PROJECT REPORT

TO: ENVIRONMENTAL EVALUATION COMMITTEE

AGENDA DATE: February 27, 2025

AGENDA TIME 1:30 PM / No.1 FROM: PLANNING & DEVELOPMENT SERVICES Picacho Road Bridge Replacement PROJECT TYPE: IS#24-0037 SUPERVISOR DIST #5 LOCATION: Picacho Road Bridge APN: 056-600-011-000 Winterhaven, CA 92283 PARCEL SIZE: N/A GENERAL PLAN (existing) Agriculture GENERAL PLAN (proposed) N/A ZONE (existing) Native American (NAT AMER) ZONE (proposed) N/A ☐ INCONSISTENT ☐ MAY BE/FINDINGS CONSISTENT GENERAL PLAN FINDINGS PLANNING COMMISSION DECISION: HEARING DATE: DENIED OTHER APPROVED HEARING DATE: PLANNING DIRECTORS DECISION: OTHER APPROVED DENIED ENVIROMENTAL EVALUATION COMMITTEE DECISION: HEARING DATE: 02/27/2025 INITIAL STUDY: #24-0037 □ NEGATIVE DECLARATION □ MITIGATED NEG. DECLARATION □ EIR DEPARTMENTAL REPORTS / APPROVALS: ATTACHED **PUBLIC WORKS** NONE ATTACHED NONE AG **ATTACHED** NONE **APCD** NONE E.H.S. NONE **ATTACHED** FIRE / OES ATTACHED NONE **SHERIFF** Imperial Irrigation District (IID), CEO, Quechan Indian Tribe, OTHER

REQUESTED ACTION:

(See Attached)

CALTRANS

Planning & Development Services

801 MAIN STREET, EL CENTRO, CA, 92243 442-265-1736

(Jim Minnick, Director)

LBIATIS: IAIIUsers IAPNI056160010111IS24-0037 EEC IS24-0037 PROJECT REPORT doc PKG

☐ NEGATIVE DECLARATION MITIGATED NEGATIVE DECLARATION

Initial Study & Environmental Analysis For:

IMPERIAL COUNTY PROJECT NO. 6811 PICACHO ROAD BRIDGE REPLACEMENT PROJECT AT YUMA MAIN CANAL INITIAL STUDY (IS) # 24-0037

Prepared By.

COUNTY OF IMPERIAL

Planning & Development Services Department

801 Main Street El Centro, CA 92243 (442) 265-1736 www.icpds.com

January 2025

TABLE OF CONTENTS

	× v	<u>PAGE</u>
SE	CTION 1	
		c
l.	INTRODUCTION	6
<u>SE</u>	CTION 2	
II.	ENVIRONMENTAL CHECKLIST	11
	PROJECT SUMMARY	15
	ENVIRONMENTAL ANALYSIS	19
1.	AESTHETICS	19
1. II.	AGRICULTURE AND FOREST RESOURCES	20
11. 111.		21
IV.		25
V.		
VI.		
VI.		
VI		30
ΙX	HAZARDS AND HAZARDOUS MATERIALS	32
Χ.	HYDROLOGY AND WATER QUALITY	33
XI		35
XI		36
XI	II. NOISE	37
XI	V. POPULATION AND HOUSING	39
X		40
X١	/I. RECREATION	
X١	VII. TRANSPORTATION	42
X	VIII. TRIBAL CULTURAL RESOURCES	43
XI		
X	X. WILDFIRE	44
CE	COTION 2	
<u>2F</u>	ECTION 3	
III.	MANDATORY FINDINGS OF SIGNIFICANCE	48
IV.	PERSONS AND ORGANIZATIONS CONSULTED	49
٧.	REFERENCES	50
VI.	MITIGATED NEGATIVE DECLARATION - COUNTY OF IMPERIAL	60
VII.	FINDINGS	61
-	COTION 4	
SE	CCTION 4	
VIII.	RESPONSE TO COMMENTS (IF ANY)	62
IX.	MITIGATION MONITORING & REPORTING PROGRAM (MMRP) (IF ANY)	63

TABLES

Table 1: Significance Thresholds for Criteria Pollutants	22
Table 2: Air Quality Standards and Designations for Project Area within the Salton Sea Air Basin	23
Table 3: Project Maximum Daily Construction Emissions (pounds/day	24
Table 4: Construction GHG Emissions	30
Table 5: Consistency with CARB's 2017 Scoping Plan Measures for Individual Projects	
Table 6: Existing Noise Sources in Project Site	36
Table 7: Construction Equipment Noise Levels	37
Table 8: Imperial County Population Inventory	
Table 9: Unincorporated Imperial County Demographic Composition	39
<u>Exhibits</u>	
Exhibit A: Project Vicinity	15
Exhibit B: Project Location and Footprint	16
Exhibit C: Bridge Design	
Exhibit D: Project Site and Nearest Sensitive Receptors	

APPENDICES

Appendix A - Construction Details & CalEEMod Report

Appendix B - Biological Resources Survey

Appendix C - Cultural Report

Acronyms and Abbreviations

AB Assembly Bill AFY Acre-Feet Per Year

AQMP Air Quality Management Plan

ARMR Archaeological Resource Management Reports
ATSM American Society for Testing and Materials

BLM Bureau of Land Management
BMP Best Management Practices
BOR Bureau of Reclamation

CAAQS California Ambient Air Quality Standards

CALFIRE California Department of Forestry and Fire Protection

Cal-EPA California Environmental Protection Agency
CalEEMod California Emissions Estimator Model
Caltrans California Department of Transportation

CARB California Air Resources Board CCR California Code of Regulations

CDFW California Department of Fish and Wildlife CEQA California Environmental Quality Act

CERCLA Comprehensive Environmental Response, Compensation, And Liability Act

CFR Code of Federal Regulations

CH4 Methane

CNDDB California Natural Diversity Database
CNEL Community Noise Equivalent Level
CNPS California Native Plant Society

CO Carbon Monoxide CO2 Carbon Dioxide

CO2e Carbon Dioxide Equivalent

COSFM California Office of the State Fire Marshall CRHR California Register of Historical Resources

CWA Clean Water Act
CY Cubic Yards
dB Decibels

dBA A-weighted Decibels

DOC California Department of Conservation
DWR Department of Water Resources
ESA Environmental Site Assessment

FEMA Federal Emergency Management Agency

FIRM Flood Insurance Rate Map
FHSZ Fire Hazard Severity Zone
FHWA Federal Highway Administration

GHG Greenhouse Gas

GWP Global Warming Potential

HCP / NCCP Habitat Conservation Plan / Natural Community Conservation Plan

HP Horsepower

ICAPCD Imperial County Air Pollution Control District

IID Imperial Irrigation District in/sec Inches per second

IPCC Intergovernmental Panel on Climate Change

Lbs Pounds

Leq Energy Equivalent or Energy Average Level

Initial Study #24-0037, Environmental Checklist Form & Miligated Negative Declaration for PICACHO ROAD BRIDGE REPLACEMENT AT YUMA

LID Low Impact Development

Lmax Maximum A-weighted Sound Level

LRA Local Responsibility Area

LST Localized Significance Thresholds

MBTA Migratory Bird Treaty Act

MMRP Mitigation Monitoring and Reporting Program

MRZ Mineral Resources Zones

N2O Nitrous Oxide

NAAQS National Ambient Air Quality Standards
NAHC Native American Heritage Commission

NAV Navigation
NO2 Nitrogen Dioxide
Nox Nitrogen Oxide

NPDES National Pollutant Discharge Elimination System

NWI National Wetlands Inventory

O3 Ozone

O&M Plan Operations and Maintenance Plan

PEIR Programmatic Environmental Impact Report

PM Particulate Matter

PM_{2.5}
2.5 Fine Particulate Matter
PM₁₀
Respirable Particulate Matter
PMM
Program Mitigation Measure
PPV
Peak Particle Velocity

RARE Rare, Threatened, or Endangered Species

ROW Right-of-Way

RWQCB Regional Water Quality Control Board

SB Senate Bill

SRA State Responsibility Area

SWPPP Stormwater Pollution Prevention Plan

TAC Toxic Air Contaminant
TMDL Total Maximum Daily Load

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service VHFHSZ Very High Fire Hazard Severity Zone

VdB Vibration Level in Decibels
VMT Vehicle Miles Traveled
VOC Volatile Organic Compounds

CDFW WL CDFW Watchlist

YCWUA Yuma County Water Users' Association

SECTION 1 INTRODUCTION

A. PURPOSE

This document is a \square policy-level, \boxtimes project level Initial Study for evaluation of potential environmental impacts resulting with the proposed Picacho Road Bridge Replacement Project at Yuma Main Canal. (Refer to Exhibits A, B, and C).

B. CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA) REQUIREMENTS AND THE IMPERIAL COUNTY'S GUIDELINES FOR IMPLEMENTING CEQA

As defined by Section 15063 of the State California Environmental Quality Act (CEQA) Guidelines and Section 7 of the County's "CEQA Regulations Guidelines for the Implementation of CEQA, as amended", an Initial Study is prepared primarily to provide the Lead Agency with information to use as the basis for determining whether an Environmental Impact Report (EIR), Negative Declaration, or Mitigated Negative Declaration would be appropriate for providing the necessary environmental documentation and clearance for any proposed project.

- According to Section 15065, an EIR is deemed appropriate for a particular proposal if the following conditions occur:
- The proposal has the potential to substantially degrade quality of the environment.
- The proposal has the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals.
- The proposal has possible environmental effects that are individually limited but cumulatively considerable.
- The proposal could cause direct or indirect adverse effects on human beings.
- According to Section 15070(a), a Negative Declaration is deemed appropriate if the proposal would not result in any significant effect on the environment.
- X According to Section 15070(b), a Mitigated Negative Declaration is deemed appropriate if it is determined that though a proposal could result in a significant effect, mitigation measures are available to reduce these significant effects to insignificant levels.

This Initial Study has determined that the proposed Project will result in any potentially significant environmental impacts and, therefore, a Mitigated Negative Declaration is deemed as the appropriate document to provide necessary environmental evaluations and clearance as identified hereinafter.

This Initial Study and Mitigated Negative Declaration are prepared in conformance with the California Environmental Quality Act of 1970, as amended (Public Resources Code, Section 21000 et. seq.); Section 15070 of the State & County of Imperial's Guidelines for Implementation of the California Environmental Quality Act of 1970, as amended (California Code of Regulations, Title 14, Chapter 3, Section 15000, et. seq.); applicable requirements of the County of Imperial; and the regulations, requirements, and procedures of any other responsible public agency or an agency with jurisdiction by law.

Pursuant to the County of Imperial Guidelines for Implementing CEQA, depending on the project scope, the County of Imperial Board of Supervisors, Planning Commission and/or Planning Director is designated the Lead Agency, in accordance with Section 15050 of the CEQA Guidelines. The Lead Agency is the public agency which has the principal responsibility for approving the necessary environmental clearances and analyses for any project in the County.

C. INTENDED USES OF INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION

This Initial Study and Mitigated Negative Declaration are informational documents which are intended to inform County of Imperial decision makers, other responsible or interested agencies, and the general public of potential environmental effects of the proposed applications. The environmental review process has been established to enable public agencies to evaluate environmental consequences and to examine and implement methods of eliminating or reducing any potentially adverse impacts. While CEQA requires that consideration be given to avoiding environmental damage, the Lead Agency and other responsible public agencies must balance adverse environmental effects against other public objectives, including economic and social goals.

The Initial Study and Mitigated Negative Declaration, prepared for the project will be circulated for a period of 20 days (30-days if submitted to the State Clearinghouse for a project of area-wide significance) for public and agency review and comments. At the conclusion, if comments are received, the County Planning & Development Services Department will prepare a document entitled "Responses to Comments" which will be forwarded to any commenting entity and be made part of the record within 10-days of any project consideration.

D. CONTENTS OF INITIAL STUDY & MITIGATED NEGATIVE DECLARATION

This Initial Study is organized to facilitate a basic understanding of the existing setting and environmental implications of the proposed applications.

SECTION 1

I. INTRODUCTION presents an introduction to the entire report. This section discusses the environmental process, scope of environmental review, and incorporation by reference documents.

SECTION 2

II. ENVIRONMENTAL CHECKLIST FORM contains the County's Environmental Checklist Form. The checklist form presents results of the environmental evaluation for the proposed applications and those issue areas that would have either a potentially significant impact, potentially significant unless mitigation incorporated, less than significant impact or no impact.

PROJECT SUMMARY, LOCATION AND EVIRONMENTAL SETTINGS describes the proposed project entitlements and required applications. A description of discretionary approvals and permits required for project implementation is also included. It also identifies the location of the project and a general description of the surrounding environmental settings.

ENVIRONMENTAL ANALYSIS evaluates each response provided in the environmental checklist form. Each response checked in the checklist form is discussed and supported with sufficient data and analysis as necessary. As appropriate, each response discussion describes and identifies specific impacts anticipated with project implementation.

SECTION 3

III. MANDATORY FINDINGS presents Mandatory Findings of Significance in accordance with Section 15065 of

the CEQA Guidelines.

IV. PERSONS AND ORGANIZATIONS CONSULTED identifies those persons consulted and involved in preparation of this Initial Study and Mitigated Negative Declaration.

V. REFERENCES lists bibliographical materials used in preparation of this document.

VI. MITIGATED NEGATIVE DECLARATION - COUNTY OF IMPERIAL

VII. FINDINGS

SECTION 4

VIII. RESPONSE TO COMMENTS (IF ANY)

IX. MITIGATION MONITORING & REPORTING PROGRAM (MMRP)

E. SCOPE OF ENVIRONMENTAL ANALYSIS

For evaluation of environmental impacts, each question from the Environmental Checklist Form is summarized and responses are provided according to the analysis undertaken as part of the Initial Study. Impacts and effects will be evaluated and quantified, when appropriate. To each question, there are four possible responses, including:

- 1. **No Impact:** A "No Impact" response is adequately supported if the impact simply does not apply to the proposed applications.
- 2. **Less Than Significant Impact:** The proposed applications will have the potential to impact the environment. These impacts, however, will be less than significant; no additional analysis is required.
- 3. **Potentially Significant Unless Mitigation Incorporated:** This applies where incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact".
- 4. **Potentially Significant Impact:** The proposed applications could have impacts that are considered significant. Additional analyses and possibly an EIR could be required to identify mitigation measures that could reduce these impacts to less than significant levels.

F. POLICY-LEVEL or PROJECT LEVEL ENVIRONMENTAL ANALYSIS

This Initial Study and Mitigated Negative Declaration will be conducted under a \square policy-level, \boxtimes project level analysis. Regarding mitigation measures, it is not the intent of this document to "overlap" or restate conditions of approval that are commonly established for future known projects or the proposed applications. Additionally, those other standard requirements and regulations that any development must comply with, that are outside the County's jurisdiction, are also not considered mitigation measures and therefore, will not be identified in this document.

G. TIERED DOCUMENTS AND INCORPORATION BY REFERENCE

Information, findings, and conclusions contained in this document are based on incorporation by reference of tiered documentation, which are discussed in the following section.

1. Tiered Documents

As permitted in Section 15152(a) of the CEQA Guidelines, information and discussions from other documents can be included into this document. Tiering is defined as follows:

"Tiering refers to using the analysis of general matters contained in a broader EIR (such as the one prepared for a general plan or policy statement) with later EIRs and negative declarations on narrower projects; incorporating by reference the general discussions from the broader EIR; and concentrating the later EIR or negative declaration solely on the issues specific to the later project."

Tiering also allows this document to comply with Section 15152(b) of the CEQA Guidelines, which discourages redundant analyses, as follows:

"Agencies are encouraged to tier the environmental analyses which they prepare for separate but related projects including the general plans, zoning changes, and development projects. This approach can eliminate repetitive discussion of the same issues and focus the later EIR or negative declaration on the actual issues ripe for decision at each level of environmental review. Tiering is appropriate when the sequence of analysis is from an EIR prepared for a general plan, policy or program to an EIR or negative declaration for another plan, policy, or program of lesser scope, or to a site-specific EIR or negative declaration."

Further, Section 15152(d) of the CEQA Guidelines states:

"Where an EIR has been prepared and certified for a program, plan, policy, or ordinance consistent with the requirements of this section, any lead agency for a later project pursuant to or consistent with the program, plan, policy, or ordinance should limit the EIR or negative declaration on the later project to effects which:

- (1) Were not examined as significant effects on the environment in the prior EIR; or
- (2) Are susceptible to substantial reduction or avoidance by the choice of specific revisions in the project, by the imposition of conditions, or other means."

