figure 2-3 shows the project's site plan.

N: 3152 IGIS Date: 01/27/20

Figure 2-1
Vicinity Map

N:I3152|Figures

 LAW \&Greenspan

3.0 Existing Conditions

3.1 Existing Street Network

Following is a brief description of the street segments within the project area. Figure 3-1 illustrates the existing conditions, including the lane geometry, for the key intersections in the study area.

State Route 111 (SR-111) is classified as a State Highway/Expressway on the Imperial County General Plan Circulation Element. SR-111 is a north-south highway connecting the three largest cities in Imperial County and runs from I-10 in Riverside County to the international border. Outside the towns of Calipatria and Niland, SR-111 is constructed as a two-lane undivided north-south roadway, providing one lane of travel per direction and the posted speed limit is generally 65 mph .

Hazard Road is an east-west route through Imperial County. Hazard Road is currently an unpaved two-lane roadway within the Project vicinity.

Sinclair Road is an east-west route through Imperial County. Sinclair Road is currently a paved two-lane undivided roadway within the Project vicinity.

English Road is a north-south route through Imperial County. English Road is currently an unpaved two-lane roadway north of Sinclair Road and constructed as a two-lane paved roadway south of Sinclair Road.

McDonald Road is an east-west route though Imperial County. Currently, McDonald Road is an unpaved two-lane roadway west of SR-111 of Sinclair Road and constructed as a two-lane paved roadway east of SR-111. It is proposed to improve the intersection at SR-111 and pave McDonald Road between SR-111 and the site (west of SR-111) prior to construction of the project and thus the "Operations" analysis reflects these improvements.

3.2 Existing Traffic Volumes

Daily traffic (ADT) volumes on study area segments along SR-111 were obtained from the Caltrans Traffic Census Program for Year 2017, the latest available as of the date of this report. AM and PM peak hour intersection turning movement volume counts at study area intersections were commissioned by LLG Engineers in September 2019. Table 3-1 summarizes the segment ADT volumes on all the study area segments. It should be noted that all segment ADT volumes were applied a growth factor of 2% per year to represent Year 2021 conditions. In addition, it should be noted that for the unpaved segments along McDonald Road and Sinclair Road, the ADTs were estimated based on a relationship that the PM peak hour volumes comprise approximately 10% of the ADT.

Figure 3-2 depicts the existing traffic volumes on both an ADT and peak hour basis. Appendix \boldsymbol{A} contains the manual intersection count sheets and latest Caltrans traffic volumes.

Table 3-1
 Existing Traffic Volumes

Street Segment	Source	ADT $^{\text {a }}$
SR-111		
North of Hazard Road	Caltrans	3,800
Hazard Road to McDonald Road	Caltrans	3,800
McDonald Road to Sinclair Road	Caltrans	3,800
South of Sinclair Road	Caltrans	6,400
McDonald Road	LLG	270 E
Project Site to English Road	LLG	220 E
English Road to SR-111		
Sinclair Road	LLG	320 E
English Road to SR-111		

Footnotes:

a. Average Daily Traffic Volume.
b. A 2% growth factor per year (8%) was applied to the 2017 Caltrans segment ADTs to reflect 2021 conditions.

E - Estimated volumes since road is unpaved.

LINSCOTT
Greenspan
engineers

$\mathrm{N}:|3152|$ Figures Date: 3/1/2020 Time: 8:35 AM

4.0 Analysis Approach and Methodology

4.1 Project Study Area

The following intersections and segments were analyzed in this study and were chosen since they will carry the majority of project truck traffic.

Intersections:

1. SR 111 / Hazard Road
2. SR 111 / McDonald Road
3. SR 111 / Sinclair Road
4. English Road / McDonald Road
5. English Road / Sinclair Road

Segments:

SR 111:

- North of Hazard Road
- Hazard Road to McDonald Road
- McDonald Road to Sinclair Road
- South of Sinclair Road

McDonald Road:

- Project Site to English Road (currently unpaved)
- English Road to SR 111 (currently unpaved)

Sinclair Road:

- English Road to SR 111

Analysis Scenarios

The following scenarios are analyzed in this report:

- Existing
- Existing + Construction traffic;
- Existing + Operations traffic;
- Existing + Operations + Cumulative Growth traffic.

4.2 Analysis Methodology

The operations of the project area intersections and segments are characterized using the concept of "Level of Service" (LOS). LOS is the term used to denote the different operating conditions which occur on a given roadway segment under various traffic volume loads. It is a qualitative measure used to describe a quantitative analysis taking into account factors such as roadway geometries, signal phasing, speed, travel delay, freedom to maneuver, and safety. LOS provides an index to the operational qualities of a roadway segment or an intersection. LOS designations range from A
through F, with LOS A representing the best operating conditions and LOS F representing the worst operating conditions. LOS designation is reported differently for signalized and unsignalized intersections, as well as for roadway segments.

Table 4-1 summarizes the description for each level of service. Table 4-2 depicts the criteria, which are based on the average control delay for any particular minor movement (unsignalized intersections).

Table 4-1
Intersection Level of Service Descriptions

Level of Service	Description
A	Occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
B	Generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.
C	Generally results when there is fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Generally results in noticeable congestion. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures are frequent occurrences.
F	Considered to be unacceptable to most drivers. This condition often occurs with over saturation i.e. when arrival flow rates exceed the capacity of the intersection. It may also occur at high volume-to-capacity ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

Table 4-2
Unsignalized Intersection LOS \& Delay Ranges

LOS	Delay (seconds/vehicle)
A	≤ 10.0
B	10.1 to 15.0
C	15.1 to 25.0
D	25.1 to 35.0
E	35.1 to 50.0
F	≥ 50.1

Source: 2000 Highway Capacity Manual

4.3 Street Segments

Street segments were analyzed based upon the comparison of ADT to the County of Imperial Roadway Classifications, Levels of Service (LOS) and Average Daily Traffic (ADT) table (see Table 4-3 below). Table 4-3 provides segment capacities for different street classifications, based on traffic volumes and roadway characteristics. Segment analysis is a comparison of ADT volumes and an approximate daily capacity on the subject roadway.

