3.9 Greenhouse Gas Emissions

This section includes an overview of existing greenhouse gas (GHG) emissions within the project area and identifies applicable federal, state, and local policies related to global climate change. The impact assessment provides an evaluation of potential adverse effects with regards to GHG emissions based on criteria derived from the CEQA Guidelines in conjunction with actions proposed in Chapter 2, Project Description. Information contained in this section is summarized from the *Air Quality and Greenhouse Gas Technical Report* prepared by Catalyst Environmental Solutions. This report is included in Appendix D of this EIR.

3.9.1 Existing Conditions

Greenhouse Gases

Climate change refers to long-term changes in temperature, precipitation, wind patterns, and other elements of the earth's climate system. An ever-increasing body of scientific research attributes these climatological changes to GHGs, particularly those generated from the production and use of fossil fuels.

GHGs refer to atmospheric gases that absorb solar radiation and subsequently emit radiation in the thermal infrared region of the energy spectrum, trapping heat in the Earth's atmosphere. These gases include carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and water vapor, among others. While climate change has been a concern for several decades, the establishment of the Intergovernmental Panel on Climate Change (IPCC) by the United Nations and World Meteorological Organization in 1988 has led to increased efforts devoted to GHG emissions reduction and climate change research and policy.

The dominant GHG emitted is CO₂, mostly from fossil fuel combustion. GHGs differ in how much heat each can trap in the atmosphere (i.e., global warming potential [GWP]). When accounting for GHGs, all types of GHG emissions are expressed in terms of carbon dioxide equivalent (CO₂e) and are typically quantified in metric tons (MT) or million metric tons. The GWP of a GHG is based on several factors, including the relative effectiveness of a gas to absorb infrared radiation and length of time that the gas remains in the atmosphere ("atmospheric lifetime"). The GWP of each gas is measured relative to CO₂, the most abundant GHG. The definition of GWP for a particular GHG is expressed relative to CO₂ over a specified time period. CH₄ traps over 25 times more heat per molecule than CO₂, and N₂O absorbs 298 times more heat per molecule than CO₂. State law defines GHGs as any of the following compounds CO₂, CH₄, N₂O, hydrofluorocarbons (HFC), perfluorocarbons (PFC) and sulfur hexafluoride (SF₆) (California HSC Section 38505(g)).

 $\mathbf{CO_2}$ is a colorless, odorless gas consisting of molecules made up of two oxygen atoms and one carbon atom. $\mathbf{CO_2}$ is produced when an organic carbon compound, such as wood, or fossilized organic matter, such as coal, oil, or natural gas, is burned in the presence of oxygen. $\mathbf{CO_2}$ is removed from the atmosphere by $\mathbf{CO_2}$ "sinks", such as absorption by seawater and photosynthesis by ocean dwelling plankton and land plants, including forests and grasslands; however, seawater is also a source of $\mathbf{CO_2}$ to the atmosphere, along with land plants, animals, and soils, when $\mathbf{CO_2}$ is released during respiration. Whereas the natural production and absorption of $\mathbf{CO_2}$ is achieved through the terrestrial biosphere and the ocean, humankind has altered the natural carbon cycle by burning coal, oil, natural gas, and wood.

CH₄ is a colorless, odorless non-toxic gas consisting of molecules made up of four hydrogen atoms and one carbon atom. CH₄ is combustible, and it is the main constituent of natural gas-a fossil fuel. CH₄ is released when organic matter decomposes in low oxygen environments. Natural sources include wetlands, swamps and marshes, termites, and oceans. Human sources include the mining of fossil fuels and transportation of natural gas, digestive processes in ruminant animals, such as cattle, rice paddies and the buried waste in landfills. Over the last 50 years, human activities, such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of CH₄. Other anthropogenic sources include fossil-fuel combustion and biomass burning.

 N_2O is a colorless, non-flammable gas with a sweetish odor, commonly known as "laughing gas", and sometimes used as an anesthetic. N_2O is naturally produced in the oceans and in rainforests. Man-made sources of N_2O include the use of fertilizers in agriculture, nylon and nitric acid production, cars with catalytic converters and the burning of organic matter. Concentrations of N_2O also began to rise at the beginning of the industrial revolution.