2. Incorporation By Reference

Incorporation by reference is a procedure for reducing the size of EIRs/MND and is most appropriate for including long, descriptive, or technical materials that provide general background information, but do not contribute directly to the specific analysis of the project itself. This procedure is particularly useful when an EIR or Negative Declaration relies on a broadly drafted EIR for its evaluation of cumulative impacts of related projects (Las Virgenes Homeowners Federation v. County of Los Angeles [1986, 177 Ca.3d 300]). If an EIR or Negative Declaration relies on information from a supporting study that is available to the public, the EIR or Negative Declaration cannot be deemed unsupported by evidence or analysis (San Francisco Ecology Center v. City and County of San Francisco [1975, 48 Ca.3d 584, 595]). This document incorporates by reference appropriate information from the "Final Environmental Impact Report and Environmental Assessment for the "County of Imperial General Plan EIR" prepared by Brian F. Mooney Associates in 1993 and updates.

When an EIR or Mitigated Negative Declaration incorporates a document by reference, the incorporation must comply with Section 15150 of the CEQA Guidelines as follows:

- The incorporated document must be available to the public or be a matter of public record (CEQA Guidelines Section 15150[a]). The General Plan EIR and updates are available, along with this document, at the County of Imperial Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.
- This document must be available for inspection by the public at an office of the lead agency (CEQA Guidelines Section 15150[b]). These documents are available at the County of Imperial Planning &

Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.

- These documents must summarize the portion of the document being incorporated by reference or briefly describe information that cannot be summarized. Furthermore, these documents must describe the relationship between the incorporated information and the analysis in the tiered documents (CEQA Guidelines Section 15150[c]). As discussed above, the tiered EIRs address the entire project site and provide background and inventory information and data which apply to the project site. Incorporated information and/or data will be cited in the appropriate sections.
- These documents must include the State identification number of the incorporated documents (CEQA Guidelines Section 15150[d]). The State Clearinghouse Number for the County of Imperial General Plan EIR is SCH #93011023.
- The material to be incorporated in this document will include general background information (CEQA Guidelines Section 15150[f]). This has been previously discussed in this document.

Environmental Checklist

- 1. **Project Title**: Imperial County Project No. 6811, Picacho Road Bridge Replacement Project at Yuma Main Canal, Initial Study (IS) # 24-0037.
- 2. Lead Agency: Imperial County Planning & Development Services Department (ICPDS)
- 3. Contact person and phone number: Luis Bejarano, Planner I, (442) 265-1736
- 4. Address: 801 Main Street, El Centro CA, 92243
- E-mail: luisbejarano@co.imperial.ca.us

11.

- 6. **Project location**: The Picacho Road Bridge over the Yuma Main Canal is located along Picacho Road in Winterhaven, CA. The bridge lies within APN 056-600-011 with coordinates 32.7358 N, 114.6241 W. The existing bridge is approximately 95 feet in length and 29 feet wide and is used as a pathway leading into the Townsite of Winterhaven in Imperial County. The Project Site is approximately 0.3 miles south of Interstate 8 (I-8), 0.6 miles east of First Street, and approximately 6 miles southeast of Mexico. Specifically, the Project Site is located between Winterhaven Drive and Quechan Road and runs adjacent to the Union Pacific Railroad tracks. The immediate surrounding area consists of agricultural land. Surrounding areas also include industrial, commercial, warehouse, and residential lands. The nearest residential community is located approximately 0.2 miles to the south of the Project Site. The Project Site is located directly to the west of the Quechan Tribal Administration buildings which is intended to benefit from the bridge reconstruction. The Project Site is located within the Quechan Tribal territory and spans the Yuma Canal system owned by the Bureau of Reclamation (BOR). The canal is operated and maintained by the Yuma County Water Users' Association (YCWUA).
- 7. **Project sponsor's name and address**: Imperial County Public Works Department, 155 S. 11th Street, El Centro, CA 92243.
- 8. **General Plan designation**: Surrounding the proposed Project is the Fort Yuma Indian Reservation which is designated as Agriculture in the County's General Plan. The project area supports the Yuma Main Canal, the Seminole Water Canal (runs west from the Yuma Main Canal), and the Union Pacific Railroad (parallel to the bridge). The Bureau of Reclamation (BOR) owns the Yuma Main Canal. Imperial County has an easement and provides transportation for the population over the canal.
- 9. **Zoning**: The Fort Yuma Indian Reservation lands are zoned Native American.
- 10. **Description of project**: The proposed Project is located at Picacho Bridge over Yuma Main Canal (Picacho Road, Winterhaven, CA 32.7358 N, 114.6241 W and within APN 056-600-011) and is intended to replace the existing bridge leading into the Townsite of Winterhaven in Supervisorial District 1. The proposed Project presents a unique opportunity to construct a modern bridge that implements Best Management Practices (BMPs) concurrently with transportation amenities. Due to cracking and outliving its useful life, the existing wood bridge must be replaced to support commerce, access to the Quechan Reservation and the Bard community, and provide a safer crossing of the Yuma Main Canal. The bridge is owned by Imperial County and its National Bridge Inventory (NBI) number is 58C0028. The bridge crosses the Yuma Main Canal, which is a Bureau of Reclamation facility that is operated and maintained by their managing partner the Yuma County Water Users' Association.

Due to its deteriorating condition, it is proposed to replace the existing bridge with a new Precast Prestressed Concrete Girder Bridge that spans over the canal with no intermediate supports, to minimize disturbance to canal operations during construction and to avoid the inadvertent release of debris or fill into the canal. The roadway profile is proposed to be raised to approximately 5 feet-4 inches higher than the existing condition, achieving a minimum of 2 feet of vertical clearance over the existing canal bank elevation per the BOR's *Engineering and O&M Guidelines for Crossings*.

The replacement bridge will have a total width of 48'-11". This includes two vehicle lanes of 12', two 8' wide shoulders,

and a 6'-0" wide sidewalk on the north side of the bridge. A typical section is also shown below (Exhibit C, Bridge Design). The Yuma Main Canal is a man-made unlined irrigation main canal that flows in a southerly direction under the existing bridge.

- 11. **Surrounding land uses and setting**: The project is located along Picacho Rd. (S-24) 0.4- miles north of the Colorado River and California/Arizona border in Section 16 of Township 16 South, Range 22 East. The bridge crosses the Yuma Main Canal and serves as a route into the Townsite of Winterhaven. At 130 ft (40 m) above sea level, the project is located 0.4 miles north of the Colorado River. The Cargo Muchacho Mountains are 8.5 miles to the northwest, the Algodones Dunes are 13 miles to the west, and the Laguna and Gila Mountains are 11 miles to the east. The project is in the southeastern portion of the Colorado Desert Province and within the Lower Colorado/Gila River Valleys Ecoregion. Surrounding the proposed Project area are agricultural lands on the Fort Yuma Indian Reservation.
- 12. **Other public agencies whose approval is required** (e.g., permits, financing approval, or participation agreement.): Planning Commission
- 13. <u>Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentially, etc.?</u>

Note: Conducting consultation early in the CEQA process allows tribal governments, lead agencies, and project proponents to discuss the level of environmental review, identify and address potential adverse impacts to tribal cultural resources, and reduce the potential for delay and conflict in the environmental review process. (See Public Resources Code, Section 21080.3.2). Information may also be available from the California Native American Heritage Commission's Sacred Lands File per Public Resources Code, Section 5097.96 and the California Historical Resources Information System administered by the California Office of Historic Preservation. Please also note that Public Resources Code, Section 21082.3 (c) contains provisions specific to confidentiality.

The lead CEQA agency must begin the Assembly Bill (AB) 52 consultation process prior to the release of a ND, MND, or EIR. The AB 52 consultation process shall begin with the Lead Agency (ICPDS) providing written notification to California Native American Tribes who identify as being traditionally and culturally affiliated with the Proposed Project area. The written notification includes a brief description of the Proposed Project, including the location, the Lead Agency's contact information, and notification that the California Native American Tribe has 30 days to request consultation, per AB 52. Upon receipt of a written response from a California Native American Tribe requesting consultation, the Lead Agency and the California Native American Tribe(s) requesting consultation shall begin AB 52 consultation.

The proposed project occurs within the Fort Yuma Indian Reservation thus tribal consultation was undertaken with the Fort Yuma Quechan Tribe. A meeting was facilitated between the Bureau of Reclamation, Fort Yuma Quechan Historic Preservation Office (Quechan HPO), and NV5 to discuss requirements for conducting cultural resource projects on Tribal land in Spring 2021. Quechan HPO was granted for the completion of the California Historic Resources Information System search in Summer 2021. Quechan THPO staff did not indicate any concern about Traditional Cultural Places within the proposed project area. In October 2022, prior to conducting fieldwork, a Plan of Work for the cultural resource survey was provided to the Quechan THPO to present to the Tribal Council for approval. After receipt of approval, fieldwork was completed on October 12, 2022. (See Appendix C). The AB 52 consultation process was conducted by Imperial County Planning and Development Services between October 16, 2024, to November 15, 2024 and although no formal letter response was received by Tribes, the Quechan Indian Tribe did express interest via telephone conversation. If response comments are received from the Quechan Indian Tribe, or other Native American interests, such comments will be acknowledged by the County and will be incorporated within this Initial Study as appropriate.

The er	CONMENTAL FACTORS Invironmental factors check a "Potentially Significant I	ed be	low would	be potentia	lly affecte	ed by this pro	ject, involving at least one impact
that is	Aesthetics	⊓paci		and Forestry R			Air Quality
_ 	Biological Resources	\boxtimes	· Cultural R	esources			Energy
Ø	Geology /Soils		Greenhou	se Gas Emission	ıs		Hazards & Hazardous Materials
	Hydrology / Water Quality		Land Use	/ Planning			Mineral Resources
	Noise		Population	/ Housing			Public Services
	Recreation		Transport	ation			Tribal Cultural Resources
	Utilities/Service Systems		Wildfire			⊠	Mandatory Findings of Significance
DECL Fo	ARATION will be prepared ound that although the pro cant effect in this case bec	roject I. posec ause r	COULD N I project c evisions ir	IOT have a ould have a the project	significa significa have bee	nt effect on t	the environment, and a <u>NEGATIVE</u> the environment, there will not be a r agreed to by the project proponent.
Formitigation	CT REPORT is required. Dund that the proposed puted impact on the environent to applicable legal sta	roject project ment,	MAY have MAY have but at lea ls. and 2)	e a significa ve a "poten st one effec has been	nt effect tially sigr t 1) has b addresse	nificant impac been adequated by mitigati	onment, and an ENVIRONMENTAL ct" or "potentially significant unless tely analyzed in an earlier document ion measures based on the earlier
analys	is as described on attach ne effects that remain to be	ed sho e addr	eets. An E essed.	NVIRONME	INTAL IIV	IPACI REPO	DRT is required, but it must analyze
For signification of the signi	ound that although the property cant effects (a) have been able standards, and (b)	oosed anal have	project co yzed adeo been a	quately in a voided or	n earlier mitigated	EIR or NEG pursuant to	environment, because all potentially ATIVE DECLARATION pursuant to be that earlier EIR or NEGATIVE upon the proposed project, nothing
5	EEC VOTES PUBLIC WORKS ENVIRONMENTAL H OFFICE EMERGENO APCD AG SHERIFF DEPARTM ICPDS	Y SEF	EVICES	SI DANKANA DI		ABSENT	7-2025

PROJECT SUMMARY

Project Location: The Picacho Road Bridge over the Yuma Main Canal is located along A. Picacho Road in Winterhaven, CA. The bridge lies within APN 056-600-011 with coordinates 32.7358 N, 114.6241 W. The existing bridge is approximately 95 feet in length and 29 feet wide and is used as a pathway leading into the Townsite of Winterhaven in Imperial County, (Exhibit A, Project Vicinity and Exhibit B, Project Location and Footprint). The Project Site is approximately 0.3 miles south of Interstate 8 (I-8), 0.6 miles east of First Street, and approximately 6 miles southeast of Mexico. Specifically, the Project Site is located between Winterhaven Drive and Quechan Road and runs adjacent to the Union Pacific Railroad tracks. The immediate surrounding area consists of agricultural land. Surrounding areas also include industrial, commercial, warehouse, and residential lands. The nearest residential community is located approximately 0.2 miles to the south of the Project Site. The Project Site is located directly to the west of the Quechan Tribal Administration buildings which is intended to benefit from the bridge reconstruction. The Project Site is located within the Quechan Tribal territory and spans the Yuma Canal system owned by the Bureau of Reclamation (BOR). The canal is operated and maintained by the Yuma County Water Users' Association (YCWUA).

Project Summary: The bridge is owned by Imperial County and its National Bridge Inventory (NBI) number is 58C0028. The bridge crosses the Yuma Main Canal, which is a Bureau of Reclamation facility that is operated and maintained by their managing partner the Yuma County Water Users' Association. The replacement bridge will have a total width of 48'-11". This includes two vehicle lanes of 12', two 8' wide shoulders, and a 6'-0" wide sidewalk on the north side of the bridge. A typical section is also shown below (Exhibit C, Bridge Design). The Yuma Main Canal is a man-made unlined irrigation main canal that flows in a southerly direction under the existing bridge.

The newly designed bridge will have a minimum freeboard of 2.31' above the high-water surface elevation of 140.74, received from YCWUA. This elevation is at the edge of the existing canal bank. As seen in the drawings provided, the freeboard is 2'-4" (2.33') from edge of the channel to the low girder elevation. A 50-ton crane will be utilized to remove portions of the bridge with all materials to be transported to an approved landfill. The original bridge pylons will be removed by crane; best management practices will be employed to minimize removal impacts and will not alter the streambed or employ dredging activities. As depicted in Exhibit C below, all construction activities will be contained within the area highlighted by the red boundary. The total construction work area is approximately 2.8 acres. Tree removal and removal of other vegetation along the canal will be necessary for the proposed Project. Existing vegetation will need to be cleared and grubbed prior to grading operations. Temporary construction easements will be needed to facilitate utility relocations and allow construction access. Construction is anticipated to last for a period of one year. All construction activities such as site preparation, grading, utility relocation, and site restoration would be contained within the construction work area.

Environmental Setting:

The project is located along Picacho Rd. (S-24) 0.4- miles north of the Colorado River and California/Arizona border in Section 16 of Township 16 South, Range 22 East (see Exhibit A and Exhibit B). The bridge crosses the Yuma Main Canal and serves as a route into the Townsite of Winterhaven. At 130 ft (40 m) above sea level, the project is located 0.4 miles north of the Colorado River. The Cargo Muchacho Mountains are 8.5 miles to the northwest, the Algodones Dunes are 13 miles to the west, and the Laguna and Gila Mountains are 11 miles to the east. The project is in the southeastern portion of the Colorado Desert Province and within the Lower Colorado/Gila River Valleys Ecoregion. Surrounding the proposed Project area are agricultural lands on the Fort Yuma Indian Reservation..

Analysis:

The County is the CEQA lead agency having authority to authorize the construction of the project. The County would obtain all necessary permits or licenses from the appropriate federal, state, and/or other local agencies having a permit authority. Surrounding the proposed Project area are agricultural lands on the Fort Yuma Indian Reservation, the Yuma Main Canal, the Seminole Water Canal (runs west from the Yuma Main Canal), and the Union Pacific Railroad (parallel to the bridge). The land the bridge is located on is designated as Agriculture by the County and Other Land by the California Department of Conservation (DOC). The Bureau of Reclamation (BOR) owns the Yuma Main Canal. Imperial County has an easement and provides transportation for the population over the canal. The Proposed Project would construct a new improved bridge structure in place of the existing wood bridge where it crosses the Yuma Main Canal. The Proposed Project is consistent with both the Imperial County General Plan's land use designation of the Proposed Project site and the County's Land Use Ordinance. Therefore, the adoption of the CEQA Initial Study for the Proposed Project would be consistent with applicable County and State ordinances and regulations.

E. General Plan Consistency:

In addition to the analysis stated above, the project is found to be consistent, with the adoption of CEQA Initial Study for the proposed Picacho Bridge Replacement Project.