The County does not have a Two-Lane Expressway capacity. Therefore, for segments along SR-111, 40% capacity of a 6-lane Prime Arterial was utilized to calculate level of service.

Table 4-3
Imperial County Standard Street Classification Average Daily Vehicle Trips

Road		Level of Service W/ADT*				
Class	X-Section	A	B	C	D	E
Expressway	$128 / 210$	30,000	42,000	60,000	70,000	80,000
Prime Arterial	$106 / 136$	22,200	37,000	44,600	50,000	57,000
Minor Arterial	$82 / 102$	14,800	24,700	29,600	33,400	37,000
Major Collector (Collector)	$64 / 84$	13,700	22,800	27,400	30,800	34,200
Minor Collector (Local Collector)	$40 / 70$	1,900	4,100	7,100	10,900	16,200
Residential Street	$40 / 60$	$*$	$*$	$<1,500$	$*$	$*$
Residential Cul-de-Sac / Loop Street	$40 / 60$	$76 / 96$	5,000	10,000	14,000	17,000
Industrial Collector	$44 / 64$	2,500	5,000	7,000	8,500	20,000
Industrial Local Street		$*$	$*, 000$			

* Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors. It should be noted that for segments along SR111, the capacities of a 6-lane expressway were reduced by one-third and utilized to calculate level of service.

5.0 SigNificance Criteria

The County of Imperial does not have published significance criteria. However, the County General Plan does state that the level of service (LOS) goal for intersections and roadway segments is to operate at LOS C or better. Therefore, if an intersection or segment degrades from LOS C or better to LOS D or worse with the addition of project traffic, the impact is considered significant. If the location operates at LOS D or worse with and without project traffic, the impact is considered significant if the project causes the intersection delta to increase by more than two (2) seconds, or the V/C ratio to increase by more than 0.02 . These amounts are consistent with those used in the City of El Centro and the County of Imperial in numerous traffic studies.

Table 5-1
Traffic Impact Significant Thresholds

Level of Service with Project $^{\text {a }}$	Allowable Increase Due to Project Impacts ${ }^{\text {b }}$					
	Freeways			Roadway Segments		Intersections
	V/C	Speed (mph)	V/C	Speed (mph)	Delay (sec.)	Delay (min.)
D, E \& F (or ramp meter delays above 15 minutes)	0.01		0.02		2	

Footnotes:

a. All level of service measurements are based upon HCM procedures for peak-hour conditions. However, V/C ratios for Roadway Segments may be estimated on an ADT/24-hour traffic volume. The acceptable LOS for freeways, roadways, and intersections is generally "D" ("C" for undeveloped or not densely developed locations per jurisdiction definitions). For metered freeway ramps, LOS does not apply. However, ramp meter delays above 15 minutes are considered excessive.
b. If a proposed project's traffic causes the values shown in the table to be exceeded, the impacts are deemed to be significant. These impact changes may be measured from appropriate computer programs or expanded manual spreadsheets. The project applicant shall then identify feasible mitigations (within the Traffic Impact Study [TIS] report) that will maintain the traffic facility at an acceptable LOS. If the LOS with the proposed project becomes unacceptable (see note a above), or if the project adds a significant amount of peak hour trips to cause any traffic queues to exceed on- or off-ramp storage capacities, the project applicant shall be responsible for mitigating significant impact changes.
c. The allowable increase in delay at a ramp meter with more than 15 minutes of delay and freeway LOS E is 2 minutes and at LOS F is 1 minute.

General Notes:

1. V/C = Volume to Capacity Ratio
2. Speed $=$ Arterial speed measured in miles per hour
3. Delay = Average stopped delay per vehicle measured in seconds for intersections, or minutes for ramp meters.
4. LOS $=$ Level of Service

6.0 AnAlysis of Existing Conditions

6.1 Peak Hour Intersection Levels of Service

The project study area is located in a rural setting and all intersections are unsignalized. As seen in Table 6-1, all study area intersections are calculated to currently operate at LOS B or better during both the AM and PM peak hours.

Table 6-1
 Existing Intersection Operations

Intersection	Control Type	Peak Hour	Existing	
			Delay ${ }^{\text {a }}$	LOS ${ }^{\text {b }}$
1. SR-111 / Hazard Road	TWSC ${ }^{\text {c }}$	AM	0.0	A
		PM	0.0	A
2. SR-111 / McDonald Road	TWSC	AM	8.9	A
		PM	8.9	A
3. English Road / McDonald Road	TWSC	AM	9.0	A
		PM	0.0	A
4. English Road / Sinclair Road	TWSC	AM	0.7	A
		PM	1.0	A
5. SR-111 / Sinclair Road	TWSC	AM	10.2	B
		PM	9.6	A
			UNSIGNALIZED	
Footnotes:			Delay LOS	
a. Delay per vehicle in seconds			$0.0 \leq 10.0 \quad$ A	
c. TWSC - Minor street STOP Controlled intersection. Minor street left-turn				в
				C
TWSC - Two-Way STOP Controlled intersection.				D
			35.1	E
				F

6.2 Daily Street Segment Levels of Service

As described above, the project study area is located in a rural setting and all segments are two-lane facilities. As seen in Table 6-2, all study area segments are calculated to currently operate at LOS A on a daily basis.