Chlorofluorocarbons (CFC) are gases formed synthetically by replacing all hydrogen atoms in CH₄ or ethane with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically un-reactive in the troposphere (the level of air at the Earth's surface). CFCs have no natural source but were first synthesized in 1928. It was used for refrigerants, aerosol propellants, and cleaning solvents. Because of the discovery that they are able to destroy stratospheric ozone (O₃), an ongoing global effort to halt their production was undertaken and has been extremely successful, so much so that levels of the major CFCs are now remaining steady or declining; however, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years.

HFCs are synthesized chemicals that are used as a substitute for CFCs. Out of all of the GHGs; HFCs are one of three groups with the highest GWP. HFCs are synthesized for applications, such as automobile air conditioners and refrigerants.

PFCs have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. High-energy ultraviolet rays about 60 kilometers above Earth's surface are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. The two main sources of PFCs are primary aluminum production and semiconductor manufacture.

 $\mathbf{SF_6}$ is an extremely potent GHG. $\mathbf{SF_6}$ is very persistent, with an atmospheric lifetime of more than 1,000 years. Thus, a relatively small amount of $\mathbf{SF_6}$ can have a significant long-term impact on global climate change. $\mathbf{SF_6}$ is human-made, and the primary user of $\mathbf{SF_6}$ is the electric power industry. Because of its inertness and dielectric properties, it is the industry's preferred gas for electrical insulation, current interruption, and arc quenching (to prevent fires) in the transmission and distribution of electricity. $\mathbf{SF_6}$ is used extensively in high voltage circuit breakers and switchgear, and in the magnesium metal casting industry.

Statewide Greenhouse Gas Emissions Inventory

In 2021, CARB released the California GHG inventory covering calendar year 2019 emissions. In 2019, California emitted 418.2 million gross metric tons of CO₂e including from imported electricity. The current inventory covers the years 2000 to 2019 and is summarized in Table 3.9-1. Data sources used to calculate this GHG inventory include California and Federal agencies, international organizations, and industry associations. The calculation methodologies are consistent with guidance from the IPCC. The 2000 emissions level is the sum total of sources from all sectors and categories in the inventory. The inventory is divided into seven broad sectors and categories in the inventory.

3.9-2 | August 2024 Imperial County

These sectors include agriculture, commercial and residential, electric power, industrial, transportation, recycling and waste, and high GWP gases.

As shown in Table 3.9-1, combustion of fossil fuel in the transportation sector was the single largest source of California's GHG emissions in 2019, accounting for approximately 39.7 percent of total GHG emissions in the state (CARB 2021).

Table 3.9-1. California Greenhouse Gas Emissions Inventory 2000 to 2019

Sector	Total 2000 Emissions (MMTCO ₂ e)	Total 2018 Emissions (MMTCO ₂ e)
Agriculture	30.97	31.8
Commercial and Residential	43.95	43.8
Electric Power	104.75	58.8
Industrial	96.18	88.2
Transportation	178.40	166.1
Recycling and Waste	7.67	8.9
High GWP Gases	6.28	20.6

Source: CARB 2021

Notes:

GWP=global warming potential; MMTCO₂e=million metric tons of CO₂ equivalent

Potential Effects of Climate Change

Globally, climate change has the potential to affect numerous environmental resources through uncertain impacts related to future air temperatures and precipitation patterns. Although climate change is driven by global atmospheric conditions, climate change impacts are felt locally. A scientific consensus confirms that climate change is already affecting California.

The California Natural Resources Agency's Fourth Climate Change Assessment (Fourth Assessment) produced updated climate projections that provide state-of-the-art understanding of different possible climate futures for California. The science is highly certain that California (and the world) will continue to warm and experience greater impacts from climate change in the future. While the IPCC and the National Climate Assessment have released descriptions of scientific consensus on climate change for the world and the U.S., respectively, the Fourth Assessment summarizes the current understanding of climate impacts and adaptation options in California (California Natural Resources Agency 2018). Projected changes in California include:

- **Temperatures:** If GHG emissions continue at current rates then California will experience average daily high temperatures that are warmer than the historical average by:
 - 2.7 Fahrenheit (°F) from 2006 to 2039
 - o 5.8°F from 2040 to 2069
 - 8.8°F from 2070 to 2100
- Wildfire: One Fourth Assessment model suggests large wildfires (greater than 25,000 acres) could become 50 percent more frequent by the end of century if emissions are not reduced. The model produces more years with extremely high areas burned, even compared to the historically destructive wildfires of 2017 and 2018. By the end of the century, California could

experience wildfires that burn up to a maximum of 178 percent more acres per year than current averages.