Exhibit A Project Vicinity

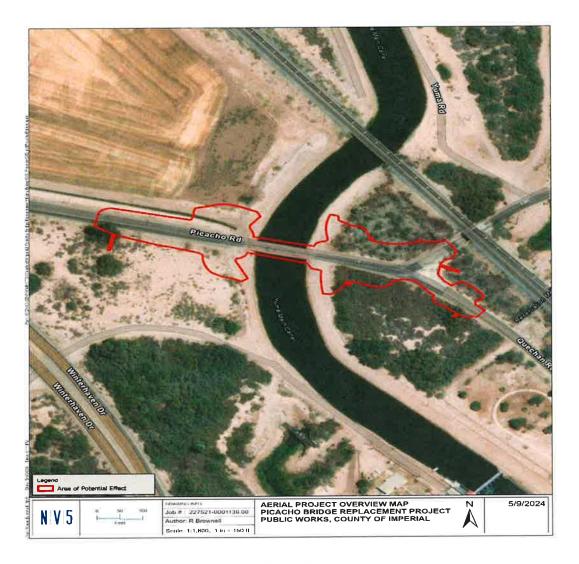


Exhibit B Project Location and Footprint

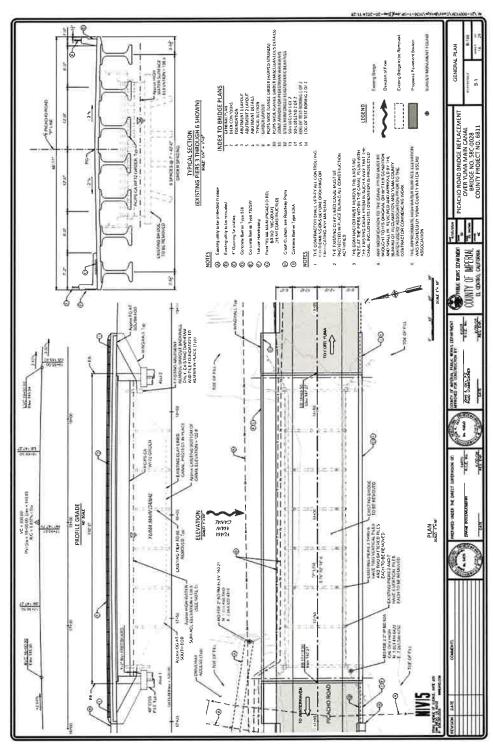


Exhibit C Bridge Design

EVALUATION OF ENVIRONMENTAL IMPACTS:

- 1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from "Earlier Analyses," as described in (5) below, may be cross-referenced).
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue should identify:
 - a) the significance criteria or threshold, if any, used to evaluate each question; and
 - b) the mitigation measure identified, if any, to reduce the impact to less than significance.

Potentially Significant Impact (PSI)

Less Than Significant with Mitigation Incorporated (LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

I. AESTHETICS

The Project Site is in southeastern Imperial County on Fort Yuma Indian Reservation, near the unincorporated Townsite of Winterhaven, which predominantly is an agricultural community. The proposed Project will be located on Picacho Road in County ROW, on the site of an existing deteriorated wood bridge. The proposed Project crosses the Yuma Main Canal and runs parallel to the open-water Seminole Canal. The Yuma Main Canal and Seminole Canal are administered through the Yuma County Water Users' Association (YCWUA) in conjunction with the Bureau of Reclamation (Bureau of Reclamation 2022). The channels are manmade and supply water to irrigate farmland in the County. Views from the bridge are typical of farmland in all directions, including the open channels of water th

	g west and north, the railroad, and Picacho Road to the west. The posed Project.	viewshed is c	ompatible with the zon	ing of the land s	surroundin
Except	as provided in Public Resources Code Section 21099, would the	e project:			
a)	Have a substantial adverse effect on a scenic vista or scenic highway?			\boxtimes	
	a) Scenic vistas are typically categorized as either panoramic (visual access to a particular object, scene, setting, or feature bridge on Picacho Road. The proposed Project is located in a near the unincorporated Townsite of Winterhaven. The procharacterized by land designated as Agriculture. The bridge supplies water to irrigate the surrounding farmland.	re of interest). southeastern I posed Project	The proposed Project mperial County, Fort \ t Site is mainly utilize	t will replace th Yuma Indian Re ed for agricultu	e existing servation, ure and is
	The proposed Project consists of replacing the existing bric construction for the proposed Project construction to impact completion of temporary construction, in compliance with the proposed Project would occur. The new bridge will look sin significant impact would occur.	t the scenic v General Plan,	istas for signage, stag no permanent impact	ging, etc. Howe on scenic vista	ever, upon is from the
b)	Substantially damage scenic resources, including, but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?				\boxtimes
	b) According to Caltrans' California State Scenic Highway Sysnear the proposed Project Site (Caltrans 2018). The closest elig Project, and the closest designated highway is 120 miles no administers highways through the Caltrans California State S Project would not damage scenic resources, including, but malong a State scenic highway. No impact would occur.	gible highway i orthwest, on Si scenic Highway	is 80 miles west, on Int R-78, of the proposed / System (Imperial Co	terstate 8, of the I Project. Imper unty 2008). The	proposed ial County proposed
c)	In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point.) If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?				
	c) Agricultural farmlands, water canals, and railroads dor surroundings. The Project Site consists of the asphalt bridge and storage of construction vehicles will take place within the Winterhaven Drive to accommodate the contractor's tempora the bridge on Picacho Road.	on Picacho R existing right-	oad that crosses the ` of-way of Picacho Roa	Yuma main can ad between the	al. Staging bridge and
	The farmland surrounding the proposed Project is considere Site and surrounding areas would be affected by staging, grais planned to take one year and upon completion of the proposlands and the site will return to a similar footprint to the enonurbanized areas would be less than significant.	ding, vehicles, sed Project, wo	and signage. Howeve ould not have a permar	r, the construct nent effect on si	tion impact urrounding
d)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			\boxtimes	
	d) The proposed Project proposes nighttime construction t	hat would requ	uire lighting. This ligh	ting would be	shielded to

Less Than Significant with Less Than Potentially Significant Significant Mitigation No Impact Impact Impact Incorporated (LTSMI) (LTSI) (NI)

(PSI)

prevent spill-over to areas outside of the project's construction footprint. There is no existing permanent lighting that will need to be replaced on the bridge. No new source of permanent lighting or glare that would adversely affect day or nighttime views in the area for the proposed Project. There will be a temporary source of lighting during nighttime construction, and upon completion will return to a similar footprint. A less than significant impact would occur.

AGRICULTURE AND FOREST RESOURCES 11.

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the

И

alifor	nia Air Resources Board.				
ould/	the project:				
a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				
	a) The proposed Project would be located within existing acquisition of ROW will be required. It consists of the rep structure to be reconstructed in the same alignment as the located in a rural area of Imperial County that contains the agricultural operations, practices, or farmland; however, it is California Department of Conservation's (CDOC) Farmland maps, and imagery (CDOC 2004 and 2022a).	lacement of an e e existing bridge ousands of acres is located adjacer	xisting bridge with a over the Yuma Mair of farmland. The Pr nt to a group of agric	new and impro Canal. The Pro Oject Site does o Ultural lands. N\	oved bridge bject Site is not contain /5 reviewed
	The California Important Farmland Finder showed that FMM Site. Unique Farmland is defined as farmland of lesser qualicrops. This land is usually irrigated but may include non-irr California. The Unique Farmland is located immediately no Union Pacific Railroad. The portion of Unique Farmland that immediately west of the Yuma Main Canal access road. A result in minor temporary indirect impacts to the Unique Findirect impact area would be small and restricted in nature Direct and indirect impacts on Unique Farmland would be farmland would be temporary, small, isolated, and/or restrict Project Site.	ity soils used for rigated orchards rth of Picacho Ro at is within the Pr lso, during the c armland located e compared to the e considered les	the production of the or vineyards as foun oad, west of Yuma M oject Site is located onstruction phase, t adjacent to the proj remaining Unique F s than significant b	state's leading din some clima ain Canal, and s north of Picache he proposed Prect footprint. The armland in the Fecause the impersone the impersone climps	agricultural tic zones in couth of the o Road and oject could is potential Project Site. acts on the
	This farmland is not located within the project footprint and during the construction phase, the project could result in adjacent to the project footprint. The potential indirect impremaining Prime Farmland in the project area. Impacts wo agricultural use; therefore, they would be considered les Objective 3.6, states that projects occurring adjacent to ag protection of the maximum amount of farmland. Thus, Mitthan-significant impact would occur to the surrounding farm	minor temporary act area would be uld not cause the s than significan ricultural land me igation Measure A	indirect impacts to to e small and restricted e conversion of thos t. However, the Imp ast create an on-site	he Prime Farmla I in nature comp e Prime Farmla erial County Ge buffer zone and	and located pared to the nds to non- eneral Plan, I shall favor
	MM AG-1: Create an on-site buffer zone surrounding th surrounding agricultural lands. It is recommended the Courowners stating that no indirect impacts will occur to their p	nty will need to ol	o ensure no indirec otain a signed staten	t impacts woul nent from adjace	d occur to ent property
b)	Conflict with existing zoning for agricultural use, or a Williamson Act Contract?		\boxtimes		
	b) NV5 reviewed the Imperial County General Plan and the Ir 2022b). The Project Site is within the Fort Yuma Indian Res	mperial County La ervation and adja	nd Use Zoning map a cent to agricultural I	application (Impe and, however th	erial County e proposed

Less Than
Potentially Significant with Less Than
Significant Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (LTSMI) (LTSI) (NI)

Project would not conflict with existing zoning for agriculture use or a Williamson Act Contract. The Project Site and surrounding area is zoned as "Native American." The proposed project is located adjacent to Unique Farmland, however, with the implementation of Mitigation Measure AG-1, impacts would be less than significant.

Review of the CDOC's California Williamson Act Enrollment Finder (CDOC 2022b) showed that Imperial County is a "non-participating or withdrawn" entity. Imperial County exited the Williamson Act program by non-renewing all contracts within the County. The Project Site is not located within or adjacent to land that is enrolled in a Williamson Act Contract; therefore, no impacts to lands under a Williamson Act Contract would occur.

c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?				⊠
	c) The proposed Project is in land zoned as Native Americ proposed Project is not in any forest land or area zoned for T existing zoning and would not conflict with existing zoning for zoned Timberland Production. No impact would occur.	imberland produ	ction. The proposed	Project would m	aintain the
d)	Result in the loss of forest land or conversion of forest land to non-forest use?				\boxtimes
	d) As stated in (c), the proposed Project will maintain its of forest land or conversion of forest land to non-forest use will land.	existing land use Il occur within the	as a bridge for tran e Project Site. No im	sportation, and pact would occ	no loss of ur to forest
e)	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?				
	e) Please refer to the responses to thresholds (a) through (d) lands, therefore, no impacts to forest land would occur. The Unique Farmland; however, with the implementation of Mitig	proposed Project	ct is anticipated to ir	npact Prime Far	mland and

III. AIR QUALITY

The Project Site is located in Imperial County which is part of the Salton Sea Air Basin (SSAB). According to ICAPCD, Imperial County extends into the southeastern corner of California and is bordered on the south by Mexico, on the east by Arizona, and north by Riverside County. The climatic conditions in Imperial County are based on the large-scale sinking and warming of air in the semipermanent tropical high-pressure zone of the eastern Pacific Ocean. The coastal mountains prevent intrusion of any cool, damp air found in California coastal areas. Winters are reported to be mild and dry with average daily temperatures ranging from 65°F-75°F (18-24°C) and sometimes even maximum temperatures of 80°F. Imperial County has hot summers with temperatures ranging between 104°F-115°F (40-46°C) and sometimes as high as 120°F. Imperial County has a flat terrain and due to its temperature differences created by solar heating, there are moderate winds and deep thermal convection. Due to its distance from the ocean and mountain highlands, Imperial County has limited precipitation. Rainfall from a heavy storm can exceed the entire annual total during a later drought condition. Humidity is also very low throughout the year, with an average of 28% in the summer and 52% in the winter. Wind statistics show that wind patterns are from west-northwest through southwest and a secondary flow maximum from the southwest area. The winds from the west and northwest occur from the fall through spring and come from the Los Angeles area. Half of the observed wind speeds measure less than 6.8 miles per hour (mph). However, during April and May there may be periodic high winds that can exceed 31 miles per hour (mph).

Potentially Significant Impact (PSI) Less Than
Significant with
Mitigation
Incorporated
(LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Table 1: Significance Thresholds for Criteria Pollutants

ICAPCD Significance Thresholds for Criteria Pollutants								
Pollutant	ICAPCD Construction Threshold (lbs/day)	ICAPCD Operational Threshold (lbs/day)	General Conformity de minimis Thresholds (tons/year)					
PM ₁₀	150	<150	N/A					
PM _{2.5}	-	-	N/A					
ROG	75	<55	100					
NOx	100	<55	100					
CO	550	<550	N/A					

N/A= not applicable since air basin is in attainment or unclassified.

Potentially Significant Impact (PSI)

Less Than Significant with Mitigation Incorporated (LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Table 2: Air Quality Standards and Designations for Project Area within the Salton Sea Air Basin

Pollutants	Average Time	State Standards	State Attainment Status	Federal Standards	Federal Attainment Status
	1-hr	0.09 ppm	N	None	ne:
Ozone	8-hr	0.070 ppm	N	0.070 ppm*	N**
Particulate Matter	24-hr	50 ug/m^3	N	150 ug/m^3	U
(PM10)	Annual	20 ug/m^3	N	None	A sum
Fine Particulate	24-hr	None		35 ug/m^3	U/A
Matter (PM2.5)	Annual	12 ug/m^3	Α	12 ug/m^3	U/A
Carbon Monoxide	1-hr	20 ppm	A	35 ppm	U/A
(CO)	8-hr	9 ppm	Α	9 ppm	U/A
	1-hr	0.18 ppm	Α	100 ppm	U/A
Nitrogen Dioxide (NO2)	Annual	0.030 ppm	A	0.053 ppm (100 ug/m^3)	U/A
Sulfur Dioxide	1-hr	0.25 ppm	A 0.075 ppm (196 ug/m^3)		A
(SO2)	24-hr	0.04 ppm	Α	0.14 ppm	Α
	Annual	None	Α	0.030 ppm	A
Yarri	30-day average	1.5 ug/m^3	A	None	
Lead	Calendar Quarter	None	12 St 11 - 1	1.5 ug/m^3	U
	Rolling 3- month average	None		0.15 ug/m^3	U
Hydrogen Sulfide	1-hour	0.03ppm	U	None	-
Visibility reducing Particles	8-hour (10:00 to 18:00 PST)	***	U	None	
Sulfates	24-hour	25 ug/m^3	A	None	

^{*}U.S. EPA revised the 8-hour ozone standard from 0.075 to 0.070 ppm on October 1, 2015.

U= Unclassified

A=Attainment

N=Nonattainment

^{**}The attainment status is based on the 2008 8-hour ozone standard (0.075 ppm).

Less Than
Potentially Significant with Less Than
Significant Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (LTSMI) (LTSI) (NI)

Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon for the following determinations.

Would	the	Project:
-------	-----	----------

standard?

under an applicable federal or state ambient air quality

a)	Conflict with or obstruct implementation of the applicable air quality plan?			\boxtimes	
	a) The proposed Project is in the Salton Sea Air Basin (SS. Ozone, and for the NAAQS 8-hour ozone. All development we Modified Air Quality Management Plan, which was adopted control strategies discussed in these air quality plans are base. The purpose of the proposed Project is to replace the existing Girder Bridge. It would not induce population growth and as air quality plans. The minor amounts of emissions generated the NAAQS or CAAQS by the ICAPCD. As a result, this impact	vithin the SSAB in 2010, and t ed on regulator ng deteriorating such, the propo I during operati	i, including the propo the 2018 State Impler y controls aforementi y bridge with a new P osed Project would no ion from worker trips	osed Project, is somentation Plan formation Plan formation the regulaterast Pre-strestot conflict with a	subject to the for PM ₁₀ . The latory setting. sed Concrete ny applicable
b)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment			\boxtimes	

b) PM₁₀ and PM_{2.5} emissions during all constructive phases will be minimized because the proposed Project will be required to implement the standard air quality and dust control measures of the ICAPCD Regulation VIII, including Rule 800 (General Requirements for Control of Fine Particulate Matter), Rule 801 (Construction and Earthmoving Activities), Rule 802 (Bulk Materials), Rule 803 (Carry- Out and Track- Out), Rule 804 (Open Areas), and Rule 805 (Paved and Unpaved Roads).

Construction of the Project is anticipated to commence at the beginning of 2024 and is estimated to occur over eight months. Construction phases include land clearing, grading and excavation, drainage, utilities and sub-grade, and paving. NOx and PM emissions will be generated from offroad construction equipment exhaust, soil disturbance as well as other criteria pollutant emissions from construction worker vehicles, transport vehicles for materials and supplies, removal of construction debris, and other on-road mobile sources. Emissions were estimated using CalEEMod Version 2022.1.1.19. Summaries of emission calculations and project assumptions are provided (Appendix A, Construction Details & CalEEMod Report).

Depending on the construction phase, project construction emissions may vary from day to day but will not exceed ICAPCD construction thresholds as summarized below in Table 3. Thus, project construction emissions will not contribute to an existing or projected air quality violation. As a result, this impact would be less than significant.

Table 3: Project Maximum Daily Construction Emissions (pounds/day)

	voc	Nox	со	SOx	PM ₁₀	PM _{2.5}
Maximum Daily Emissions (lb/day)	7.28	63.69	67.01	0.13	85.01	10.96
ICAPCD Significance Thresholds (lb/day)	75	100	550	150	150	55
Threshold Exceeded	No	No	No	No	No	No

Currently, at the proposed site, trucks are being detoured because of the weight restriction on the deteriorating bridge. As a result, there will not be an increase of motor vehicles traffic over the bridge or in the surrounding community. Any operational-related emissions may be generated by occasional worker visits for maintenance and repairs. These operational emissions will not exceed ICAPCD thresholds described in Table 1. Thus, project operations will not contribute to an existing or projected air quality violation. As a result, this impact would be less than significant.