Table 6-2
Existing Street Segment Operations

Street Segment	Functional Roadway Classification $^{\text {a }}$	Capacity (LOS E) $^{\text {b }}$	ADT $^{\text {c }}$	LOS $^{\mathrm{d}}$	V/C $^{\text {e }}$
SR-111					
North of Hazard Road	2-Ln Expressway	22,700	3,800	A	0.167
Hazard Road to McDonald Road	2-Ln Expressway	22,700	3,800	A	0.167
McDonald Road to Sinclair Road	2-Ln Expressway	22,700	3,800	A	0.167
South of Sinclair Road	2-Ln Expressway	22,700	6,400	A	0.282
McDonald Road	2-Ln Roadway	1,500	270	A	0.180
Project Site to English Road	2-Ln Roadway	1,500	220	A	0.147
English Road to SR-111	2-Ln Roadway	1,500	320	A	0.213
Sinclair Road					
English Road to SR-111					

Footnotes:

a. County of Imperial roadway classification
b. Roadway capacity corresponding to Level of Service E from Imperial County Standard Street Classification, Average Daily Vehicle Trips table.
c. Average Daily Traffic volumes
d. Level of Service
e. Volume / Capacity ratio.

7.0 TRIP Generation/Distribution/Assignment

7.1 Construction Trip Generation

Project traffic generation is based on site-specific trip generating characteristics provided by the applicant. The Project consists of two parts: During Construction, and Day-to-Day Operations.

In calculating daily trip generation for the construction portion of the project the total construction staff and truck activity was obtained from project description. Peak hour traffic volumes assume that half of workers will arrive/depart in the AM/PM peak hours. However, a meaningful number of worker trips may arrive/depart outside the peak hours due to earlier start times. While detailed construction schedules have yet to be established, these assumptions are based on experience with similar projects. To be conservative, it was assumed that no carpooling between workers was provided. These conservative assumptions are intended to represent a reasonably worst-case scenario for AM/PM peak hour traffic. In addition, 10 trips per day (20 ADT) was added to account for miscellaneous trips such as deliveries).

Based on these assumptions, the employee and miscellaneous portion of the construction phase would generate a maximum of 300 ADT, with 74 trips during the AM peak hour and 72 trips during the PM peak hour. Fifteen (15) trucks are estimated during construction. A passenger car equivalence factor (PCE) of 2.5 is applied to these trips for the purposes of the analysis to account for the reduced performance characteristics (stopping, starting, maneuvering, etc.) of heavy vehicles in the traffic flow. The trucks will generate an additional 75.

Table $7-1$ is a summary of the peak Project construction traffic. As shown on Table 7-1 the Construction portion of the Project would generate a total of 375 ADT with 84 total AM peak hour trips and 82 total PM peak hour trips.

7.2 Day-to-Day Operations Trip Generation

Trip generation for the Day-to-Day Operations portion of the project was also obtained from project description. Peak hour traffic volumes assume that half of workers would arrive/depart in the AM/PM peak hours. However, a meaningful number of worker trips may arrive/depart outside the peak hours due to earlier start times. While detailed schedules have yet to be established, these assumptions are based on experience with similar projects. To be conservative, it was assumed that no carpooling between workers was provided. These conservative assumptions are intended to represent a reasonably worst-case scenario for AM/PM peak hour traffic. In addition, 10 trips per day (20 ADT) was added to account for miscellaneous trips such as deliveries) during the Day-toDay Operations portion of the project.

Based on these assumptions, the employee and miscellaneous portion of the operations would generate a maximum of 104 ADT, with 32 trips during the AM peak hour and 34 trips during the PM peak hour. Fifteen (15) trucks are estimated to generated during the Day-to-Day Operations. A passenger car equivalence factor (PCE) of 2.5 is applied to these trips for the purposes of the
analysis to account for the reduced performance characteristics (stopping, starting, maneuvering, etc.) of heavy vehicles in the traffic flow. The trucks will generate an additional 75.

Table 7-2 is a summary of the peak Day-to-Day Operations portion of the project. As shown on Table 7-2, a total of 179 ADT with 47 total AM peak hour trips and 55 total PM peak hour trips.

Table 7-1
Construction Trip Generation

Trip Type	Daily Total (ADT) ${ }^{\text {a }}$	AM Peak Hour			PM Peak Hour		
		In	Out	Total	In	Out	Total
Employees (140) ${ }^{\text {b }}$	280	70	0	70	0	70	70
Trucks (w/ PCE) ${ }^{\text {c }}$	75	5	5	10	5	5	10
Misc. Trips	20	2	2	4	1	1	2
Total	375	77	7	84	6	76	82

Footnotes:
a. ADT = Average Daily Traffic (24-hour total bi-directional traffic on a roadway segment).
b. Assumes half of total employees begin or leave shift during peak hour.
c. $\mathrm{PCE}=$ Passenger Car Equivalent (2.5), used to reflect the additional impacts of heavy vehicles in the technical analyses (15 Inbound Trucks *2 $($ In + Out $) * 2.5(\mathrm{PCE})=75$ total trips.

Table 7-2 shows the Day-to-Day Operations traffic after construction is complete. As compared to Table 7-1, the Operations traffic is substantially less than the construction traffic, which validates the assertion that analysis of the construction impacts would represent the worst-case potential traffic impacts of the project.