- Sea-Level Rise: If emissions continue at current rates, the Fourth Assessment model results
 indicate that total sea-level rise by 2100 is expected to be 54 inches, almost twice the rise that
 would occur if GHG emissions are lowered to reduce risk.
- Snowpack: By 2050, the average water supply from snowpack is projected to decline to 2/3 from historical levels. If emissions reductions do not occur, water from snowpack could fall to less than 1/3 of historical levels by 2100.
- Agriculture: Agricultural production could face climate-related water shortages of up to 16 percent in certain regions. Regardless of whether California receives more or less annual precipitation in the future, the state will be dryer because hotter conditions will increase the loss of soil moisture (California Natural Resources Agency 2018).

3.9.2 Regulatory Setting

This section identifies and summarizes federal, state, and local laws, policies, and regulations that are applicable to the project.

Federal

At the federal level, there is currently no overarching law related to climate change or the reduction of GHGs. The U.S. EPA is developing regulations under the CAA to be adopted in the near future, pursuant to the U.S. EPA's authority under the CAA. Foremost amongst recent developments have been the settlement agreements between the U.S. EPA, several states, and nongovernmental organizations to address GHG emissions from electric generating units and refineries; the U.S. Supreme Court's decision in Massachusetts v. EPA; and U.S. EPA's "Endangerment Finding," "Cause or Contribute Finding," and "Mandatory Reporting Rule." On September 20, 2013, the U.S. EPA issued a proposal to limit carbon pollution from new power plants. The U.S. EPA is proposing to set separate standards for natural gas-fired turbines and coal-fired units.

Although periodically debated in Congress, no federal legislation concerning GHG limitations has yet been adopted. In Coalition for Responsible Regulation, Inc., et al. v. EPA, the United States Court of Appeals upheld the U.S. EPA's authority to regulate GHG emissions under CAA. Furthermore, under the authority of the CAA, the EPA is beginning to regulate GHG emissions starting with large stationary sources. In 2010, the U.S. EPA set GHG thresholds to define when permits under the New Source Review Prevention of Significant Deterioration standard and Title V Operating Permit programs are required for new and existing industrial facilities. In 2012, U.S. EPA proposed a carbon pollution standard for new power plants.

Corporate Average Fuel Standards

Established by the U.S. Congress in 1975, the Corporate Average Fuel Economy (CAFE) standards reduce energy consumption by increasing the fuel economy of cars and light trucks. The National Highway Traffic Safety Administration (NHTSA) and U.S. EPA jointly administer the CAFE standards. The U.S. Congress has specified that CAFE standards must be set at the "maximum feasible level" with consideration given for: (1) technological feasibility; (2) economic practicality; (3) effect of other standards on fuel economy; and (4) need for the nation to conserve energy.

3.9-4 | August 2024 Imperial County

Fuel efficiency standards for medium-and heavy-duty trucks have been jointly developed by U.S. EPA and NHTSA. The Phase 1 heavy-duty truck standards apply to combination tractors, heavy-duty pickup trucks and vans, and vocational vehicles for model years 2014 through 2018, and result in a reduction in fuel consumption from 6 to 23 percent over the 2010 baseline, depending on the vehicle type (U.S. EPA 2011). In 2012, the U.S. EPA and NHTSA also adopted the Phase 2 heavy-duty truck standards, which cover model years 2021 through 2027 and require the phase-in of a 5 to 25 percent reduction in fuel consumption over the 2017 baseline depending on the compliance year and vehicle type (U.S. EPA 2016).