		Potentially Significant Impact (PSI)	Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)			
c)	Expose sensitive receptors to substantial pollutants concentrations?	· 🗆		\boxtimes				
	c) The nearest sensitive receptors are approximately 0.1 the project corridors include a Clinic and Quechan Triba diesel particulate matter (DMP), which is a toxic air cont Environmental Health Hazard Assessment and their adop assessments, the risks associated with exposure to stassessment of a lifetime of chronic exposure. This is characteristic at 70-year exposure. Nevertheless, equipment used in cont considered substantial emissions and would be lead to the considered substantial emissions and sould be lead to the considered subs	al territory. During co- taminant in California. ption of Air Toxics Hot ubstances with carcin aracterized as 24 hour onstruction would em ss than significant ar	nstruction, diesel eq However, according t Spots Program Gui togenic effects are l ts a day, 7 days per tit temporary diesel e and minor. Similarly,	uipment may cog to the Californi dance Manual us based on a doso week, 365 days p exhaust concent	ontribute to ia Office of sed for risk e-response per year for rations are			
d)	Result in other emissions (such as those leading to odors adversely affecting a substantial number of people?			\boxtimes				
	d) The proposed Project would not create objectionable would result in the emission of diesel fumes and othe highest near the source and would quickly dissipate off transient and would cease upon completion. The proposiminal residences in the vicinity. Therefore, Project cornumber of people, and impacts would be less than significant to the proposition of the project cornumber of people, and impacts would be less than significant to the project cornumber of people.	r odors typically asso the site. Any odors a sed Project is located nstruction would not g	ociated with construscible with constructions in an area designat	iction activities. truction activities ed for agricultur	Odors are s would be al use with			
IV. Bl	OLOGICAL RESOURCES							
acres Berna of the reach exper the C the ag	This site is located within the Colorado Desert which is a subdivision of the larger Sonoran Desert and covers approximately 7 million acres. The desert encompasses Imperial County and includes parts of San Diego County, Riverside County, and a small part of San Bernardino County. This site is in Imperial County. This desert lies at a relatively low elevation, below 1,000 feet, with the lowest point of the desert floor is 275 feet below sea level at the Salton Sea; northeast of the site. The highest peaks of the Peninsular Ranges which reach elevations of nearly 10,000 feet are to the west of the site. The Colorado Desert's climate differs from other deserts. The region experiences greater summer daytime temperatures (up to 120°F) than higher elevation deserts and rarely experiences frost. In addition, the Colorado Desert experiences two rainy seasons per year usually in the winter and late summer in this portion. This area is within the agricultural portion that is irrigated by Colorado River water delivered through water conveyance structures maintained by the Bureau of Reclamation, Bard Water District and Yuma County Water Users. This Picacho Road Bridge spans the Yuma Main Canal which carries irrigation water to local farmers.							
Woul	d the project:							
a)	Have a substantial adverse effect, either directly or through abitat modifications, on any species identified as a candidate sensitive, or special status species in local or regional plar policies or regulations, or by the California Department of Fiand Wildlife or U.S. Fish and Wildlife Service?	te, ns,						
	a) The proposed Project does not impact or modify I identified as a candidate, sensitive, or special status is California Department of Fish and Wildlife or U.S. Fish a and is not biologically sensitive. In regard to special-sta Species (CNDDB/CNPS) Yuma East and West Quadrang would be expected to be found within the Project Sit Botanical and Zoological Species (CNDDB/CNPS) Yum Quadrangles searched. Of these, two species: Gila cunicularia) were noted. Burrowing owls could be expediting survey (See Biological Resources Survey, Appet trees present off site. Therefore, it is expected that less and Biol-2 added. MM BIO-1: Nesting surveys by qualified biologists of construction during non-nesting season (September th construction for nesting birds and fourteen days prior present at the start of groundbreaking activities.	species in local or regard Wildlife Service. Tatus plant species, a sple, listed 10 botanical e. In regard to specia East and West Qua woodpecker (Melane) pected outside the prindix B). Gila woodpect than significant impaduring nesting seasor rough January). Time	pional plans, policies top of the bridge earch of the Sensitive species within the Collistatus animal species uropygialis) are pes uropygialis) are oposed Project sett kers could be found ct would occur with the Collistatus properties of the could occur with the could occur with the could occur with the could occur with the could be coul	s, or regulations is asphalt, heavily Botanical and Quadrangle search o cles, a search o clogical species and Burrowing or ing but were no roosting or nest mitigation meas an August); preferin 3-5 days prio	, or by the ly travelled Zoological ched. None f Sensitive within the wl (Athene t observed ing in palmures Biol-1			

Potentially Significant Impact (PSI)

Less Than Significant with Mitigation Incorporated (LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

MM BIO-2: Worker environmental awareness training for nesting birds, Gila Woodpecker and Burrowing Owl (BUOW):

- Biology and status;
- Protection measures designed to reduce potential impacts to the species, function of flagging designating authorized work areas;
- Reporting procedures to be used if a species is encountered in the field; and driving procedures and techniques, for commuting, and driving on, to the Project Site; and

	 Identification of nesting birds and procedures to fe 	ollow if nesting is	s suspected.		
b)	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?			\boxtimes	
	b) The proposed Project does not have the potential to have community as identified in local or regional plans, policies and near the Yuma Main Canal. BMPs are set forth to ensur Yuma Main Canal. Areas outside of the project footprint will project plans. No project-related activities will take place with impacts would occur from the proposed Project.	or regulations. T e no work will oo be designated as	he proposed Project cur in or come in co an "Environmentally	t activities take Intact with the w Interpretation Services	place over rater in the " (ESA) on
c)	Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?				
	c) The proposed Project does not have the potential to have filling, hydrological or any other activities in the proposed Federal wetlands. BMPs are set forth to ensure no work will Canal. Therefore, less than significant impact would occur.	Project's descript	tion that would have	an impact on a	ny state or
d)	Interfere substantially with the movement of any resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				
	d) The proposed Project includes the removal and construct Road. No work is expected to occur in the water or impact to be impacted by the proposed Project. Additionally, the habit CA. Picacho Road can be accessed by wildlife. There are no proposed Project, therefore, construction activities would implementation of Mitigation Measure BIO-1, impacts would	he water in any v at is divided by P known wildlife c ld not impede f	vay. Therefore, no fis Picacho Road (S24) w orridors or native wil the use of native v	sh species are e hich runs from l dlife nursery sit wildlife nursey	xpected to I-8 to Bard, es with the
e)	Conflict with any local policies or ordinance protecting biological resource, such as a tree preservation policy or ordinance?		\boxtimes		
	e) The proposed Project does not fall within an area that a prohibitions to facilitate conservation of biological resources to ensure the protection of the Desert pupfish, Razorback so sheep and Yellow-billed cuckoo. None of these species well performed (Attachment B). No additional species of concern Imperial County are expected to be impacted by the propose conservation focus on Imperial County including the burrow implementation of Mitigation Measure BIO-2. Less than sexpected.	or other sensitiv ucker, Desert tor re observed with listed as rare un d Project. Califor wing owl are exp	e resources. Such C toise, Peirson's milk in the Project Site d der the Conservation nia Species of Speci ected to have less ti	ritical Habitat is of the control of the control of the biologien and Open Sparal Concern are on the significant in the control of the contro	designated lar bighorn ical survey ce Element f particular mpact with

			Less Than				
		Potentially	Significant with	Less Than			
		Significant	Mitigation Incorporated	Significant Impact	No Impact		
		Impact (PSI)	(LTSMI)	(LTSI)	(NI)		
f)	Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?				×		
	f) There are no proposed permanent or temporary impacts of proposed Project occurs outside of any area designated and The proposed Project does not conflict with any adopted Halplan (NCCP), or other approved local, regional, or State Helplangered Species Act (CESA). Less than significant impacts	nd an "Environmo bitat Conservatio CP. The propose	entally Sensitive Area n Plan (HCP), Natural d Project does not c	a" (ESA) on pro ∣Community Co	ject plans. nservation		
V. CL	ILTURAL RESOURCES						
Wou	d the project:						
a)	Cause a substantial adverse change in the significance of a historical resource pursuant to §15064.5?		\boxtimes				
	a) Picacho Road Bridge over Yuma Main Canal was constructed in 1925 and rehabilitated in 1947 and is a California Historic Bridge (California Historic Bridge Inventory). The existing bridge was put in place in 1947 and meets the age criteria to be considered as an above ground historic resource. However, previous evaluation has recommended this structure as not eligible for the National Register of Historic Places with the implementation of mitigation measures CUL-1 as recommended in the Cultural Report (See Cultural Report, Appendix C). The proposed Project will not cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5 with mitigation in place. There would be less than significant impact with mitigation.						
	MM CUL-1: In all phases of construction work an Inadverter site. If archaeological or cultural resources are encountered will be suspended until assessed by the qualified archaeolo	during project we	ork, all work in the im	I and shared wi mediate vicinity	th staff on- of the find		
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?						
	b) The proposed Project will not likely cause a substantial adverse change in the significance of an archaeological reso pursuant to Section 15064.5. The proposed Project area likely saw significant levels of precontact and historic activity to its position in and adjacent to a road and bisected by a large canal. The entire Project Site has undergone signif ground disturbing activities related to construction activities (excavation, fill placement, dredging, etc.). For these reas the potential for the discovery of intact cultural resources is anticipated to be low. However, there is always a possibil archaeological discovery, and it was anticipated that if found, cultural resources would most likely be pre-contact ar scatters or isolates related to resource acquisition areas, historic artifacts related to canal construction and/or ge household refuse related to historic-period dumps near the roadway. Therefore, with the implementation of mitig measure CUL-1 there would be less than significant impact with mitigation.						
c)	Disturb any human remains, including those interred outside of dedicated cemeteries?			. 🗆			
	c) There are no noted findings of human remains, including formal cemeteries occur within the proposed Project footp mitigation measure CUL-2 as recommended in the Cultura impacts to human remains would be less than significant w	orint. Should any al Report (See A	human remains be f	ound during co	nstruction,		
	MM CUL-2: Should human remains be encountered during Medical Examiner will be contacted.	ground disturbin	g activities; all work	will cease, and	the County		
VI. <i>EN</i>	IERGY						

Energy for the Project Site is supplied by Imperial Irrigation District (IID). IID serves approximately 158,000 customers in an approximately 6,417-square-mile service area. IID controls more than 1,100 megawatts of energy from various resources.

	12.1	Potentially Significant Impact (PSI)	Less Than Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
Woul	ld the project:				
a)	Result in potentially significant environmental impact wasteful, inefficient, or unnecessary consumption of resources, during project construction or operation?			\boxtimes	
	a) Construction of the proposed Project would requ transportation of materials. However, the use of for wasteful or affect local or regional energy suppl infrastructure and reliability as a transportation ro their temporary nature. The electricity use would be service area and would not be considered wasteful impacts would be less than significant.	uel for construction would ies. Energy used for sho ute. As such, construction relatively minimal compa	d not be on such a la ort-term construction n impacts would be le red to the overall elec	arge scale that in activities woul ess than signific tricity usage in t	t would be ld improve cant due to he YCWUA
b)	Conflict with or obstruct a state or local plan for ren energy or energy efficiency?	ewable			\boxtimes
	b) No state or local plans for renewable energy or Project proposes the replacement of the existing consume energy during construction, but upon (transportation infrastructure). There will be no ene energy or energy efficiency, therefore no impact w	bridge on Picacho Road. completion of the con rgy consumption after cor	As discussed above struction, it will ret	e, the proposed l urn to a simila	Project will r footprint
locate San A area comp clay. loam.	proposed Project is located near the Townsite of Winder between Southern California and the Colorado Riv Andreas Fault. The San Andreas Fault is located app falls within the USGS Yuma West and East 7.5-minuposed of Quaternary-age alluvium/colluvium that is control The proposed Project is located on Holtville Clay, Inc. In the project:	er. The regionally extension roximately 80 miles north te quadrangles. In the vic haracterized as loosely co	ve faults trend that co west from the Projec cinity of the propose onsolidated deposits	ontrols the topoon t Site. The prop d Project, the s consisting of sa	graphy is the osed Project ubsurface is and, silt, and
a)	Directly or indirectly cause potential substantial a	adverse	_	_	_
,	effects, including risk of loss, injury, or death involving				
	 Rupture of a known earthquake fault, as deliner the most recent Alquist-Priolo Earthquake Fault Map issued by the State Geologist for the area o on other substantial evidence of a known fault? F Division of Mines and Geology Special Publication 	Zoning r based			
	 The proposed Project is located on the br that the Project Site is within an active seis evaluated by the California Earthquake Haza Liquefaction. It is unknown if the proposed Prarea within an Alquist-Priolo Earthquake Faul liquefaction from the DOC, Mitigation Measure soils or subsurface geology that results in had occur relative to this issue. 	mic area in southern Cali rds Zone Application for roject is underlain by activ t Zone. Due to the lack of e GEO-1 shall be implemer	ifornia, the proposed Alquist Priolo Fault 2 /e, potentially active, information on fault 2 ited to determine if the	l Project Site ha Zones, Landslide or inactive faults zones, landslide e Project Site en	s not been e Zones, or s, nor is the zones, and compasses
	MM GEO-1: Prior to earthmoving activities, geotechnical evaluation of the soils. The eva Part 2, Chapter 18, Section 1803.1.1.2. relat inspections, soils and foundation standards v 24, Part, 2, Chapter 16, 17, and 18. The final that soil conditions do not pose a threat to liquefaction, subsidence, lateral spreading, or shall be designed in accordance with the reco	Iluation will follow the red ed to expansive soils an vill be in accordance with geotechnical evaluation s to the health and safety of collapse. The grading an	quirements of Califor d soil conditions. The requirements from Ca hall include design re of people or structured d improvement plan fe	mia Building Cone structural de alifornia Building ecommendation res, including the or each phase of	de Title 24, sign, tests, g Code Title s to ensure preats from

			Potentially	Significant with	Less Than Significant		
			Significant Impact	Mitigation Incorporated	Impact	No Impact	
			(PSI)	(LTSMI)	(LTSI)	(NI)	
	2)	Strong Seismic ground shaking?		\boxtimes			
		2) Despite the fact that the Project Site is within an activ has not been evaluated by the California Earthquake Haz Zones, or Liquefaction. It is unknown if the proposed Pronor is the area within an Alquist-Priolo Earthquake Fault could be subjected to potential seismic hazards including information on fault zones, landslide zones, and lice implemented to determine if the Project Site encompass Mitigation Measure GEO-1 less than significant impact we	ards Zone Applica oject is underlain to t Zone. Given the r ng rupture, ground quefaction from the sees soils or subs	tion for Alquist Prio by active, potentially egional faults of the shaking, and grour e DOC, Mitigation urface geology that	lo Fault Zones, L active, or inacti proposed Proje d failure. Due to Measure GEO-1	andslide ve faults, ct area, it the lack shall be	
	3)	Seismic-related ground failure, including liquefaction and seiche/tsunami?					
		3) Seismically induced liquefaction of soils is a potenti Liquefaction involves the sudden loss in strength of sat pressure during cyclic loadings, such as produced by ar displacements, slope instability, lateral spreading, and become more tightly packed due to the collapse of void granular, cohesionless soil and can occur in either wet the surface, but it would require extreme wet or flood extenses, and liquefaction from the DOC, Mitigation Measurencompasses soils or subsurface geology that results i impact would occur relative to this issue.	turated, cohesionle n earthquake. Lique bearing failure. Du ls or pore spaces. t or dry conditions events. Due to the lire GEO-1 shall be	ess soil caused by the efaction can cause woring strong ground This type of failure or There could be pound the polar lack of information implemented to detail	he build-up of p ertical and laters shaking, soil gr typically occurs tential for liquel on fault zones, termine if the Pr	ore water al ground ains may in loose, faction at landslide oject Site	
	4)	Landslides?		\boxtimes			
		4) Given the flat topography (average slope of 4.3%) of a would affect the proposed Project. Due to the lack of inf the DOC, Mitigation Measure GEO-1 shall be implement subsurface geology that results in hazards. With Mitigate relative to this issue.	ormation on fault a ented to determin	ones, landslide zon e if the Project Sit	es, and liquefac e encompasses	tion from soils or	
b)	Res	ult in substantial soil erosion or the loss of topsoil?			\boxtimes		
	b) The majority of soil disturbance would occur in previously disturbed areas, and ground disturbance would be limited. Disturbed soils would be exposed to erosion during construction as soils loosen and become susceptible to the effects of wind and precipitation events. However, the proposed Project is not expected to result in substantial soil erosion due to the current conditions of the Project Site and through the implementation of standard erosion control BMPs. Construction activities would result in temporary soil disturbance throughout the proposed Project Site due to excavation, but the Project Site will be restored to the current elevation and similar existing conditions upon completion. No erosion is anticipated to occur during normal operations and maintenance of the proposed Project. Because of these reasons, the construction and operation of the proposed Project would have a less than significant impact resulting from erosion or topsoil loss.						
c)	wou pote	ocated on a geologic unit or soil that is unstable or that ld become unstable as a result of the project, and intially result in on- or off-site landslides, lateral spreading, sidence, liquefaction or collapse?					
	in h infra Mea	As discussed above in (a), it is unknown if the proposed P lazards. The proposed Project includes the enhancement astructure, which includes an essential service. To evalua Isure GEO-1 will be implemented, and any hazards corruld occur.	ents and construction at the subsurface fou	ction to the existing and ation conditions to	g bridge and as the Project Site I	ssociated Mitigation	
d)	Build	ocated on expansive soil, as defined in the latest Uniform ding Code, creating substantial direct or indirect risk to life roperty?					
	d) T	The Project Site has not been evaluated for expansive soils	s as defined in Tab	le 18-1 B of the Unife	orm Building Co	de (1994).	