Table 7-2
Day-to-Day Operations Trip Generation

Trip Type	Daily Total (ADT) $^{\mathbf{a}}$	AM Peak Hour			PM Peak Hour		
		In	Out	Total	In	Out	Total
Employees (42)	84	30	0	30	0	30	30
Trucks (w/ PCE)	75	10	5	15	13	8	21
Misc. Trips/Deliveries	20	1	1	2	2	2	4
Total	$\mathbf{1 7 9}$	$\mathbf{4 1}$	$\mathbf{6}$	$\mathbf{4 7}$	$\mathbf{1 5}$	$\mathbf{4 0}$	$\mathbf{5 5}$

Footnotes:
a. ADT = Average Daily Traffic (24-hour total bi-directional traffic on a roadway segment).
b. Assumes half of total employees begin or leave shift during peak hour.
c. $\mathrm{PCE}=$ Passenger Car Equivalent (2.5), used to reflect the additional impacts of heavy vehicles in the technical analyses (15 Inbound Trucks * 2 $($ In + Out $) * 2.5($ PCE $)=75$ total trips.

7.3 Trip Distribution

It should be noted that separate distributions were derived for the Construction and Operations phases of the project. It is also noted that during the construction phase of the project, McDonald Road will not be a viable option for construction traffic since it will be unpaved. Construction traffic from the south will utilize the paved Sinclair Road as opposed to the unpaved McDonald Road as east / west access to reach the site during construction. It should be noted that for the Operations distribution, McDonald Road will be paved and would serve as the primary road utilized by project traffic.

7.3.1 During Construction - Employee and Truck Construction Traffic Distribution

It is initially anticipated that the majority of construction workers and trucks will be from the proximate local population centers of Calipatria, Brawley, and El Centro. The majority of employee traffic (85%) is anticipated to be to/from south of the site, from the local labor pool utilizing SR-111 as the primary route to work. This traffic will use Sinclair Road as the east/west road to reach the construction site/

Figure 7-1a shows the distribution of construction employee passenger car as well as any miscellaneous trips that would occur during the day. Figure 7-1b shows the distribution of construction truck traffic.

7.3.2 Day-to-Day Operations - Employee and Truck Traffic Distribution

It is initially anticipated that the majority of construction workers will be from the proximate local population centers of Calipatria, Brawley, and El Centro. The majority of employee traffic (85\%) is anticipated to be to/from south of the site, from the local labor pool utilizing SR-111 as the primary route to work. It should be detailed that the majority of operations traffic are utilizing the intersection of SR-111 and McDonald Road as the primary access from SR-111.

Figure 7-2a shows the distribution of employee passenger car operations traffic as well as any miscellaneous trips that would occur during the day. Figure 7-1b shows the distribution of construction truck traffic.

7.4 Trip Assignment

Separate trip assignments were prepared for each trip type and project phase based on the distribution percentages detailed above.

The Project construction employee vehicle traffic assignment is shown on Figure 7-3. Figure 7-4 shows the Project construction truck traffic assignment. Figure $7-5$ depicts the total Project construction traffic assignment. The Project operations employee vehicle traffic assignment is shown on Figure 7-6. Figure 7-7 shows the Project operations truck traffic assignment. Figure 7-8 depicts the total Project operations traffic assignment.

\#	Study Intersection
xx\%	Regional Trip Distribution

0
Figure 7-1a
Construction Trip Distribution
(Employee \& Miscellaneous Trips)
Hudson Ranch Mineral Recovery

(\#)	Study Intersection
xx\%	Regional Trip Distribution

(1)

Construction Trip Distribution - Truck Trips

Hudson Ranch Mineral Recovery

\# Study Intersection
xx\% Regional Trip Distribution

8.0 ANALYSIS

8.1 Existing + Construction Project Analysis

8.1.1 Intersection Operations

Table $8-\mathbf{1}$ summarizes the intersection operations throughout the project study area during the construction phase of the project. This table shows that all of the intersections in the study area are calculated to operate at LOS B or better during the AM and PM peak hours.

8.1.2 Segment Analysis

Table 8-2 summarizes the street segment operations throughout the project study area during the construction phase of the project. This table shows that all of the street segments in the study area are forecasted to operate at LOS A on a daily basis.

Table 8-1
Existing + Construction Intersection Operations

Table 8-2
Existing + Construction Traffic Street Segment Operations

Street Segment	Functional Roadway Classification $^{\text {a }}$	LOS E Capacity $^{\mathrm{b}}$	ADT $^{\text {c }}$	LOS $^{\mathrm{d}}$	V/C $^{\mathrm{e}}$
SR-111					
North of Hazard Road	2-Ln Expressway	22.700	3,853	A	0.170
Hazard Road to McDonald Road	2-Ln Expressway	22,700	3,845	A	0.169
McDonald Road to Sinclair Road	2-Ln Expressway	22,700	3,800	A	0.167
South of Sinclair Road	2-Ln Expressway	22,700	6,720	A	0.230
McDonald Road					
Project Site to English Road	2-Ln Roadway	1,500	645	A	0.430
English Road to SR-111	2-Ln Roadway	1,500	220	A	0.147
Sinclair Road					
English Road to SR-111	2-Ln Roadway	1,500	642	A	0.427

Footnotes:

a. County of Imperial roadway classification
b. Roadway capacity corresponding to Level of Service E from Imperial County Standard Street Classification, Average Daily Vehicle Trips table. Forty percent (40%) of capacity utilized for SR-111 segments.
c. Average Daily Traffic volumes
d. Level of Service
e. Volume / Capacity ratio.

9.0 Project Operations Analysis

9.1 Existing + Project Operations Analysis

9.1.1 Intersection Operations

Table 8-1 summarizes the intersection operations throughout the project study area during the operations phase of the project. This table shows that all of the intersections in the study area are calculated to continue to operate at LOS B or better during the AM and PM peak hours.