State

Executive Order S-3-05

Executive Order (EO) S-3-05, signed by previous Governor Arnold Schwarzenegger in 2005, proclaims that California is vulnerable to the impacts of climate change. It declares that increased temperatures could reduce the Sierra Nevada snowpack, further exacerbate California's air quality problems, and potentially cause a rise in sea levels. To combat those concerns, the EO established total GHG emission targets for the state. Specifically, emissions are to be reduced to the 2000 level by 2010, the 1990 level by 2020, and to 80 percent below the 1990 level by 2050.

Executive Order S-01-07

This order, signed by Governor Schwarzenegger, sets forth the low carbon fuel standard (LCFS) for California. Under this EO, the carbon intensity of California's transportation fuels is to be reduced by at least 10 percent by the year 2020. CARB re-adopted the LCFS regulation in September 2015, and the changes went into effect on January 1, 2016. The program establishes a strong framework to promote the low-carbon fuel adoption necessary to achieve the Governor's 2030 and 2050 GHG reduction goals.

Assembly Bill 31 - California Global Warming Solutions Act

In 2006, the California legislature passed Assembly Bill (AB) 32 (Health and Safety Code § 38500 et seq., or AB 32), also known as the Global Warming Solutions Act. AB 32 requires CARB to design and implement feasible and cost-effective emission limits, regulations, and other measures, such that statewide GHG emissions are reduced to 1990 levels by 2020 (representing a 25 percent reduction in emissions). Pursuant to AB 32, CARB adopted a Scoping Plan in December 2008, which outlines measures to meet the 2020 GHG reduction goals. California is on track to meet or exceed the target of reducing GHG emissions to 1990 levels by the end of 2020.

The Scoping Plan is required by AB 32 to be updated at least every five years. The latest update, the 2017 Scoping Plan Update, addresses the 2030 target established by Senate Bill (SB) 32 as discussed below and establishes a proposed framework of action for California to meet a 40 percent reduction in GHG emissions by 2030 compared to 1990 levels. The key programs that the Scoping Plan Update builds on include increasing the use of renewable energy in the state, the Cap-and-Trade Regulation, the Low Carbon Fuel Standard, and reduction of methane emissions from agricultural and other wastes.

Senate Bill 32 and Assembly Bill 197 of 2016

In August 2016, Governor Brown signed SB 32 and AB 197, which serve to extend California's GHG reduction programs beyond 2020. SB 32 amended the Health and Safety Code to include § 38566,

which contains language to authorize CARB to achieve a statewide GHG emission reduction of at least 40 percent below 1990 levels by no later than December 31, 2030. SB 32 codified the targets established by Executive Order (EO) B-30-15 for 2030, which set the next interim step in the State's continuing efforts to pursue the long-term target expressed in EOs S-3-05 and B-30-15 of 80 percent below 1990 emissions levels by 2050.

Senate Bill 100 of 2018

On September 10, 2018, Governor Brown signed SB 100, establishing that 100 percent of all electricity in California must be obtained from renewable and zero-carbon energy resources by December 31, 2045. SB 100 also creates new standards for the Renewable Portfolio Standard (RPS) goals established by SB 350 in 2015. Specifically, the bill increases required energy from renewable sources for both investor-owned utilities and publicly-owned utilities from 50 percent to 60 percent by 2030. Incrementally, these energy providers must also have a renewable energy supply of 33 percent by 2020, 44 percent by 2024, and 52 percent by 2027. California must procure 100 percent of its energy from carbon free energy sources by the end of 2045.

Renewable Portfolio Standard

The RPS promotes diversification of the state's electricity supply and decreased reliance on fossil fuel energy sources. Originally adopted in 2002 with a goal to achieve a 20 percent renewable energy mix by 2020 (referred to as the "initial RPS"), the goals have been accelerated and increased by EOs S-14-08, S-21-09, SB 350, and SB 100.

The RPS is included in CARB's Scoping Plan list of GHG reduction measures to reduce energy sector emissions. It is designed to accelerate the transformation of the electricity sector through such means as investment in the energy transmission infrastructure and systems to allow integration of large quantities of intermittent wind and solar generation. Increased use of renewables would decrease California's reliance on fossil fuels, thus reducing emissions of GHGs from the electricity sector.