Less Than

			Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
			(PSI)	(LTSMI)	(LTSI)	(NI)
		To determine and evaluate what lies beneath subsurface will be implemented, and any hazards corrected. With Mitig	foundation condit gation Measures (tions the Project Site GEO-1, a less than-siç	Mitigation Meas Inificant impact	ure GEO-1 will occur.
	e)	Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?				
		e) The proposed Project's bridge replacement would not systems. Portable toilets will be provided to workers on th Project would have no impact with regard to wastewater di	e Project during	struction of septic tar the construction phas	iks or wastewate se. Therefore, the	er disposal e proposed
	f)	Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?				\boxtimes
		f) The proposed Project would not directly or indirectly defeature. Based on a review of a published geologic map (Usurrounded by Alluvial rock mapped as Older Alluvium (Qc resources. Therefore, less than significant impacts would	JSGS Yuma West :) and Alluvium (Q	and East 7.5-minute	quadrangles), th	ne bridge is
VIII	GR	EENHOUSE GAS EMISSION				
	associ global individ consid metha water gases	ions of Greenhouse Gases (GHGs) contributing to global iated with the industrial/manufacturing, utility, transportation emissions of GHGs contributing to global climate change could be contributed on Earth. A project's GHG emissions are at a microsoft derable incremental contribution to a significant cumulative manufacture in the contribution to the contribution of the contribution of the contributions of the contributions of the primary contributors to global climate change for decrease in the primary contributors to global climate change for decrease in the contributors to global climate	on, residential, ar an be attributed to cale relative to glo nacro-scale impac hydrofluorocarb n dioxide, methar evelopmental proj	nd agricultural sector o every nation, region obal emissions but c ct. Greenhouse gases ons (HFCs), sulfur he he and nitrous oxide w ects such as the prop	rs. Therefore, the and city, and vi- ould result in a include carbon exafluoride (SF6) were evaluated be osed site.	e cumulative irtually every cumulatively dioxide (CO), o zone, and ecause these
	The tra emissi vehicle	tal California GHG emissions in 2020 were approximately 36 ansportation sector remains the largest source of GHG em ions. Specifically, the largest groups that account for the hes accounting for approximately 26% and heavy-duty velots for approximately 20%.	issions in the sta ighest GHG emis	ite of California at apsions in the transpo	proximately 37% rtation sector a	% of the total re passenge
	Would	I the project:				
	a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			\boxtimes	
		a) Emissions were estimated using CalEEMod Version assumptions are provided in Attachment A. While constructed predominant GHG emissions during construction equipment being used at the proposed site construction activity from the proposed site.	action equipment be from CO2. The	would emit minor an majority of these CC	nounts of CH4 a 2 emissions wo	nd N₂O, the uld be from

Table 4: Construction GHG Emissions

Construction Phase	GHG Emission	GHG Emissions 2023 (tonnes/Metric Tons) Per Phase					
	CO ₂	CH ₄	N ₂ O	R	CO2 _e		
Total Construction	661.63	0.03	0.006	0.06	664.27		
Amortized Construction Em	issions				22.13		
SCAQMD Interim Threshold					3,000		
Exceedance?					No		

The persistence of GHG in the atmosphere defines the impact of the proposed site as long-term. The GHG emissions from construction are amortized over the next 30 years and added to operational emissions in order to estimate annual emissions. However, it is not anticipated that there will be a significant increase in vehicle miles traveled (VMT) because the project is

Less Than Less Than Potentially Significant with Significant Mitigation Significant Impact No Impact Impact Incorporated (LTSI) (PSI) (LTSMI) (NI)

not adding capacity (e.g., additional lanes) to Picacho Road or creating a more direct route between two destinations. Thus, there will be a negligible increase in operational GHG emissions. The annual construction emissions are predicted to be approximately 22 tonnes per year including all operational emissions. As discussed in the Regulatory Setting of this analysis, SCAQMD states that proposed sites that generate GHG emissions below 3,000 tonnes CO2e, it can be concluded that GHG emissions are not "cumulatively considerable". Based on the above, the proposed Project would not be considered to generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment. Therefore, the proposed Project's impacts related to GHG emissions would be less than significant.

b)	Conflict with an applicable plan or policy or regulation adopted for the purpose of reducing the emissions of greenhouse		\boxtimes	
	gases?			

b) Neither the ICAPCD nor the County of Imperial has adopted a climate change action plan, as such the only applicable plan for reducing GHGs is the California Air Resources Board's (CARB)'s 2017 Climate Change Scoping Plan which indicates strategies for California's 2030 greenhouse gas target of reducing GHG emissions by 40% below 1990 levels by 2030. Table 5 shows the feasible mitigation measures for individual projects provided in the CARB's 2017 Scoping Plan.

Table 5: Consistency with CARB's 2017 Scoping Plan Measures for Individual Projects

Measures from Scoping Plan	Project Consistency
Enforce idling time restrictions for construction vehicles.	Consistent. All utilized off-road equipment will be registered with CARB and meet idling requirements.
Require construction vehicles to operate with the highest tier engines commercially available.	Consistent. The project will require all off-road equipment greater than 50 horsepower to utilize Tier 4 equipment when commercially available.
Divert and recycle construction and demolition waste and use locally sourced building materials with a high recycled material content to the greatest extent feasible.	Consistent. The project will adhere to Title 24 Part 11 requirements that require diversion of a minimum of 65% of construction waste from landfills.
Minimize tree removal and mitigate indirect GHG emissions increases that occur due to vegetation removal, loss of sequestration, and soil disturbance.	Consistent. Implementation of the project would result in landscaping that adds more vegetation to the project site where possible.
Utilize existing grid power for electric energy rather than operating temporary gasoline/diesel powered generators.	Consistent. Where possible electrical service will be utilized.
Increase use of electric and renewable fuel powered construction equipment and require renewable diesel fuel where commercially available.	Consistent. Alternative-fueled construction equipment will be used where possible.
Require diesel equipment fleets to be lower emitting than any current emissions standard.	Consistent. Alternative-fueled/lower emitting construction equipment will be used where possible.

Where feasible, the project would implement the CARB 2017 Scoping Plan Measures described above throughout the project's construction process to reduce GHG emissions. Additionally, where feasible, the project would implement ICAPCD measures described below for reducing criteria pollutant emissions from construction emissions which would also reduce GHG emissions:

- Use of alternative fueled or catalyst equipped diesel construction equipment, including all off-road and portable diesel-powered equipment.
- Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes as a maximum.
- Limit, to the extent feasible, the hours of operation of heavy-duty equipment and or the amount of equipment in
- Replace fossil fuel equipment with electrically driven equivalents (provided they are not run via a portable generator set)

The above measures would be implemented as part of the construction permitting process for the proposed Project. Therefore, the proposed Project would not conflict with any applicable plan that reduces GHG emissions. Impacts would be less than significant.

Potentially Significant Impact (PSI)

Less Than Significant with Mitigation Incorporated (LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

IX. HAZARDS AND HAZARDOUS MATERIALS

Hazardous substances are defined by federal and State regulations that aim to protect public health and the environment. Hazardous materials have certain chemical, physical, or infectious properties that cause them to be considered hazardous. Hazardous substances are defined in the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 101(14), and also in the California Code of Regulations (CCR), Title 22, Chapter 11, Article 2, Section 66261, which provides the following definition: A hazardous material is a substance or combination of substances which, because of its quantity, concentration, or physical, chemical or infectious characteristics, may either (1) cause, or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or (2) pose a substantial present or potential hazard to human health or environment when improperly treated, stored, transported or disposed of or otherwise managed. This section considers the potential for human health hazards or exposure of people to existing sources of potential health hazards from the proposed Project.

For this analysis, soil that is excavated from a site containing hazardous materials would be considered a hazardous waste if it exceeded specific California Code of Regulations (CCR) Title 22 criteria or criteria defined in CERCLA or other relevant federal regulations. Remediation (cleanup and safe removal/disposal) of hazardous wastes found at a site is required if excavation of these materials occurs; it may also be required if certain other activities occur. Even if soil or groundwater at a contaminated site do not have the characteristics required to be defined as hazardous wastes, remediation of the site may be required by regulatory agencies subject to jurisdictional authority. Cleanup requirements are determined on a case-by-case basis by the agency taking the lead jurisdiction. The proposed Project does not expect to generate any reportable quantities of hazardous materials. According to the DTSC ENVIROSTOR Mapping Tool, there are no active hazardous waste clean-up sites within 1,000 feet of the proposed Project.

Would	the project:				
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?		\boxtimes		
	a) Construction would involve the use of heavy equipme involved would not create a significant hazard to the public construction, the old bridge would be disposed of to a local ndebris facilities cannot accept hazardous waste. It is unknown the County would prepare and implement Mitigation Measus submitting a test and disposal plan for all wastes generated facility. If the waste is deemed hazardous, it will be transport. With Mitigation Measure HAZ-1, impacts from construction of	or the environm nunicipal waste fa wn if the material re HAZ-1 which in during demolitio ed to a hazardous would be mitigate	ent and are conside cility. Municipal wast s from the old bridge ncludes the County n to the local munici waste facility with a d to less than signifi	red temporary. te facilities or co e pose a hazard or construction pal waste facilit hazardous wast cant levels.	During the onstruction ; therefore, contractor by or debris te manifest.
	MM HAZ-1: All construction contractors shall immediately stinazardous materials are encountered, such as an odor is idefollow all applicable local, state, and federal regulations rehazardous materials encountered during the construction properifications. If any hazardous materials, waste sites, or vara qualified professional, in consultation with appropriate regulation and properly dispose of the contaminate furnish the County of Imperial or its representative with apprifree of contamination.	entified, or consic garding the disco rocess. These req por intrusion risk ulatory agencies, d material. If mate	lerably stained soil is overy, response, dis uirements shall be in as are identified prior will develop and imp erial imports are prop	s visible. Contra posal, and rem ncluded in the co to or during co dement a plan to posed, the cont	actors shall ediation of ontractor's onstruction, o remediate ractor shall
b)	Create a significant hazard to the public or the environment through reasonable foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				
	b) The proposed Project would require the use of heavy equ lubricants during construction and operation; however, the Countermeasure and Control (SPCC) Plan, which is a standard	County or its cont	ractor would have an	approved Spill	Prevention

tion ;), to address any release that may occur. The SPCC Plan and BMPs would be included as part of the construction Stormwater Pollution and Prevention Plan (SWPPP) required for construction. Furthermore, in compliance with applicable laws and regulations, the County would prepare and implement Mitigation Measure HAZ-2 which includes a BMP Maintenance Plan with maintenance practices such as the periodic removal and replacement of surface soils and media that may accumulate constituents that could result in further migration of constituents to subsoils and groundwater.

MM HAZ-2: Imperial County shall prepare and implement maintenance practices that include periodic removal and replacement of surface soils and media that may accumulate constituents that could result in further migration of

	40	Significant Impact (PSI)	Mitigation Incorporated (LTSMI)	Significant Impact (LTSI)	No Impact (NI)
	constituents to subsoils and groundwater. A BMP Maintenan the BMP projects that identify the frequency and procedures soils, and/or media (to a depth where constituent concentra potential to migrate further and impact groundwater) to avoid to migrate further to sub-soils and groundwater. The BMP Mathat applies to several types of smaller distributed BMPs. For consist of a maintenance covenant that includes requirementhese BMPs that may impact underlying subsoils and groundwater.	for removal and/ tions do not rep the accumulation intenance Plan n smaller distribut nts to avoid the	or replacement of acc resent a hazardous of of hazardous concel nay consist of a gene ted BMPs on private accumulation of haz	cumulated debr condition and/o ntrations and th ral maintenance property, these cardous concen	is, surface or have the e potential e guideline plans may trations in
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?				\boxtimes
	c) No schools are located within one-quarter mile of the pro- located approximately 1.2 miles south of the proposed Project			/uma High scho	ol,
d)	Be located on a site, which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				\boxtimes
	d) The proposed Project is not a listed hazardous materials none of the proposed improvements would cause the Project sites were located within 1,000 feet of the proposed Project li	t Site to be listed	Government Code §6 as a hazardous mate	:5962.5 (Cortese Prials site. Addit	E List), and tionally, no
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?				\boxtimes
	e) No public airports are located within the vicinity of the pro approximately 5 miles from the proposed Project (Yuma Intel land use plan or within two miles of a public airport or public	rnational Airport)	. The proposed Proje	port is located ect is not in an a	airport
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?			\boxtimes	
	f) The proposed Project would not cause any changes that wan adopted emergency response plan or emergency evacuate the existing bridge. A detour route is currently used to avoid activities in the public right-of-way are considered temporary access disruptions. With the implementation of a traffic contact After the project is completed, the site will be returned to exi emergency response plans or emergency evacuation plans.	ion plan. Constru driving on the buy and will require rol plan, constru	action activities will pridge due to its poor a construction traffiction impacts would	orimarily take pl condition. Cons c control plan to be less than sig	lace near struction o minimize gnificant.
g)	Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?			\boxtimes	
	g) The CALFIRE Fire Hazard Severity Zone (FHSZ) Maps identified proposed Project is located within an Urban Unzoned are potential to ignite dry vegetation, the proposed Project would	ea (COSFM 2022)	. Although the const	ruction equipme	ent has the

X. HYDROLOGY AND WATER QUALITY

The setting for the proposed Project is Picacho Bridge located near the Townsite of Winterhaven, CA. The Picacho Bridge spans the Yuma Main Canal which is owned by the BOR, and its waters are managed by their partners the YCWUA. The proposed Project will implement a Stormwater Pollution Prevention Plan (SWPPP) during demolition and construction to minimize impacts related to storm

vehicles to minimize the risk of fire during construction. Impacts would be less than significant.

safety, such as California Department of Transportation and California Vehicle Code requirements for spark arrestors on

Less Than Significant with

Potentially

Less Than

Less Than
Potentially Significant with Less Than
Significant Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (LTSMI) (LTSI) (NI)

water quality and runoff. The County will ensure that no debris, including trash, siltation, or fill material, from construction activities enters the Yuma Main Canal which the bridge spans. The proposed Project is considered a Regulated project under the State's Phase II MS4 Permit, Order No. 2013-0001-DWQ, and is required to prepare a Storm Water Quality Management Plan (SWQMP) and implement permanent treatment control and source control BMPs that manage and treat stormwater runoff from Picacho Road and its intersection with Quechan Road. The SWQMP will be prepared by a Registered Civil Engineer and will describe all site control, source control, and treatment control BMPs that will be implemented by the proposed Project. No existing treatment control stormwater BMPs currently exist within the project footprint. Therefore, the project will result in a net improvement in the water quality of stormwater runoff compared to the existing condition.

compa	red to the existing condition.				
Would	the project:				
a)	Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?			\boxtimes	
	a) The proposed Project will implement a Stormwater Poll to minimize impacts related to storm water quality and run or fill material, from construction activities enters the Yurequired to prepare a Storm Water Quality Management source control BMPs that manage and treat stormwater of The SWQMP will describe all site control, source control proposed Project. No existing treatment control stormwater project will result in a net improvement in the water qual project also does not require any ground water or inject an or ground water quality would be less than significant.	off. The County will ima Main Canal whi Plan (SWQMP) and unoff from Picacho ol, and treatment o ter BMPs currently o lity of stormwater re	ensure that no debri ch the bridge spans d implement permar Road and its interso control BMPs that we exist within the proje unoff compared to the	is, including trash The proposed nent treatment con ection with Queca will be implement contribution to the conting tond	n, siltation, Project is control and han Road. ted by the refore, the ition. The
b)	Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?				\boxtimes
	b) The proposed Project would not use groundwater Therefore, the proposed Project would have no impacts re				
c)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:			\boxtimes	
	The proposed Project would be limited to Picacho Road the current drainage patterns or significantly change the proposed Project would have less than significant impacts or increases in impervious surfaces.	e existing imperviou	us area within the P	roject Site. The	refore, the
	(i) result in substantial erosion or siltation on- or off-site;			\boxtimes	
	During project construction, erosion could occur as a resimould be minimized through the implementation of a St SWRCB's Construction General Permit with standard and disturbed soil, preventing runoff from leaving the project erosion control and stormwater detention measures in a disturbance activities would occur in nearby waterways. Quality Management Plan (SWQMP) and implement permit treat stormwater runoff from Picacho Road and its interset source control, and treatment control BMPs that will be in	tormwater Pollution I project-specific st t site, minimizing tra dvance of rainfall e The proposed Pro anent treatment con ction with Quechan	Prevention Plan (Somwater BMPs suc ack-out from the provents. Additionally, pject is also required trol and source con Road. The SWQMP v	SWPPP) as requing the ject site, and import site, and import or or earthwork or to prepare a Statel BMPs that movel describe all si	red by the amount of olementing other soil orm Water anage and ite control,

stormwater BMPs currently exist within the project footprint. Therefore, the proposed Project would have less than significant

impacts related to erosion or siltation on- or offsite.