9.1.2 Segment Analysis

Table 8-2 summarizes the street segment operations throughout the project study area during the operations phase of the project. This table shows that all of the street segments in the study area are calculated to continue to operate at LOS A on a daily basis.

9.2 Cumulative Growth

To account for potential cumulative project traffic increases that may be unforeseen, a 10% growth factor was applied to the existing traffic volumes at the study area intersections and segments. This 10% growth would conservatively represent the amount of traffic that may utilize the street system in the project vicinity proposed from future development projects planned in Imperial County.

9.3 Existing + Project Operations + Cumulative Analysis

9.3.1 Intersection Operations

Table 8-1 summarizes the intersection operations throughout the project study area during the operations phase of the project and the addition of cumulative growth. This table shows that all of the intersections in the study area are calculated to continue to operate at LOS B or better during the AM and PM peak hours.

9.3.2 Segment Analysis

Table 8-2 summarizes the street segment operations throughout the project study area during the operations phase of the project and the addition of cumulative growth. This table shows that all of the street segments in the study area are calculated to continue to operate at LOS A on a daily basis.

Table 9-1
Intersection Operations

Intersection	Control Type	Peak Hour	Existing + Project Operations		Existing + Project + Cumulative Projects Operations		$\Delta^{\text {c }}$ Delay	Impact Type
			Delay	LOS	Delay	LOS		
1. SR-111 / Hazard Rd	TWSC ${ }^{\text {d }}$	AM	0.0	A	0.0	A	0.0	None
		PM	0.0	A	0.0	A	0.0	None
2. SR-111/ McDonald Rd	TWSC	AM	9.1	A	9.2	A	0.1	None
		PM	9.2	A	9.3	A	0.1	None
3. English Road / McDonald Rd	TWSC	AM	9.3	A	9.3	A	0.0	None
		PM	0.0	A	0.0	A	0.0	None
4. English Road / Sinclair Rd	TWSC	AM	0.7	A	0.7	A	0.0	None
		PM	1.0	A	1.0	A	0.0	None
5. SR-111 / Sinclair Rd	TWSC	AM	10.6	B	10.7	B	0.1	None
		PM	9.9	A	10.1	B	0.2	None

Average delay expressed in seconds per vehicle.
b. Level of Service.
c. Δ denotes an increase in delay due to project.
d. TWSC - Minor Street Stop Controlled intersection. Minor street left turn delay is reported.

UNSIGNALIZED	
Delay	LOS
$0.0 \leq 10.0$	A
10.1 to 15.0	B
15.1 to 25.0	C
25.1 to 35.0	D
35.1 to 50.0	E
≥ 50.1	F

Table 9-2
Street Segment Operations

Street Segment	Capacity$(\operatorname{LOS} E)^{a}$	Existing + Project Operations			Existing + Project + Cumulative Projects Operations			$\begin{gathered} \Delta \\ \mathrm{V} / \mathrm{C} \end{gathered}$	Impact Type
		ADT	LOS	V/C	ADT	LOS	V/C		
SR-111									
North of Hazard Rd	22,700	3,824	A	0.168	4,204	A	0.185	0.017	None
Hazard Rd to McDonald Rd	22,700	3,824	A	0.168	4,204	A	0.185	0.017	None
McDonald Rd to Sinclair Rd	22,700	3,950	A	0.174	4,330	A	0.191	0.017	None
South of Sinclair Road	22,700	6,555	A	0.288	7,195	A	0.317	0.028	None
McDonald Road									
Project Site to English Rd	1,500	449	A	0.300	476	A	0.317	0.018	None
English Rd to SR-111	1,500	394	A	0.263	416	A	0.277	0.015	None
Sinclair Road									
English Rd to SR-111	1,500	325	A	0.217	357	A	0.238	0.021	None

Footnotes:
a. Capacities based on County of Imperial Roadway Classification Table.
b. Average Daily Traffic Volumes.
c. Level of Service.
d. Volume to Capacity.

10.0 Intersection Control Evaluation (ICE)

An Intersection Control Evaluation (ICE) is being competed under separate cover. Table 10-1 summarizes the operations of four alternatives that could be implemented at the SR-111/McDonald Road intersection.

Table 10-1
SR-111 / McDonald Road intersection ICE Analysis

11.0 Vehicle Mles Traveled (VMT)

11.1 VMT Background

In September 2013, the Governor's Office signed SB 743 into law, starting a process that fundamentally changes the way transportation impact analysis is conducted under CEQA. These changes include the elimination of auto delay, level of service (LOS), and similar measurements of vehicular roadway capacity and traffic congestion as the basis for determining significant impacts. The justification for this paradigm shift is that Auto Delay/LOS impacts lead to improvements that increase roadway capacity and therefore induce more traffic and greenhouse gas emissions. The VMT standard for evaluating transportation impacts under CEQA became mandatory statewide on July 1, 2020.

VMT is defined as a measurement of miles traveled by vehicles within a specified region and for a specified time period. VMT is a measure of the use and efficiency of the transportation network. VMT's are calculated based on individual vehicle trips generated and their associated trip lengths. VMT accounts for two-way (round trip) travel and is typically estimated on a weekday for the purpose of measuring potential transportation impacts.