Senate Bill 350

The RPS program was further accelerated in 2015 with SB 350 which mandated a 50 percent RPS by 2030. SB 350 includes interim annual RPS targets with three-year compliance periods and requires 65 percent of RPS procurement to be derived from long-term contracts of 10 or more years.

Climate Change Scoping Plan

The Scoping Plan released by CARB in 2008 outlined the state's strategy to achieve the AB 32 goals. This Scoping Plan, developed by CARB in coordination with the Climate Action Team, proposed a comprehensive set of actions designed to reduce overall GHG emissions in California, improve the environment, reduce dependence on oil, diversify our energy sources, save energy, create new jobs, and enhance public health. It was adopted by CARB at its meeting in December 2008. According to the Scoping Plan, the 2020 target of 427 million MTCO₂e requires the reduction of 169 million MTCO₂e, or approximately 28.3 percent, from the state's projected 2020 BAU emissions level of 596 million MTCO₂e.

However, in August 2011, the Scoping Plan was re-approved by the Board and includes the Final Supplement to the Scoping Plan Functional Equivalent Document. This document includes expanded analysis of project alternatives as well as updates the 2020 emission projections in light of the current economic forecasts. Considering the updated 2020 BAU estimate of 507 million MTCO₂e, only a 16

3.9-6 | August 2024 Imperial County

percent reduction below the estimated new BAU levels would be necessary to return to 1990 levels by 2020. The 2011 Scoping Plan expands the list of nine Early Action Measures into a list of 39 Recommended Actions.

In May 2014, CARB developed; in collaboration with the Climate Action Team, the First Update to California's Climate Change Scoping Plan (Update), which shows that California is on track to meet the near-term 2020 GHG limit and is well positioned to maintain and continue reductions beyond 2020 as required by AB 32. In accordance with the United Nations Framework Convention on Climate Change, CARB is beginning to transition to the use of the AR4's 100-year GWPs in its climate change programs. CARB has recalculated the 1990 GHG emissions level with the AR4 GWPs to be 431 million MTCO₂e; therefore, the 2020 GHG emissions limit established in response to AB 32 is now slightly higher than the 427 million MTCO2e in the initial Scoping Plan.

In December 2017, CARB's Climate Change Scoping Plan was guided by the EO B-30-15 GHG reduction target of 40 percent below 1990 levels by 2030. The 2017 Scoping Plan builds upon the framework established by the initial Scoping Plan and the First Update, while identifying new, technologically feasible, and cost-effective strategies to ensure that California meets its GHG reduction targets in a way that promotes and rewards innovation, continues to foster economic growth, and delivers improvements to the environment and public health, including in disadvantaged communities (CARB 2017).

CARB adopted the latest update to the Climate Change Scoping Plan in November 2022. The 2022 Scoping Plan for Achieving Carbon Neutrality lays out a path to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045, as directed by AB 1279. The Plan includes policies to require direct GHG reductions at some of the State's largest stationary sources and mobile sources. These policies include the use of lower GHG fuels, efficiency regulations, and the Cap-and-Trade Program, which constrains and reduces emissions at covered sources (CARB 2022b).

The majority of the Scoping Plan's GHG reduction strategies are directed at the two sectors with the largest GHG emissions contributions: transportation and electricity generation. The GHG reduction strategies for these sectors involve statutory mandates affecting vehicle or fuel manufacture, public transit, and public utilities. The reduction strategies employed by CARB are designed to reduce emissions from existing sources as well as future sources.

Senate Bill 97

SB 97, enacted in 2007, amends the CEQA statute to clearly establish that GHG emissions and the effects of GHG emissions are appropriate subjects for CEQA analysis. It directs Office of Planning and Research (OPR) to develop draft CEQA Guidelines "for the mitigation of GHG emissions or the effects of GHG emissions" by July 1, 2009, and directs the Resources Agency to certify and adopt the CEQA Guidelines by January 1, 2010.

On December 30, 2009, the Natural Resources Agency adopted amendments to the CEQA Guidelines in the CCR. The amendments went into effect on March 18, 2010, and are summarized below:

- Climate action plans and other GHG reduction plans can be used to determine whether a project has significant impacts, based upon its compliance with the plan.
- Local governments are encouraged to quantify the GHG emissions of proposed projects, noting that they have the freedom to select the models and methodologies that best meet their needs and circumstances. In addition, consideration of several qualitative factors may be used

in the determination of significance, such as the extent to which the given project complies with state, regional, or local GHG reduction plans and policies. The Guidelines do not set or dictate specific thresholds of significance.