		Potentially Significant Impact (PSI)	Less Than Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)		
	 substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite; 			\boxtimes			
	The proposed Project includes the replacement of an existir bridge and minor changes to the Picacho Road alignment a increase the amount of paved surfaces or the rate or amo The proposed Project would also implement a SWQMP and to control, dissipate, and treat stormwater runoff. Therefor related to the rate or amount of surface runoff.	nd paved surfaces unt of surface run I incorporate perm	. The proposed Proj off that would result anent site control at	ect would not sub t in flooding on- nd treatment con	ostantially or offsite. trol BMPs		
	 (iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or; 						
	The proposed Project includes the replacement of an existir bridge and minor changes to the Picacho Road alignment expected to result from the proposed Project. The propose exceed the capacity of existing or planned stormwater dr. SWQMP and incorporate permanent site control and trea runoff. Therefore, the proposed Project would have less thrunoff.	and paved surfaced Project would na ainage systems. Thent control BM	ces. No significant ot create or contribu The proposed Proje Ps to control, dissij	increase in runof ute runoff water t ct would also im pate, and treat st	ff water is hat would plement a tormwater		
	(iv) impede or redirect flood flows?			\boxtimes			
D.	The proposed Project includes the replacement of an existir bridge and minor changes to the Picacho Road alignment as a Federal Emergency Management Agency (FEMA) Floo than significant impacts related to impeding or redirecting	s. The Project Site is	not within an are	a mapped			
d)	In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?				\boxtimes		
	d) The Project Site is not within an area mapped as a FEM area subject to potential inundation by seiches, tsunami, involve the use of fuels, paints, and other potential polluta not involve the permanent storage of any pollutants that co would have no impacts related to flood hazard, tsunami, or second the permanent storage of the permanent sto	or mudflow. Altho ants typically used uld be released in	ough construction o I in the construction a flood inundation e	f the proposed P process, the Provent. Therefore, t	roject will oject does the project		
e)	Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?			\boxtimes			
	e) The proposed Project would not result in conflicts or sustainable groundwater management plan The proposed Phase II MS4 Permit, Order No. 2013-0001-DWQ and is recontrol and source control BMPs that manage and treat Quechan Road. The SWQMP will be prepared by a Register and treatment control BMPs that will be implemented by BMPs currently exist within the project footprint. Therefor of stormwater runoff compared to the existing condition.	osed Project is con quired to prepare a stormwater runof red Civil Engineer a the proposed Proj e, the project will	nsidered a Regulate a SWQMP and imple f from Picacho Roa and will describe all s ect. No existing tre result in a net impro	d project under to ement permanent d and its interse site control, source eatment control s vement in the wa	he State's treatment ction with ce control, tormwater		
LAI	LAND USE AND PLANNING						

XI. L

The proposed Project proposes the replacement of the existing bridge. After completing the bridge replacement, bridge and surface improvements would provide safer transportation infrastructure from Winterhaven (to the west) to the Fort Yuma Indian Reservation (to the east). The current land use and zoning will remain.

Surrounding the Project area are farms designated as agricultural lands in the County's General Plan, the Seminole Water Canal (runs west from the Yuma Main Canal), and the Union Pacific Railroad (parallel to the bridge). The land the bridge is located on is zoned as agricultural by the county and Other Land by the DOC. The BOR owns this parcel. Imperial County has an easement and provides

Less Than Potentially Significant with Significant Significant Mitigation Incorporated Impact No Impact Impact (PSI) (LTSMI) (LTSI) (NI) transportation for the population over the water canal. The bridge is also under the jurisdiction of the YCWUA, Bard Water District, IID, Imperial County and BIA. Would the project: \boxtimes Physically divide an established community? П a) The proposed Project is proposing the replacement and enhancement of the bridge on Picacho Road (County ROW) that crosses the Yuma Main Canal into the unincorporated Townsite of Winterhaven. The Project Site land is zoned as agriculture by the County and Other Land by the DOC. Surrounding the Project Site is land designated as Agriculture in the County's General Plan and Prime and Unique Farmland by the DOC. The bridge allows access from Winterhaven (west) to the Fort Yuma Indian Reservation (Quechan Drive-east). The proposed Project provides transportation for the population from the west to the east. The Quechan people heavily utilize Picacho Road and the Quechan Tribe Comprehensive Plan (QTCP) anticipates the future replacement of the bridge. Therefore, the proposed Project is consistent with the QTCP. Project construction would include the closure of the bridge. During construction, Picacho Road between Winterhaven Drive and Quechan Road will be closed to traffic and a detour route will be made available. Detour travel times and lengths will be minimal during construction. Cause a significant environmental impact due to a conflict with \boxtimes any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? b) The proposed Project is in compliance with the land use plan, policy, and regulations of the overseeing agencies. The Picacho bridge and Yuma Main Canal are owned by the BOR. The BOR has a contract which grants various agencies shared jurisdiction over the bridge. This contract gives jurisdiction to the YCWUA, Bard Water District, IID, Imperial County and BIA. None of these agencies have land use plans, policies, or regulations which conflict with the proposed Project. Therefore, no impact is suspected from the proposed Project. XII. MINERAL RESOURCES The State of California classifies mineral resource areas into Mineral Resources Zones (MRZ). The four-zone classifications (MRZs 1-4) indicate whether mineral resources (primarily sand and gravel) are known to be present or absent, or whether additional information is necessary. The County does not have any maps available to display the MRZs in the County. The CGS's Aggregate Sustainability in California Map does not display any present or future aggregate resources in the Project Site (CGS 2018). Therefore, no MRZs are located in the Project Site. Would the project: Result in the loss of availability of a known mineral resource M that would be of value to the region and the residents of the state? a) The proposed Project is located on Picacho Bridge which is located in the unincorporated area of Winterhaven in Imperial County. The Project Site is designated as Agriculture in the County's General Plan and Other Land by the DOC (see Section 3.1.2). The surrounding area of the bridge is zoned as agricultural land by the County and Prime and Unique Farmland by the DOC (see section 3.1.2). The proposed Project proposes the replacement of the existing bridge on Picacho Road. Imperial County does not have any readily available maps displaying mineral resource zones in the County. However, the CGS's Aggregate Sustainability in California Map does not display any aggregate production areas, permitted reserves, or future aggregate production areas in the Project Site. Therefore, the proposed Project would not result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state, and no impacts would occur. Result in the loss of availability of a locally-important mineral \boxtimes resource recovery site delineated on a local general plan, specific plan or other land use plan? b) As discussed above, the proposed Project site is located on the Picacho Bridge which is located in the unincorporated area of Winterhaven in Imperial County. There are no locally important mineral resource recovery sites identified by the

Less Than

County or CGS. The land use for the site will remain as is with the proposed improvements and replacement of the transportation bridge. The proposed Project would not result in the loss of availability of a locally important mineral resource

Potentially Significant Impact (PSI) Less Than
Significant with
Mitigation
Incorporated
(LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

recovery site delineated on a local general plan, specific plan, or other land use plan and no impacts would occur.

XIII. NOISE

The proposed Project is located in a rural agricultural area with scattered residences. Concentrated residential areas are present in Winterhaven, which is located to the northwest of the Project Site. Sensitive receptors in the Project Site would include Fort Yuma Health Care Clinic 0.4 miles east of the site, Abundant Life Church located 0.5 miles west of the site, rural residences and the residential areas in Winterhaven. Rural residences in the Project Site are no closer than 485 feet to the project boundary. The nearest concentrated neighborhood is 1900 feet from the project boundary.

Existing noise sources in the Project Site include agricultural equipment, vehicular traffic including highway traffic on I-8, and trains on the Union Pacific Railroad (UPRR). I-8 Kumeyaay Hwy runs east and west 0.3 miles south of the Project Site. The UPRR railroad tracks run northwest to southeast in general proximity to Picacho Road and Quechan Road east of the project Site. Typical sound levels for the existing noise sources found in the project area, normalized to a reference distance of 50 feet, are shown in Table 6 below.

Table 6: Existing Noise Sources in Project Site

Noise Source	Sound Level at 50 ft
Agricultural equipment	67-82 dBA (Fretzer, et al. 2022)
Light vehicular traffic	56 dBA (Imperial County 2015)
Highway traffic	70-80 dBA (USDOT FHWA 2003)
Train (horn at road crossings)	116 dBA maximum (USDOT 2009)
Train (locomotive and cars)	83-91dBA (USDOT 2009)

Would the project result in:

a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

į.	\boxtimes	

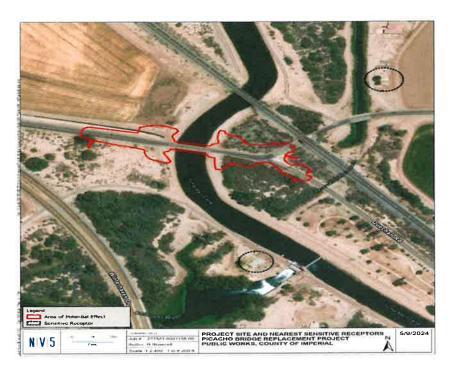
a) During the long-term operational phase, development of the proposed Project would not result in an increase in noise levels above the existing conditions in the Project Site.

During the proposed Project's short-term construction phase, operation of construction equipment would generate noise. Table 7 shows the typical average maximum noise level of the pieces of equipment expected to be used during project construction at a distance of 50 feet. Noise levels from equipment shown here increase or decrease with distance from the construction site at a rate of approximately 6 dBA per doubling of distance.

Table 7: Construction Equipment Noise Levels

Equipment	Maximum Noise Level (dBA) at 50 feet
Bulldozer	82
Boring machine	83
Backhoe	78
Concrete mixer truck	79
Excavator	81
Mud sucker	81
Skid steer loader	79
Jackhammer	89
Medium-duty truck (5 ton)	76
Air compressor	78
Pickup Truck	75

Source: 2011 FHWA Construction Noise Handbook, Table 9.1, actual measured sound levels, samples averaged


Potentially Significant Impact (PSI) Less Than
Significant with
Mitigation
Incorporated
(LTSMI)

Less Than Significant Impact

(LTSI)

No Impact (NI)

The nearest sensitive receptor is a house located 500 feet northeast of the Project Site. However, while all construction activities will be contained within the boundaries of the construction work area, the greatest construction noise is expected to occur at the bridge overpass, which is roughly 860 feet from this residence. Closer to the bridge overpass is another residence located 670 feet directly southeast of the bridge across the Yuma Main Canal. Therefore, it is expected that this residence would experience the greatest noise impact during the short-term construction phase. Exhibit D below demonstrates the respective locations of the nearest homes in relation to the Project Site.

Exhibit D Project Site and Nearest Sensitive Receptors

Given that 600 feet is 50 feet doubled 3.5 times over, the maximum anticipated noise level at the home southeast of the site would be over 21 dBA (3.5 times 6 dBA) lower than the maximum levels shown in Table 7, or approximately 68 dBA for the noisiest pieces of equipment. This level of noise, if it were to persist in one sensitive receptor location over a period of 8-hours, would be lower than the County's 75 dB Leq (8-hour) noise standard.

While unlikely, even if the noisiest piece of equipment were to be used at the most eastern portion of the Project Site and persist over an 8-hour period, the maximum anticipated noise level at the home east of the site would be less than 71dBA (3 times 6 dBA lower than the noisiest piece of equipment).

In addition, construction activities are expected to be limited to the hours of 7 a.m. to 7 p.m. Monday through Friday and 9 a.m. to 5 p.m. on Saturday. Therefore, noise impacts associated with construction would be less than significant.

b)	Generation groundborne			groundborne	vibration	or			\boxtimes	
	aroundborne	nois	e leveis /				-	11.611		

b) Vibration is sound radiated through the ground. Groundborne noise is the rumbling sound caused by vibration of building or structure surfaces. Typical outdoor sources of perceptible groundborne vibration are construction equipment and traffic on rough roads. During the long-term operational phase, development of the proposed Project would not result in groundborne vibration or noise levels in addition to the existing conditions in the Project Site. During the short-term construction phase, there may be relatively minor vibrations from the use of trucks or other equipment associated with construction activities. However, given the distance to the closest sensitive receptor (670 feet), this groundborne vibrations condition from construction equipment would be relatively minor, intermittent, short term and restricted to daytime hours.

		Potentially Significant Impact (PSI)	Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
	Therefore, impacts related to excessive groundborne vibration	ions are anticipat	ed to be less than sig	nificant.	
c)	For a project located within the vicinity of a private airstrip or an airport land use plan or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				\boxtimes
	c) The proposed Project is not located in the vicinity of an a nearest airport is the Yuma International Airport located five	airport land use p miles southeast c	lan nor within two m	iles of a public a ct. Therefore, th	airport. The e proposed

Less Than

XIV. POPULATION AND HOUSING

This section addresses potential impacts on the population and housing associated with the proposed Project's implementation and includes a description of the existing environment. The proposed Project is located in the unincorporated area of Winterhaven, in Imperial County. The proposed Project is located approximately 60 miles east of El Centro, CA. Housing in the unincorporated portion of Imperial County is covered in the Housing Element. Population size and housing units in Imperial County Housing Element 2021 to 2029 are identified in Table 8 and the demographic composition based on the data provided in the Imperial County Housing Element 2021-2029 is identified in Table 9.

Project would not expose people residing or working in the Project Site to excessive noise levels and no impact would occur.

Table 8: Imperial County Population Inventory

	Unincorporated Area*	Total County	Percentage Unincorporated
Population (2020)	37,778	174,528	22%
Housing Units (2020)	35,331	180,378	20%
Household Size (Average) (2019)	n/a	3.81	n/a

^{*} Includes all unincorporated areas beyond just census-designated places

Sources: California DOF, City/County Population and Housing Estimates and 2015-2019 ACS (Imperial County 2022)

Table 9: Unincorporated Imperial County Demographic Composition

Race	Unincorporated Area Population*	Percentage
White alone	58,135	70.9%
Black of African American alone	4,505	2.1%
American Indian and Alaska Native alone	887	1.3%
Asian alone	1,475	0.6%
Native Hawaiian and Other Pacific Islander alone	132	0.2%
Some Other Race alone	11,692	22.8%
Two or More Races	3,242	2.1%
total	13,973	n/a
Hispanic or Latino	10,646	76.2%
Not Hispanic or Latino	3,327	23.8%

^{*}Includes only census-designated places in unincorporated Imperial County. Source: 2015-2019 ACS (Imperial County 2022)

			Potentially Significant Impact (PSI)	Less Than Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
W	ould/	the project:				
	a)	Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and business) or indirectly (for example, through extension of roads or other infrastructure)?				\boxtimes
		a) The proposed Project consists of a bridge replacement for induce population growth either directly or indirectly. The ro the Fort Yuma Indian Reservation to downtown Winterhaven	ute is an importa	nt transportation rou	ructure, which v	would not ess from
	b)	Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				
		b) The proposed Project proposes the replacement of the br remove or construct housing or result in the displacement impacts on the displacement of existing or future housing, a	of housing avail	able. The proposed	project would i	t would not result in no
XV.	PL	JBLIC SERVICES				
TI a	his so desc	ection addresses potential impacts on the public services ass ription of the existing environment.	ociated with the	proposed Project's i	mplementation	and includes
Fi	re					
pr th W	rotec roug inter	nperial County Fire Department (ICFD) and the Office of Emergation, aircraft fire rescue, technical rescue, and hazards materially contracts to the unincorporated parts of the County. The prochaven, CA 92283), approximately 1 mile west of the Project Sife	als and incidents posed Project ar	responses for incor	porated Imperia	I County and
Tł	ontra	nperial County Sheriff's Office (ICSO) provides law enforcen ct cities. The Project Area is served by the Imperial County She west of the Project Site.	nent services to riff's Station (513	the County's uninc 2nd Ave, Winterhave	orporated com en, CA 92283), a	munities and pproximately
fu	II-tin	ort Yuma Quechan Indian Tribe is served by their local Quecha ne patrol officers, and six full-time emergency dispatchers. The 283) is located approximately less than one-half mile east of th	e Quechan Police	Department (450 N	o chiefs, two se Quechan Drive	rgeants, nine Winterhaven,
Sc	choo	Is				
Tł Di	he ne istric	earest school to the proposed Project site is San Pasqual Valle t (676 Baseline Rd, Winterhaven, CA 92283), approximately 2 r	y High School ad miles northeast o	ministered by San Partine of the Project Site.	asqual Valley U	nified School
Pa	arks					
		roposed Project is located approximately less than a mile fro en's playground equipment, picnic tables, benches, an open fi			providing amen	ities such as
	a)	Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times for other performance objectives for any of the public services:				
		The proposed Project will improve transportation infrastruct of the proposed Project would not affect the area's population proposed, and construction workers are anticipated to be for	on or induce pop	ulation growth, as no	Construction an habitable stru	d operation ctures are