11.2 Significance Threshold

Since the County has not yet adopted its own VMT threshold, the County is relying on the guidance provided in the Technical Advisory published by the Governor's Office of Planning and Research (OPR) in December 2018 (the "OPR Guidance") for purposes of evaluating the potential VMT impacts of development projects. The OPR Guidance for VMT states that depending on the type of project, different thresholds of significance are applicable. The "Recommended Numeric Thresholds for Residential, Office, and Retail Project" section of the OPR Guidance includes a section on "Other Project Types" which applies to the Project:
"Of land use projects, residential, office, and retail projects tend to have the greatest influence on VMT. For that reason, OPR recommends the quantified thresholds described [in the Residential, Office, and Retail Project section] for purposes of analysis and mitigation. Lead agencies, using more location-specific information, may develop their own more specific thresholds, which may include other land use types...".

Guidance from OPR's Technical Advisory is used to establish a significance threshold of a minimum 15% reduction or more from the Regional average VMT per employee for this project evaluation. That means that if the Project's VMT per employee is more than 15% below the regional average, no significant transportation impact would result. It should be noted that OPR has no guidelines for truck trips.

11.3 VMT Methodology

The VMT assessment conducted using California Statewide Travel Demand Model (CSTDM) data provided by Caltrans. The following is a summary of steps involved in calculating the trip length and Region-wide VMT:

- Step 1. Determine the project analysis zone
- Step 2. Determine the VMT per Employee for the zone where proposed Project is located.
- Step 3. Determine the average VMT per Employee within the County of Imperial representing the Regional VMT.
- Step 4. Using the average VMT from Step 2, compare the zone VMT against the Regional VMT. It should be noted that this step differs from the typical approach of comparing VMT per Capita because there is no associated population for the Project.

Using the CSTDM, the VMT per Employee can be utilized at both the regional and census tract level.

Project TAZ

Regional Map

11.4 Assessment:

Caltrans provides Transportation Analysis Zone (TAZs) map which provide information for each zone. The Project site is located in the County of Imperial which includes total 17 zones representing Imperial Region. Table 11-1 tabulates average regional VMT per employee and the threshold. Attachment \boldsymbol{D} contains the calculation of average regional VMT data.

Caltrans guidelines suggest that the VMT analysis is recommended based on the project location and zoning. The Project site is located in the Traffic Analysis Zone (TAZ) 5600. The VMT per employee for TAZ 5600 is 20.84 .

Table 11-1
Regional VMT per Employee and Threshold

Region 1	Significance Threshold 2
24.51	20.83

Footnotes:

1. Regional VMT per Employee is calculated by Averaging VMT per Employee for 17 TAZs located in the Imperial County.
2. Based on 15% below the Regional VMT Average.

11.5 Result

As shown in Table 11-2, the VMT per employee for TAZ 5600, where the project is located, is 0.01 mile more than the significance threshold shown in Table 11-1. Therefore, the Project has a significant transportation impact and mitigation measures are needed. Only a 0.048% decrease I VMT is required to mitigate the impact.

TABLE 11-2
VMT per Employee Comparison

Significance Threshold $^{\mathbf{1}}$	TAZ (Project) $^{\mathbf{2}}$	Significant Transportation Impact?
20.83	20.84	Yes

Footnotes:

1. See Table 11-1.
2. SOURCE: Project VMT per Employee

11.6 Mitigation

It is recommended that the project implement a Commute Trip Reduction (CTR) program to discourage single-occupancy vehicle trips and encourage alternative modes of transportation such as carpooling, taking transit, walking, and biking. The CTR program could include features such as Carpooling encouragement, Ride-matching assistance, Preferential carpool parking, Half time transportation coordinator, Vanpool assistance and Bicycle end-trip facilities (parking, showers and lockers) and provide employees with assistance in using alternative modes of travel.

12.0 CONCLUSIONS \& RECOMMENDATIONS

The capacity analyses performed for the key roadway segments and unsignalized and signalized intersections indicate that no significant impacts would occur during the construction or Day-toDay Operations of the project.

12.1 Operational Deficiencies

However, a significant impact could potentially occur if improvements are not implemented at the SR-111 / McDonald Road intersection. Therefore, the SR-111/McDonald Road intersection should be improved to Caltrans satisfaction including the installation of a Northbound Left-Turn pocket prior to the opening of the project. This improvement will be implemented prior to the Project's certificate of occupation.

Providing a southbound right-turn lane was considered but rejected due to the low volumes. The maximum peak hour volume in this movement is 12 during construction and 7 during operations.

An ICE analysis has been prepared under separate cover that address and analyzes the following four alternatives:

1. Minor Street Stop Control (MSSC) - Existing traffic control
2. All-Way Stop Control (AWSC)
3. Traffic Signal
4. Roundabout

Construction traffic should be instructed to use the paved Sinclair Road and not the unpaved McDonald Road as east / west access to the site during construction.

12.2 VMT Analysis

The Project has a significant transportation impact. However, only a 0.048% decrease in VMT is required to mitigate the impact. It is recommended that the project implement a Commute Trip Reduction (CTR) program to discourage single-occupancy vehicle trips and encourage alternative modes of transportation such as carpooling, taking transit, walking, and biking. The CTR program could include features such as Carpooling encouragement, Ride-matching assistance, Preferential carpool parking, Half-time transportation coordinator, Vanpool assistance and Bicycle end-trip facilities (parking, showers and lockers) and provide employees with assistance in using alternative modes of travel.