- When creating their own thresholds of significance, local governments may consider the thresholds of significance adopted or recommended by other public agencies, or recommended by experts.
- New amendments include guidelines for determining methods to mitigate the effects of GHG emissions in Appendix G of the CEQA Guidelines.
- The Guidelines are clear to state that "to qualify as mitigation, specific measures from an
 existing plan must be identified and incorporated into the project; general compliance with a
 plan, by itself, is not mitigation."
- The Guidelines promote the advantages of analyzing GHG impacts on an institutional, programmatic level, and, therefore, approve tiering of environmental analyses and highlights some benefits of such an approach.
- EIRs must specifically consider a project's energy use and energy efficiency potential, pursuant to Appendix F of the CEQA Guidelines.

Senate Bill 375 – Regional Emissions Targets

SB 375 requires that regions within the state which have a metropolitan planning organization (MPO) must adopt a sustainable communities' strategy as part of their RTPs. The strategy must be designed to achieve certain goals for the reduction of GHG emissions. The bill finds that "it will be necessary to achieve significant additional GHG reductions from changed land use patterns and improved transportation. Without improved land use and transportation policy, California will not be able to achieve the goals of AB 32." SB 375 provides that new CEQA provisions be enacted to encourage developers to submit applications and local governments to make land use decisions that will help the state achieve its goals under AB 32," and that "current planning models and analytical techniques used for making transportation infrastructure decisions and for air quality planning should be able to assess the effects of policy choices, such as residential development patterns, expanded transit service and accessibility, the walkability of communities, and the use of economic incentives and disincentives."

Regional

Southern California Association of Governments – 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy

The SCAG is the designated MPO for Los Angeles, Ventura, Orange, San Bernardino, Riverside, and Imperial Counties. CEQA requires that regional agencies like SCAG review projects and plans throughout its jurisdiction. SCAG, as the region's "Clearinghouse," collects information on projects of varying size and scope to provide a central point to monitor regional activity. SCAG has the responsibility of reviewing dozens of projects, plans, and programs every month. Projects and plans that are regionally significant must demonstrate to SCAG their consistency with a range of adopted regional plans and policies.

In September 2020, SCAG adopted the 2020-2045 RTP/SCS. The RTP/SCS includes a strong commitment to reduce emissions from transportation sources to comply with SB 375, improve public

3.9-8 | August 2024 Imperial County

health, and meet the NAAQS as set forth by the federal CAA (see Section 3.3, Air Quality, of this EIR). The following SCAG goal is applicable to the project:

Reduce greenhouse gas emissions and improve air quality

As a solar generation facility, the proposed project would improve air quality by reducing the use of fossil fuels in energy production.

Local

County of Imperial

Pursuant to the requirements of SB 97, the Resources Agency adopted amendments to the CEQA Guidelines to provide regulatory guidance on the analysis and mitigation of GHG emissions in CEQA documents, while giving lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHG and climate change impacts. Formal CEQA thresholds for lead agencies must always be established through a public hearing process. Imperial County has not established formal quantitative or qualitative thresholds through a public rulemaking process, but CEQA permits the lead agency to establish a project-specific threshold of significance if backed by substantial evidence, until such time as a formal threshold is approved.

3.9.3 Impacts and Mitigation Measures

Thresholds of Significance

Based on CEQA Guidelines Appendix G, project impacts related to GHG emissions are considered significant if any of the following occur:

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment
- Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs

As discussed in Section 15064.4 of the CEQA Guidelines, the determination of the significance of GHG emissions calls for a careful judgment by the lead agency consistent with the provisions in Section 15064. A lead agency should make a good-faith effort, based to the extent possible on scientific and factual data, to describe, calculate or estimate the amount of GHG emissions resulting from a project. A lead agency shall have discretion to determine, in the context of a particular project, whether to:

- 1. Quantify greenhouse gas emissions resulting from a project; and/or
- 2. Rely on a qualitative analysis or performance based standards.