		Potentially Significant Impact (PSI)	Less Than Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
-	1) Fire Protection?			\boxtimes	
	The bridge will not be constructed with flammable mater During construction, temporary lane closures and traffic de emergency service and response times during Project con	etours along Picach	quire fire protection s o Road are expected	ervices when in and could adve	operation. rsely affect
	2) Police Protection?			\boxtimes	
	2) The proposed Project would not create a need for new of temporary lane closures and traffic detours along Picacho service and response times during Project construction.	or altered fire or po Road are expected	lice protection facilit I and could adversely	ies. During con y affect emergei	struction, ncy
	3) Schools?				\boxtimes
	3) The nearest schools are at the San Pasqual Valley School The project would not directly increase demand for public sthat would result in a considerable demand for school serv growth in the project area that would necessitate the need not have an effect on schools.	schools in the Coun ices. The project wo	ity. The project would ould not directly or in	l not generate en directly induce	mployment population
	4) Parks?				\boxtimes
	4) The Quechan Walking Trail Park is located approximate project will not directly or indirectly induce population gro The proposed Project would not have an impact on this pa	wth that would crea	t of the bridge. The i ate a need for new or	mplementation expanded park	of the services.
	5) Other Public Facilities?				\boxtimes
	5) The public facilities include the Fort Yuma Health Care approximately 0.4 miles southeast of the bridge and the coof the bridge. A traffic detour plan will be provided to ensproject would not directly or indirectly induce population on the proposed Project would not be proposed Project with the proj	ommunity of Winterl ure access between growth, implementa	haven is located app n the west and east ition of the project w	roximately 0.55 sides of the brid ould not crate the	miles west ige. As the
XVI. R	ECREATION				
Picacl includ and is	roposed Project is located on Picacho Bridge which is with ho Bridge provides transportation infrastructure for the Co le the replacement of the bridge. The Quechan Walking Trail the closest local recreational park under the jurisdiction of t on this park.	ounty. The propose Park is approximat	d Project will be loo ely half a mile south	ated on the bri east of the prop	dge and will osed Project
a)	Would the project increase the use of the existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				
	The proposed Project is not likely to increase the use of facilities to the point that physical deterioration would oct that is already in place, therefore it is expected that once results.	cur or be accelerate	ed. The Project prop	oses to replace	the bridge
b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse effect on the environment?				\boxtimes
	b) The proposed Project consists of the replacement and ROW). The proposed Project will not directly or indirectly the use of existing parks. No impact is expected from the	incentivize the need	d for more recreation	Picacho Road (al facilities or ir	County ocrease

Potentially Significant Impact (PSI)

Less Than Significant with Mitigation Incorporated (LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

XVII. TRANSPORTATION

The proposed Project is located along Picacho Rd. (S-24) 0.4-miles north of the Colorado River and California/Arizona border in Section 16 of Township 16 South, Range 22 East. The bridge crosses the Yuma Main Canal and serves as a route into the Townsite of Winterhaven. The purpose of the proposed Project is to replace the heavily deteriorated 7-span timber bridge with a new single span

tructu	ire.				
ould/	the project:				
a)	Conflict with a program plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?			\boxtimes	
	a) During the construction of the new bridge along the same a would be temporary. Traffic during construction would includ construction materials to the Project Site, and transporting ronstruction traffic on the local roadway network and alor temporary and occur throughout the day, generally during generate a substantial impact to the surrounding roadways. Twith a program plan, ordinance or policy addressing the circu	e workers traveling material off-site. The og this section of t non-peak hours. A herefore, construct	to and from the Proje ough the proposed Po he road the construct s such, the construction traffic would not be	ct Site, trucks h roject would ge ction traffic wou tion traffic wou be expected to c	auling nerate uld be uld not onflict
	The County General Plan's Circulation and Scenic Highways Ebridge. The Circulation and Scenic Highways Element was prof Governments (SCAG) Regional Transportation Plan, "December 10 documents (County of Imperial, 2008). The Circulation and configurations and volumes throughout the County, includin Road. Thus, traffic along this section of Picacho and over the land Scenic Highways Element. As the new bridge would be as the existing bridge, operation of the proposed Project is no accommodated for in the County's General Plan. Therefore, ordinance or policy addressing the circulation system, and o	epared in conjunction 2030," of Scenic Highways Eng for Picacho Road pridge was anticipate within the same alight to general proposed Projection 2000, and the projection 2000, and the projection 2000, and the proposed Projection 2000, and the proposed Projection 2000, and the projection	on with the Southern (and other related tra Element included proj I, which is designated ed and accommodate gnment and have the serate an increase in tra ect would not conflict	California Associnsportation pla jected street se d as a Major Co d for in the Circu same number of affic beyond the with a program	ciation anning gment ellector ulation f lanes traffic
b)	Would the project conflict or be inconsistent with the CEQA Guidelines section 15064.3, subdivision (b)?			\boxtimes	
	b) CEQA Guidelines 15064.3 states vehicle miles traveled (VI CEQA Guidelines 15064.3 subdivision (b) provides several or a project's VMT qualitatively when lead agencies may not be proposed Project would replace an existing deteriorated bridge. The new bridge would have the same number of lanes (or compensate for foot and bicycle traffic. Additionally, the Gova Technical Advisory on Evaluating Transportation Impacts in the condition of existing transportation assets, including be increase in vehicle travel and, therefore, generally should reproposed Project is anticipated to be consistent with CEQA expected to be less than significant.	iteria for analyzing be able to quantitat ge with a new bridge ne [1] in each direct remor's Office of Pl CEQA, which state oridges, would not not require an indu	transportation impact ively estimate VMT for within the alignment ction) as the existing anning and Research s replacement project likely lead to a subs ced travel analysis (6	es, including and or a project typ of the existing I pridge, but wi (OPR) has devo s designed to in tantial or meas OPR; 2018). Thu	alyzing be. The bridge. ider to eloped nprove surable us, the
c)	Substantially increases hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?]
	c) The proposed Project would consist of the replacement designed to applicable County and AASHTO standards. As su feature that would increase hazards or result in incompatible of Caltrans and ICFD. Additionally, the proposed Project would Traffic Control Devices for operational traffic control device measures that are designed to ensure the safety of all road u significant impacts related to hazardous design features or in	ich, the proposed P e uses. The propose d utilize standards a s as appropriate al sers. Therefore, the	roject would not inclued Project would comp s set out in the Califon nd would further inco	de a geometric ply with the star nia Manual on U prporate traffic	design ndards Iniform control

			Potentially Significant Impact (PSI)	Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
	d)	Result in inadequate emergency access?			\boxtimes	
		d) The proposed Project would be designed to applicable C emergency access. The proposed Project would not redu Picacho Road. Therefore, the proposed Project would not impede emergency access within the area or to the Project	ce the number of include or create	traffic lanes or crea	ite physical barri	ers along
XVIII.		MBAL CULTURAL RESOURCES				
	would	the project:				
	a)	Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place or object with cultural value to a California Native American tribe, and that is: (i) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of	П	\boxtimes	П	П
		historical resources as define in Public Resources Code Section 5020.1(k), or	Ц		Ш	
		C). The proposed Project is fully within the Fort Y with the Fort Yuma Quechan Tribe. A meeting with the Fort Yuma Quechan Tribe. A meeting with the Project Preservation Office, and NV5 to on Tribal land in Spring 2021. Quechan HPO was Information System search in Summer 2021. Quechan Traditional Cultural Places within significant impacts with the implementation of mit	was facilitated bet discuss requirem granted for the co han Tribal Historic the Project Site. T	tween the Bureau of the test for conducting ompletion of the Ca completion of the Ca completion office the proposed Projection of the projection of the proposed Projection of the proj	f Reclamation, F cultural resourc lifornia Historic F er staff did not in	Fort Yuma e projects Resources dicate any
	0	(ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth is subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American Tribe.				
		(ii) There are no known resources in or near the Code Section 5024.1 to qualify for listing on the would not cause significant impacts pursuant to Section 5024.1, less than significant impact would impacts with the implementation of mitigation means	California Register criteria set forth occur. The propos	r of Historic Resour in subdivision (c) sed Project would re	ces. The propose of Public Resour	ed Project rces Code
XIX.	UTI	LITIES AND SERVICE SYSTEMS				
,	Would	the project:				
	a)	Require or result in the relocation or construction of new or expanded water, wastewater treatment or stormwater drainage, electric power, natural gas, or telecommunications facilities, the construction of which could cause significant environmental effects?				
		a) No relocation or expansion of water wastewater treatme	ent or stormwater	drainana alactric no	war natural dae	or

		Potentially Significant Impact (PSI)	Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)	
	telecommunications is proposed. There would be no impact.					
b)	Have sufficient water supplies available to serve the project from existing and reasonably foreseeable future development during normal, dry and multiple dry years?			\boxtimes		
	b) The proposed Project will not generate any new permanen be required during construction. Impacts would be less than	t demands on ex significant.	kisting water supplies	s. Minimal water	use would	
c)	Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				\boxtimes	
	c) The proposed Project will not add to wastewater demands	. There would be	e no impact.			
d)	Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?					
	d) The proposed Project will not add permanently to solid waste demands or generate excessive solid waste. Solid waste generation would occur during construction. Clean soil can be recycled, reused offsite, or reused as backfill thereby reducing the need to be disposed of at a landfill. In addition, through the implementation of Mitigation Measure UTIL-1, the County will encourage construction contractors to recycle construction materials and divert inert solids (asphalt, brick, concrete, dirt, fines, rock, sand, soil, and stone) from disposal in a landfill, where feasible, by including waste minimization goals in bid specifications. The proposed Project will adhere to regulations and policies pursuant to applicable State, local, and County relating to solid waste including the County's Solid Waste Ordinance (Imperial County Municipal Code, Chapter 8.72) for the disposal of the old bridge debris. The impacts would be less than significant with the implementation of Mitigation Measure UTIL-1					
	MM UTIL-1: Imperial County shall encourage construction cor (asphalt, brick, concrete, dirt, fines, rock, sand, soil, and s agencies shall incentivize construction contractors with wast completion, the proposed Project will not add to solid waste d will comply with federal, state, and local regulations relate mitigation measures.	tone) from dispo te minimization o emand or genera	osal in a landfill who goals in bid specifica ate excessive solid w	ere feasible. Imp tions where feas aste. The propos	olementing sible. Upon sed Project	
e)	Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?					
	e) The proposed Project will not add permanently to solid a generation would occur during construction and would inclu associated paved road surfaces. Clean soil can be recycled, to be disposed of at a landfill. In addition, through the implementation contractors to recycle construction materials a sand, soil, and stone) from disposal in a landfill, where feasibe The proposed Project will adhere to applicable County and stem disposal, specifically the County's Solid Waste Ordinance would be less than significant with the implementation of Miterial County and St.	de the demolitio reused offsite, centation of Mitiga and divert inert sole, by including ate regulations a (Imperial County	n debris from the rer or reused as backfill, ation Measure UTIL-1 olids (asphalt, brick, waste minimization on and policies relating t Municipal Code, CF	noval of the old thereby reducin , the County will concrete, dirt, f goals in bid spe to solid waste ha	bridge and ig the need encourage fines, rock, cifications. andling and	
WI	LDFIRE					
Califo	mia Public Resources Code 4201-4204 directs CAL FIRE/Stat	e Fire Marshall t	to classify and map	lands within SF	RAs into Fire	

Less Than

XX.

winds have been identified as a major cause of wildfire spread. FHSZs fall into the following classifications: moderate, high, and very high. NV5 reviewed CAL FIRE's Fire Hazard Severity Zone Viewers (CAL FIRE 2022a and 2022b) and the CAL FIRE State Responsibility Area Fire Hazard Severity Zones map prepared for Imperial County (CAL FIRE 2022c) to see if the Project Site is located within a FHSZ. The viewer and map showed that the Project Site is not located within or adjacent to a designated FHSZ. More specifically, the Project Site is not located within or adjacent to a very high FHSZ.

		Potentially Significant Impact (PSI)	Significant with Mitigation Incorporated (LTSMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
If loca	ted in or near state responsibility areas or lands classified as v	very high fire haz	zard severity zones, и	ould the Projec	t:
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?			\boxtimes	
	a) The California Board of Forestry and Fire Protection is ta of determining the financial responsibility for wildfire prote Area Viewer (Board 2022) to see what specific wildfire prevlocated within. The viewer showed that the Project Site is leands in the state where the federal government has the legal of Imperial has agreed to provide fire, medical, and other eme Reservation lying within Imperial County. The Project Site is (SRA).	ection and supprovention and sup- ocated entirely value responsibility for ergency services	ression. NV5 reviewed pression land classif vithin a Federal Resp or providing fire protec within the entire porti	d the State Res ication the Proj onsibility Area. ction; however, to on of the Fort Ye	ponsibility ject Site is These are the County uma Indian
	The bridge is currently in poor condition and has safety con roadway construction will adhere to industry accepted and significant of safety; and Picacho Road between Winterhaven Drive and Jackson Road lane closures would be considered less than significant becawill be minimal during construction. In addition, access to to construction with rerouting. Once completed, the new updat and evacuations for adjacent properties and the surround number of traffic lanes or create physical barriers along Pical Less than significant impacts are expected.	tandard constructiville provide addingled will be closed to use they would be parcels adjacted bridge and roing communities	ction designs and gui equate emergency ac to traffic and a detour te temporary and deto ent to the bridge will badway would improves. The proposed Proj	delines; it will on cess. During co route made ava ur travel times a be maintained to re access for er ject would not	omply with nstruction, allable. The and lengths throughout nergencies reduce the
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?				
	b) As described in response to threshold (a), the Project Sit as very high FHSZ. The proposed Project is a bridge replace Project Site is located in a rural area of Imperial County that of Tribe Tribal Administration buildings are located approximated the community of Winterhaven is located approximately 0.55 0.12 miles southeast of the bridge. The proposed Project concentrations from a wildfire or the uncontrolled spread of	ement project, we contains thousan tely 0.4 miles so miles west of the t is not anticipa	which would not contained of acres of flat farm outheast of the bridge of the bridge. The nearest intended to expose proje	ain project occu nland. Fort Yum over the Yuma residence is app ct occupants to	pants. The la Quechan Canal and proximately
c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?				
	c) As described in response to threshold (a), the Project Sit as very high FHSZ. The proposed Project is a bridge repl exacerbate the risk of fire. No roads, fuel breaks, emergence and the project would comply with federal and state regulex expected.	acement project y water sources	t that would not pose , power lines, or othe	e a risk of fire er utilities will b	hazards or e installed,
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?				\boxtimes
	d) As described in response to threshold (a), the Project Sit as very high FHSZ. The Project Site is located in a flat area wi with a downstream area or an area with landslides. Fort Yo approximately 0.4 miles southeast of the bridge over the approximately 0.55 miles west of the bridge. The nearest res	ith no high or ste uma Quechan Tr e Yuma Canal a	ep natural slopes. The ribe Tribal Administra and the community o	e Project Site is ition buildings of Winterhaven	not located are located is located
	The bridge is currently in poor condition and has safety corroadway construction will adhere to industry accepted and	ncerns from age standard constru	and outdated design uction designs and gu	standards. The uidelines and it	bridge and will comply

Less Than

Potentially Significant Impact (PSI) Less Than
Significant with
Mitigation
Incorporated
(LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

with federal and state regulations for construction fire safety. Once completed, the new updated raised bridge and roadway would help to reduce flood risks. For these reasons described here within, the proposed Project is not anticipated to expose people or structures to significant risks as a result of runoff, post-fire slope instability, or drainage changes. Therefore, no impacts are expected.

Note: Authority cited: Sections 21083 and 21083.05, Public Resources Code. Reference: Section 65088.4, Gov. Code; Sections 21080.6, 21080.1, 21080.3, 21083.05, 21083.3, 21083.3, 21093, 21094, 21095, and 21151, Public Resources Code; Sundstrom v. County of Mendocino. (1988) 202 Cal. App. 3d 296; Leonoff v. Monterey Board of Supervisors, (1990) 222 Cal. App. 3d 1337; Eureka Citizens for Responsible Govt. v. City of Eureka (2007) 147 Cal. App. 4th 357; Protect the Historic Amador Waterways v. Amador Water Agency (2004) 116 Cal. App. 4th at 1109; San Franciscars Upholding the Downtown Plan v. City and County of San Francisco (2002) 102 Cal. App. 4th 656.