TECHNICAL APPENDICES Hudson Ranch Mineral Recovery

County of Imperial, California June 22, 2021

LLG Ref. 3-19-3152

APPENDIX A

Intersection Count Sheets \& Caltrans Traffic Volumes

Hwy 111 \& Hazard Rd

Peak Hour Turning Movement Count

ID: 19-04371-001
City: Calipatria

Total Vehicles (Noon)

Total Vehicles (PM)

Hwy 111
SOUTHBOUND

AM	0	107	0	0	101	AM
NOON	0	0	0	0	0	NOON
	PM	0	106	0	0	106

Day: Wednesday
Date: 09/25/2019

Bikes (NOON)

Bikes (PM)

Hwy 111 \& McDonald Rd

Peak Hour Turning Movement Count

Total Vehicles (Noon)

Total Vehicles (PM)

Day: Wednesday
Date: 09/25/2019

AM	1	107	2	0	103	AM
NOON	0	0	0	0	0	NOON
	PM	0	92	1	0	112

Bikes (NOON)

Bikes (PM)

English Rd \& McDonald Rd

Peak Hour Turning Movement Count

English Rd \& W Sinclair Rd

Peak Hour Turning Movement Count

Hwy 111 \& Sinclair Rd

Peak Hour Turning Movement Count

Total Vehicles (Noon)

Total Vehicles (PM)

Hwy 111
SOUTHBOUND

Day: Wednesday
Date: 09/25/2019

AM	6	84	21	0	90	AM
	0	0	0	0	0	NOON

Bikes (NOON)

Bikes (PM)

Dist	Route	County		Postmile	Description	Back Peak Hour	Back Peak Month	Back AADT	Ahead Peak Hour	Ahead Peak AADT	Ahead AADT
7	110	LA		29.028	LOS ANGELES, AVENUE 64	8700	103000	98000	7100	82000	80000
7	110	LA		29.5	LOS ANGELES, YORK BOULEVARD	7100	82000	80000	6900	82000	78000
7	110	LA		29.95	SOUTH PASADENA, BRIDEWELL STREET	6900	82000	78000	6800	81000	77000
7	110	LA		30.587	SOUTH PASADENA, ORANGE GROVE AVENUE	6800	81000	77000	4950	59000	56000
7	110	LA		31.17	SOUTH PASADENA, FAIR OAKS AVENUE	4950	59000	56000	3550	42000	40000
7	110	LA		31.912	PASADENA, GLENARM STREET	3550	42000	40000	3550	42000	40000
7	110	LA		31.913	PASADENA, END FREEWAY	3550	42000	40000			
11	111	IMP	R	0	CALEXICO, SO CITY LIMITS, AT MEXICAN BNDRY				1950	26000	24600
11	111	IMP	R	0.2	CALEXICO, SECOND STREET	1950	26000	24600	1950	26000	24600
11	111	IMP		0.408	THIRD ST	1950	26000	24600	2150	29500	28500
11	111	IMP		0.836	CALEXICO, GRANT STREET (EIGHTH STREET)	2150	29500	28500	2150	30000	28500
11	111	IMP	R	1.183	JCT. RTE. 98	2150	30000	28500	2600	32500	31500
11	111	IMP	R	2.211	COLE ROAD	2600	32500	31500	2800	38000	35000
11	111	IMP	R	4.741	JCT. RTE. 86 WEST	2800	38000	35000	2750	34000	30500
11	111	IMP	R	6.242	MC CABE ROAD (LAKE ROAD)	2750	34000	30500	2400	32000	30000
11	111	IMP	R	7.714	JCT. RTE. 8	2400	32000	30000	1800	20600	19300
11	111	IMP	R	9.503	EVAN HEWES HWY	1700	20200	18200	1600	18900	16800
11	111	IMP	R	11.299	ATEN RD	1600	18900	16800	1050	14000	13500
11	111	IMP	R	12.874	WORTHINGTON ROAD	1050	14000	13500	1100	12100	11000
11	111	IMP	R	17.385	KEYSTONE ROAD	1100	12100	11000	1050	12300	11000
11	111	IMP	R	22.015	JCT. RTE. 78	950	11500	10000	630	5800	5500
11	111	IMP		23.538	SHANK ROAD	630	5800	5500	560	5700	5300
11	111	IMP		23.787	DEL RIO RD RT.	560	5700	5300	560	5700	5300
11	111	IMP		24.682	ANDRE RD	560	5700	5300	620	6000	4650
11	111	IMP		26.67	RUTHERFORD ROAD	620	6000	4650	700	6600	5300
11	111	IMP		32.01	CALIPATRIA, SOUTH CITY LIMITS	700	6600	5300	690	6500	5200
11	111	IMP		32.513	JCT. RTE. 115 EAST	690	6500	5200	600	5700	4550
11	111	IMP		32.74	CALIFORNIA STREET	600	5700	4550	730	6500	5000
11	111	IMP		36.09	SINCLAIR ROAD	730	6500	5000	650	6000	3750
11	111	IMP		39.82	NILAND AVENUE	650	6000	3750	420	3700	2900
11	111	IMP		40.4	THIRD STREET	420	3700	2900	480	4200	3200