A lead agency should consider the following factors, among others, when assessing the significance of impacts from GHG emissions on the environment:

- 1. The extent to which the project may increase or reduce GHG emissions as compared to the existing environmental setting;
- 2. Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project; and

3. The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of GHG emissions. Such requirements must be adopted by the relevant public agency through a public review process and must reduce or mitigate the project's incremental contribution of GHG emissions. If there is substantial evidence that the possible effects of a particular project are still cumulatively considerable notwithstanding compliance with the adopted regulations or requirements, an EIR must be prepared for the project. In determining the significance of impacts, the lead agency may consider a project's consistency with the State's long-term climate goals or strategies, provided that substantial evidence supports the agency's analysis of how those goals or strategies address the project's incremental contribution to climate change and its conclusion that the project's incremental contribution is not cumulatively considerable.

South Coast Air Quality Management District's Interim Thresholds

The ICAPCD has not adopted a GHG significance threshold. As previously described, Section 15064.7(c) of the CEQA Guidelines specifies that "[w]hen adopting or using thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies, or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence" (14 CCR 15064.7(c)). Thus, in the absence of any GHG emissions significance thresholds, the projected emissions are compared to the SCAQMD Interim Threshold of 10,000 metric tons of CO₂e annually.

While significance thresholds used in the South Coast Air Basin are not binding on the ICAPCD or County of Imperial (and some elements of SCAQMD's thresholds may not be relevant to the project), they are instructive as a comparative metric of the project's potential combined GHG impact. This threshold is also appropriate as the SCAQMD GHG thresholds were formulated based on similar geography and climate patterns as found in Imperial County and are also employed for use in CEQA GHG analyses in the Riverside County portion of the SSAB, the same air basin that encompasses the proposed project. Therefore, the 10,000-metric ton of CO₂e threshold is appropriate for this analysis.

Methodology

The project-related direct and indirect emissions of GHGs were estimated using the similar methods for quantification of criteria air pollutants, as described in Section 3.4, Air Quality. Emissions were estimated using existing conditions, project construction and operations information, as well as a combination of emission factors from various sources. Where GHG emission quantification was required, combined project emissions were modeled using the CalEEMod, version 2022.1. CalEEMod is a statewide land use emissions computer model designed to quantify potential GHG emissions associated with both construction and operations from a variety of land use projects (Appendix D of this EIR).

Impact Analysis

Impact 3.9-1 Would the project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?

Construction and operation of the project would result in a relatively small amount of GHG emissions. The proposed project would generate GHG emissions during construction and routine operational activities.

3.9-10 | August 2024 Imperial County

Construction. During construction, GHG emissions would be generated from the operation of offroad equipment, haul-truck trips, and on-road worker vehicle trips. Table 3.9-2 shows the proposed project's construction-related GHG emissions. As previously described above, in the absence of an established threshold from the ICAPCD, construction emissions were compared to SCAQMD's significance threshold of 10,000 metric tons of CO₂e per year. As shown in Table 3.9-2, construction emissions would result in a maximum of 17,592 metric tons of CO₂e/year.

Table 3.9-2. Estimated Project Construction GHG Emissions

Construction Year	GHG (MTCO2e/year)
2025	17,592
2026	7,606.1
Total	25,198

Source: Appendix D of this EIR

Consistent with SCAQMD's recommendations, project construction GHG emissions from all phases of construction activities were amortized over the expected life of the project, which is considered to be 30 years for a solar energy generation facility. Table 3.9-3 shows the total GHG emissions for project construction amortized over a 30-year timeframe would result in 839.93 metric tons of CO₂e per year. Therefore, the construction emissions are less than the SCAQMD's screening threshold of 10,000 metric tons of CO₂e per year. This impact would be less than significant.

Operation. The proposed project would be staffed by 1-2 personnel. Annual operation and maintenance trips to the project site would be negligible, adding up to six trips per day to the existing operations at the plant. Additional sources of GHG emissions associated with operations include those related to landscape equipment use for routine maintenance work, water use, and operation of auxiliary stationary equipment (i.e., emergency diesel generator and emergency diesel fire pump).