Dist	Route	County		Postmile	Description	Back Peak Hour		Back AADT	Ahead Peak Hour	Ahead Peak AADT	Ahead AADT
11	111	IMP		40.71	BEAL ROAD	480	4200	3200	330	3200	2450
11	111	IMP		42.47	ENGLISH ROAD	330	3200	2450	340	3200	2500
11	111	IMP		57.625	BOMBAY BEACH ROAD	200	1900	1500	190	1700	1400
11	111	IMP		65.394	IMPERIAL/RIVERSIDE COUNTY LINE	190	2150	1500	190	1750	1400
8	111	RIV		7.67	SALTON SEA STATE PARK ROAD	190	2050	1700	300	3200	2700
8	111	RIV		18.428	MECCA, JCT. RTE. 195 WEST	490	5200	4400	860	9200	7700
8	111	RIV		47.252	PALM SPRINGS, GOLF CLUB DRIVE	860	9200	7700	3150	35000	32000
8	111	RIV	T	47.795	EAST PALM CANYON/GENE AUTRY TRAIL	2800	31000	28500	1300	13300	12500
8	111	RIV	T	48.318	GENE AUTRY TR N/O PALM CYN	1300	13300	12500	1150	12500	11700
8	111	RIV	T	49.37	PALM SPRINGS, RAMON ROAD	1150	12500	11700	1850	19200	18000
8	111	RIV	T	51.588	VISTA CHINO	2000	20600	19300	2650	31000	29000
8	111	RIV	T	52.371	PALM SPRINGS, FARRELL DRIVE	2650	31000	29000	2100	24500	23000
8	111	RIV	T	52.876	PALM SPRINGS, SUNRISE WAY	2100	24500	23000	1950	22300	21000
8	111	RIV	T	53.376	PALM SPRINGS, AVENIDA CABALLEROS	1950	22300	21000	1250	14700	13800
8	111	RIV	T	53.627	PALM SPRINGS, VIA MIRALESTE	1250	14700	13800	1250	14700	13800
8	111	RIV	T	53.877	PALM SPRINGS, INDIAN CANYON	1250	14700	13800	970	11200	10500
8	111	RIV		53.821	VISTA CHINO @ PALM CNYN	970	11200	10500	2100	19700	17500
8	111	RIV		54.955	PALM SPRINGS, TRAMWAY DRIVE	1900	18000	16000	1900	18000	16000
8	111	RIV	R	63.378	JCT. RTE. 10	1550	14800	13200			
4	112	ALA	R	0	SAN LEANDRO, JCT. RTE. 61				2200	29500	29000
4	112	ALA		0.602	JCT. RTE. 880	4100	55000	54000	3000	41000	40000
4	112	ALA		1.507	SAN LEANDRO, SAN LEANDRO BOULEVARD	2650	36000	35000	2200	31000	30000
4	112	ALA		1.782	SAN LEANDRO, JCT. RTE. 185	1750	23500	22900			
4	113	SOL		0	JCT. RTE. 12				390	4050	3750
4	113	SOL		11.61	ELMIRA/FRY ROADS	370	3850	3550	320	3350	3100
4	113	SOL		18.95	DIXON, CHERRY STREET	970	7500	6900	1150	8500	8200
4	113	SOL		19.29	DIXON, A STREET	1650	12100	11700	990	9300	9000
4	113	SOL		19.96	DIXON, NORTH ADAMS STREET	1050	10000	9600	1250	11200	10900
4	113	SOL	R	21.24	R DIXON, WEST JCT. RTE. 80	2400	21500	20000	4750	43000	40000
4	113	SOL	R	21.653	EAST JCT RTE 80 SB	2400	21500	20000	4750	43000	40000
4	113	SOL	R	22.45	SOLANO YOLO COUNTY LINE (PUTAH CREEK BRIDGE)	4750	43000	40000			

Appendix B

Peak Hour Intersection Analysis Worksheets

Existing

Existing + Project Operations

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			¢			\$			\$	
Traffic Vol, veh/h	0	0	1	2	0	1	3	102	2	2	107	12
Future Vol, veh/h	0	0	1	2	0	1	3	102	2	2	107	12
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	1	2	0	1	3	111	2	2	116	13

Intersection													
Int Delay, s/veh	1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		${ }_{*}$			${ }_{4}$						${ }_{4}$		
Traffic Vol, veh/h	11	0	20	1	0	12	2	100	2	1	92	0	
Future Vol, veh/h	11	0	20	1	0	12	2	100	2	1	92	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	,	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-		None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	12	0	22	1	0	13	2	109	2	1	100	0	

Intersection													
Int Delay, s/veh	6.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\dagger			¢			${ }^{4}$		
Traffic Vol, veh/h	1	15	0	2	12	6	0	0	3	67	2	0	
Future Vol, veh/h	1	15	0	2	12	6	0	0	3	67	2	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	1	16	0	2	13	7	0	0	3	73	2	0	

Intersection													
Int Delay, s/veh	3.2												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			¢		\%	F		\%	F		
Traffic Vol, veh/h	8	2	76	0	5	9	8	89	1	1	116	3	
Future Vol, veh/h	8	2	76	0	5	9	8	89	1	1	116	3	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	0	-	-	0	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	9	2	83	0	5	10	9	97	1	1	126	3	

Existing + Project Operations + Cumulative Analysis

HCMLOS A B

Intersection													
Int Delay, s/veh	2.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		${ }_{*}$			${ }_{4}$		\%	$\stackrel{1}{1}$			\uparrow	7	
Traffic Vol, veh/h	6	0	55	1	0	13	16	110	2	1	101	1	
Future Vol, veh/h	6	0	55	1	0	13	16	110	2	1	101	1	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control Stor	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	0	-	-	-	-	0	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	7	0	60	1	0	14	17	120	2	1	110	1	

Intersection													
Int Delay, s/veh	0.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			\dagger			¢			${ }^{4}$		
Traffic Vol, veh/h	0	61	5	0	17	0	1	0	0	0	0	0	
Future Vol, veh/h	0	61	5	0	17	0	1	0	0	0	0	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	66	5	0	18	0	1	0	0	0	0	0	

Intersection													
Int Delay, s/veh	3.9												
Movement EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\dagger			¢			¢		
Traffic Vol, veh/h	1	17	0	2	13	0	0	12	3	4	2	0	
Future Vol, veh/h	1	17	0	2	13	0	0	12	3	4	2	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		-	None	-	-	None	-	-	None	-	-	None	
Storage Length		-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-	
Grade, \%		0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%		2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow		18	0	2	14	0	0	13	3	4	2	0	