As shown in Table 3.9-3, operational emissions would contribute approximately 97 metric tons of CO_2e per year and would be less than the SCAQMD's screening threshold of 10,000 metric tons of CO_2e per year. The total annual GHG emissions for the proposed project are estimated to be 940.89 metric tons of CO_2e per year.

Table 3.9-3. Proposed Project Amortized Annual GHG Emissions

Emission Source	GHG (MTCO₂e/year)
Construction (amortized over 30-year life of project)	839.93
Operations (i.e., mobile, area, water)	97
Leaking SF ₆	3.96
Total	940.89

Source: Appendix D of this EIR

The proposed substation includes new circuit breakers that would potentially be insulated with SF_6 . As shown in Table 3.9-3, the project would leak SF_6 , contributing approximately 3.96 metric tons of CO_2e per year. It is assumed that up to three circuit breakers will be insulated with SF_6 with an estimated 25 pounds of SF_6 gas per circuit breaker resulting in a total of 75 pounds of SF_6 gas required at the site. Consistent with the IEC standard for new equipment leakage, a 0.5 percent per year leakage rate is assumed (U.S. EPA 2016). Accordingly, an estimated 0.375 pounds (or 3.96 metric tons of CO_2e per year) of SF_6 would be released annually. Regarding management of project-related emissions leaking SF_6 , the project would be required to comply with CARB Regulation for Reducing

Sulfur Hexafluoride Emissions from Gas Insulated Switchgear (Title 16, Sections 95350-95359 of the California Code of Regulations). Compliance with this regulatory measure would ensure consistency with intent of Scoping Plan Measure H-6, High Global Warming Potential Gas Reductions from Stationary Sources. Inventories of SF_6 that would be associated with the project would be documented and annually reported to U.S. EPA and CARB. Therefore, with compliance to the regulations mentioned above, implementation of the proposed project would result in a less than significant impact associated with the generation of GHG emissions.

Mitigation Measure(s)

No mitigation measures are required.

Impact 3.9-2 Would the project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs?

Project-generated GHG emissions would not exceed either the SCAQMD significance thresholds, which were prepared with the purpose of complying with statewide GHG-reduction efforts. While the project would emit some GHG emissions during construction and a very small amount during operations, the contribution of renewable resource energy production to meet the goals of the Renewable Portfolio Standard (Scoping Plan Measure E-3) would result in a net cumulative reduction of GHG emissions, a key environmental benefit. Scoping Plan Measure E-3, Renewable Portfolio Standard, of the Climate Change Scoping Plan requires that all investor-owned utility companies generate 60 percent of their energy demand from renewable sources by the year 2030. Therefore, the short-term minor generation of GHG emissions during construction, which is necessary to create new, low-GHG emitting power-generating facilities, as well as the negligible amount generated during ongoing maintenance operations, would be more than offset by GHG emission reductions associated with solar-generated energy during operation.

Increasing clean, renewable energy is one of the measures identified under the Scoping Plan to reduce statewide GHG emissions. The proposed project would increase output from geothermal resources, a source of low-carbon baseload that replaces fossil fuel use and reduces GHG emissions from power generation.

Implementation of the proposed project would result in a less than significant impact associated with the potential to conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emission of GHGs.

Mitigation Measure(s)

No mitigation measures are required.

3.9.4 Decommissioning/Restoration and Residual Impacts

Decommissioning/Restoration

Similar to construction activities, decommissioning and restoration would result in GHG emissions below allowable thresholds. Construction activities during decommissioning and restoration would adhere to Mitigation Measures AQ-1 through AQ-6 outlined in Section 3.4, Air Quality of this EIR, further reducing GHG emissions. Therefore, the impact is considered less than significant.

3.9-12 | August 2024 Imperial County

Residual

The proposed project's combined GHG emissions would result in a less than significant impact. Project operation would generally be consistent with statewide GHG emission goals and policies including SB 32. Project consistency with applicable plans, policies, and regulations adopted to reduce GHG emissions would ensure that the project would not result in any residual significant and unavoidable impacts with regards to global climate change.

3.9 Greenhouse Gas Emissions Draft EIR | Dogwood Geothermal Energy Project

This page is intentionally blank.

3.9-14 | August 2024 Imperial County