Revised 2009- CEQA Revised 2011- ICPDS Revised 2016 – ICPDS Revised 2017 – ICPDS Revised 2019 – ICPDS

Potentially Significant Impact (PSI) Less Than
Significant with
Mitigation
Incorporated
(LTSMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

SECTION 3

III. MANDATORY FINDINGS OF SIGNIFICANCE

The following are Mandatory Findings of Significance in accordance with Section 15065 of the CEQA Guidelines.

a)	Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal, eliminate tribal cultural resources or eliminate important examples of the major periods of California history or prehistory?	* 		
b)	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)			
c)	Does the project have environmental effects, which will cause substantial adverse effects on human beings, either directly or indirectly?			

IV. PERSONS AND ORGANIZATIONS CONSULTED

This section identifies those persons who prepared or contributed to preparation of this document. This section is prepared in accordance with Section 15129 of the CEQA Guidelines.

A. COUNTY OF IMPERIAL

- Jim Minnick, Director of Planning & Development Services
- Michael Abraham, AICP, Assistant Director of Planning & Development Services
- Diana Robinson, Planning Division Manager
- Luis Bejarano, Planner I
- Imperial County Air Pollution Control District
- Department of Public Works
- Fire Department
- Ag Commissioner
- Environmental Health Services
- Sheriff's Office

B. OTHER AGENCIES/ORGANIZATIONS

NV5

•••	•	man a la la
•	Amanda Beck	
•	Eric Fuss	
•	Marie Barret	Biologist
•	Courtney Armusewicz, MCP	Transportation Planner
•	Laura Murphy	Civil Engineer
•	Lauren Burokas	Environmental Planner
•	Scott Molloy	Land Development Manager
•	Rebecca Davey	Environmental Specialist
•	Karry Blake	
•	Cecile Felsher	Senior Consultant
•	Kiran Pallachulla	Senior Water Resources Engineer

(Written or oral comments received on the checklist prior to circulation)

V. REFERENCES

"County of Imperial General Plan EIR", prepared by Brian F. Mooney & Associates in 1993; and as Amended by County in 1996, 1998, 2001, 2003, 2006 & 2008, 2015, 2016.

AESTHETICS

Bureau of Reclamation. Projects & Facilities: Yuma Project. [Online]: https://www.usbr.gov/projects/index.php?id=391. Accessed October 2022.

IID (Imperial Irrigation District). About IID Water. [Online]: https://www.iid.com/water/about-iid-water.Accessed October 2022.

CalTrans (California Department of Transportation) 2018. Scenic Highways. [Online]: https://dot.ca.gov/programs/design/lap-landscape-architecture-and-community-livability/lap-liv-i-scenic-highways. Accessed July 2022.

2022. Scenic Highways: California State Scenic Highways. [Online]: https://dot.ca.gov/programs/design/lap-landscape-architecture-and-community-livability/lap-liv-i-scenic-highways. Accessed October 2022.

Imperial County, 2008. Circulation and Scenic Highways Element.

2015, ICGP (Imperial County General Plan).

2016. Imperial County Conservation and Open Space Element

AGRICULTURE AND FORESTRY RESOURCES

DOC (California Department of Conservation),

2019. Division Land Resources Protection. [Online]: https://www.conservation.ca.gov/dlrp/Pages/About.aspx. Accessed October 2022.

2022. California Important Farmland Finder. [Online]: https://maps.conservation.ca.gov/DLRP/CIFF/. Accessed October 2022.

CAL FIRE (California Department of Forestry and Fire Protection),

2022. Forest Legacy. [Online]: https://www.fire.ca.gov/grants/forest-legacy/. Accessed October 2022.

2022. Assessment. [Online]: https://frap.fire.ca.gov/assessment/. Accessed October 2022.

2022. Forest Carbon Monitoring and Research. [Online]: https://frap.fire.ca.gov/research-monitoring/forest-carbon-monitoring/. Accessed October 2022.

Imperial County. 1993. Environmental Impact Report (EIR).

AIR QUALITY

California Ambient Air Quality Standards, 2022. "California Ambient Air Quality Standards." Available online at: https://ww2.arb.ca.gov/resources/california-ambient-air-quality-standards.

California Air Resources Board, 2016. "Ambient Air Quality Standards." Available online at: https://ww2.arb.ca.gov/sites/default/files/2020-03/aaqs2_0.pdf.

Imperial County Air Pollution Control District (ICAPCD), 2017. "Air Quality Handbook." Available online at: https://apcd.imperialcounty.org/wp-content/uploads/2022/06/P36-CEQA-Air-Quality-Handbook-REV-06-07-22.pdf.

Imperial County Air Pollution Control District (ICAPCD), 2020. "Rules and Regulations." Available online at: https://apcd.imperialcounty.org/rules-and-regulations/.

Imperial County Air Pollution Control District (ICAPCD), 2018. "2018 Redesignation request and Maintenance Plan for Particulate Matter Less Than 10 Microns in Diameter." Available online at: https://apcd.imperialcounty.org/wpcontent/uploads/2020/01/FinalPM10.pdf.

Imperial County Air Pollution Control District (ICAPCD), 2010. "2009 1997 8-Hour Ozone Modified Air Quality Management Plan." Available online at: https://www.dtsc-ssfl.com/files/lib_ceqa/ref_draft_peir/Chap4_2-AirQuality/67995_ICAPCD_2010_-_8_HR_OZONE_AQMP.pdf.

Office of Environmental Health Hazard Assessment, 2015. "Air Toxics Hot Spots Program." Available online at: https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf.

Salton Sea Air Quality Team, 2016. "Salton Sea Air Quality Mitigation Program." Available online at: https://saltonseaprogram.com/agm/docs/Salton_Sea_Air_Quality_Mitigation_Program.pdf.

United States Environmental Protection Agency, April 2022. "NAQQS Table." Available online at: https://www.epa.gov/criteria-air-pollutants/naaqs-table.

United States Environmental Protection Agency, June 2022. "Basic Information About the General Conformity Rile." Available online at: https://www.epa.gov/general-conformity/basic-information-about-general-conformity-rule.

United States Environmental Protection Agency, May 2022. "Clean Air Act Text." Available online at: https://www.epa.gov/clean-air-act-overview/clean-air-act-text.

BIOLOGICAL RESOURCES

Baldwin, Bruce G., et al. The Jepson Desert Manual, Los Angeles, University of California Press, 2002.

Behler, Jack L., and F. Wayne King, Natural Audubon Society Field Guide to North American Reptiles & Amphibians, New York, Chanticleer Press, 1996.

Borror, Donald J. and Richard E. White, Insects, The Easton Press, Norwalk, Ct. 1970.

Bowers, Nora, Rick Bowers, Kenn Kaufman, Mammals of North America, Houghton Mifflin Company, Singapore, 2004.

California Native Plant Society, CNPS Inventory of Rare and Endangered Plants, online: www. Northcoast.com, November, 2022.

California Natural Diversity Database, November, 2022. Sacramento, Ca California Department of Fish and Wildlife.

Griggs, Jack, American Bird Conservancy's Field Guide, All the Birds of North America, New York HarpersCollins Publishers, Inc. 1997.

Imperial County Conservation and Open Space Element. 2016. [Online]:

https://www.icpds.com/assets/planning/conservation-open-space-element-2016.pdf . Accessed February 2023.

Imperial County Planning and Building Department, General Plan, September 1, 2004.

Jameson, E.W., Hans J. Peeters, Mammals of California, Los Angeles, University of California, 2004.

Sawyer, John O. and Todd Keeler-Wolf, A Manual of California Vegetation, California Natural Plant Society, 2008.

Sibley, David Allen, The Sibley Guide to Birds, Alfred A. Knopf, New York, 2000.

United States Fish and Wildlife Service, Birds of Conservation Concern.

CULTURAL RESOURCES

Imperial County General Plan Conservation and Open Space Element https://www.icpds.com/assets/planning/conservation-open-space-element-2016.pdf. Accessed September 2023.

Bean, Lowell John, and Charles R. Smith 1990 Gabrielino. In California, edited by Robert F. Heizer, pp. 538-549. Handbook of North American Indians, vol. 8, W.C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Bee, Robert L. 1983 Quechan. In Southwest, edited by Alfonso Ortiz, pp. 86-98. Handbook of North American Indians, vol. 10, W.C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Byrd, Brian F. and L. Mark Raab 2010 Prehistory of the Southern Bight: Models for a New Millennium. In Colonization, Culture, and Complexity: California's Chaotic Prehistory, edited by Terry L. Jones and Katherine A. Klar, pp. 215-227. Altamira Press, Lanham, MD.

CalTrans 2019 Structure Maintenance & Investigations: Historical Significance- Local Agency Bridges. CalTrans.

Erlandson, Jon M., Douglas J. Kennett, B. Lynn Ingram, Daniel A. Guthrie, Don P. Morris, Mark A. Tveskov, G.

James West, and Phillip L. Walker 1996 An Archaeological and Paleontological Chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38(2): 169-228.

Fort Yuma Quechan Tribe 2022 About Us. Fort Yuma Quechan tribe. Electronic document, https://www.guechantribe.com/about-us.html, accessed November 1, 2022.

Glassow, Michael 2010 Channel Islands National Park, Archaeological Overview and Assessment. Channel Islands National Park. (coauthor, compiler, and editor)

Griffith, G.E., Omernik, J.M., Smith, D.W., Cook, T.D., Tallyn, E., Moseley, K., and Johnson, C.B. 2016 Ecoregions of California (color poster with map, descriptive text, and photographs): Menlo Park, California.

Gumerman, George J. and Carol S. Weed 1973 Archaeological Survey, Yuma County, Arizona, Colorado River International Salinity Control Project. Prescott College Archaeological Survey. Submitted to the Bureau of Reclamation, Department of the Interior and the National Park Service (Contract No. CX80C040004).

Maxon, James 1984 Proposed Yuma Division Dredge Spoil. Submitted to the "regional environmental officer".

McDonald, Meg and Ken Victorino 1997 Archaeological Survey of Two Segments of the Interstate 8 Right-of-Way, Imperial County, California. ASM Affiliates. Submitted to the CalTrans.

National Audubon Society 2022 *California: Short History of the Salton Sea.* National Audubon Society, Audubon California. Electronic document, https://ca.audubon.org/short-history-salton-sea, accessed November 1, 2022.

Natural Resources Conservation Service (NRCS), USDA 2022 National Cooperative Soil Survey, Web Soil Survey. Electronic document, http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, accessed November 8, 2022.

Norris, Robert M. and Robert W. Webb 1976 Geology of California. John Wiley & Sons Inc, Santa Barbara.

Pfaff, Christine, Rolla L. Queen, and David Clark 1999 *The Historic Yuma Project: History, Resources Overview, and Assessment*. Bureau of Reclamation, Denver.

Prescott College Archaeological Survey 1973 Archaeological Survey of the Yuma Division Colorado River Front Work and Levee System. Prescott College Archaeological Survey. Submitted to the Bureau of Reclamation, Department of the Interior.

Rick, Torben C., Jon M. Erlandson, Rene L. Vellanoweth, and Todd J. Braje 2005 From Pleistocene Mariners to Complex Hunter-Gatherers: The Archaeology of the California Channel Islands. *Journal of World prehistory* 19: 169-228.

Rockwell, Thomas K., Aron J. Meltzner, Erik C. Haaker, and Danielle Madugo 2022 The late Holocene history of Lake Cahuilla: Two thousand years of repeated fillings within the Salton Trough, Imperial Valley, California. *Quaternary Science Reviews* 282.

2010 The Colorado Desert: Ancient Adaptations to Wetlands and Wastelands. In *California Prehistory: Colonization Culture and Complexity*, edited by Terry L. Jones and Kathryn A. Klar, pp. 247-258. Altamira Press, Lanham, MD.

Stene, Eric A. 1996 Yuma Project and Yuma Auxiliary Project. Historic Reclamation Projects. Bureau of Reclamation.

Stone, Lyle M. 1990 Archaeological Resources of the Fort Yuma Indian Reservation Portion of Yuma Crossing National Historic Landmark in Imperial County, California and Yuma County, Arizona. Archaeological Research Services, Inc. Submitted to the Quechan Indian Tribe Fort Yuma Indian Reservation.

Sutton, Mark Q. Mark E Basgall, Jill K. Gardner, and Mark W. Allen 2010 Advances in Understanding Mojave Desert Prehistory. In *California Prehistory: Colonization Culture and Complexity*, edited by Terry L. Jones and Kathryn A. Klar, pp. 229-246. Altamira Press, Lanham, MD.

von Werlhof, Jay 1996 Archaeological Investigations of Picacho Road and Yuma Main Canal Bridge, No. 58C0028. Imperial Valley College Desert Museum. Submitted to County of Imperial, Department of Public Works.

2002 From Yuma Lift Station to Quechan Community Center, An Engineering Project Funded by An Environmental Protection Agency Borders 21 Program. ASM Affiliates. Submitted to the Environmental Protection Agency.

Waldman, Carl 1999 Encyclopedia of Native American Tribes. Checkmark Books, New York, NY. Warren, Claude N.

1967 The San Dieguito Complex: A Review and Hypothesis. American Antiquity 32(2): 168-185.

GEOLOGY AND SOILS

USGS (United States Geological Survey). 2014. Yuma East Quadrangle Arizona-California 7.5-minute Series.

USGS (United States Geological Survey). 2014. Yuma West Quadrangle Arizona-California 7.5-minute Series.

DOC (California Department of Conservation). 2021. EQ Zapp: California Earthquake Hazard Zone Application. [Online]: https://www.conservation.ca.gov/cgs/geohazards/eq-zapp. Accessed October 2022.

Morton. 1966. Geological Map of Imperial County https://ngmdb.usgs.gov/Prodesc/proddesc_408.htm. Accessed October 2022.

GREENHOUSE GAS EMISSIONS

California Air Resources Board, 2017. "California's 2017 Climate Change Scoping Plan." Available online at: https://ww2.arb.ca.gov/sites/default/files/classic/cc/scopingplan/scoping_plan_2017.pdf.

California Air Resources Board, 2022. "California Greenhouse Gas Emissions for 2000 to 2020." Available online at: https://ww2.arb.ca.gov/sites/default/files/classic/cc/inventory/2000-2020_ghg_inventory_trends.pdf.

California Environmental Quality Act (CEQA). "CEQA Appendix G: Environmental Checklist Form." Available online at: https://resources.ca.gov/CNRALegacyFiles/cega/docs/ab52/final-approved-appendix-G.pdf.

California Legislative Information, 2006. "AB-32 Air pollution: greenhouse gases: California Global Warming Solutions Act of 2006." Available online at: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200520060AB32.

California Legislative Information, 2016. "California Global Warming Solutions Act of 2006: emissions limit." Available online at: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32.

Imperial County Air Pollution Control District, 2017. "CEQA Air Quality Handbook." Available online at: https://apcd.imperialcounty.org/wp-content/uploads/2020/01/CEQAHandbk.pdf.

Intergovernmental Panel on Climate Change, 2015. "Climate Change 2014." Available online at: https://www.ipcc.ch/site/assets/uploads/2018/03/WGIIIAR5_SPM_TS_Volume-3.pdf.

JUSTIA, 2007. "Massachusetts v. EPA, 549 U.S. 497." Available online at: https://supreme.justia.com/cases/federal/us/549/497/.

National Highway Traffic Safety Administration. "NHTSA and EPA Establish New National Program to Improve Fuel Economy and Reduce Greenhouse Gas Emissions for Passenger Cars and Light Trucks." Available online at: https://www.nhtsa.gov/sites/nhtsa.gov/files/cafe-ghg_fact_sheet.pdf.

South Coast Air Quality Management District (SCAQMD), 2008. "Interim CEQA GHG Significance Threshold for Stationary Sources, Rules and Plans." Available online at: http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/ghgboardsynopsis.pdf.

United States Code, 2013. "Section 7521. Emission standards for new motor vehicles or new motor vehicle engines." Available online at: https://www.govinfo.gov/content/pkg/USCODE-2013-title42/html/USCODE-2013-title42-chap85-subchapII-partA-sec7521.htm.

EEC ORIGINAL PKG

United States Environmental Protection Agency, May 2022. "Understanding Global Warming Potentials." Available online at: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials.

HAZARDS AND HAZARDOUS MATERIALS

COSFM (California Office of the State Fire Marshall). Fire Hazard Severity Zones Maps. [Online]: https://osfm.fire.ca.gov/divisions/community-wildfire-preparedness-and-mitigation/wildfire-preparedness/fire-hazard-severity-zones-map/. Accessed December 2022.

DTSC (Department of Toxic Substance Control). ENVIROSTOR. [Online]: https://www.envirostor.dtsc.ca.gov/public/. Accessed December 2022

2021 Imperial County Multi-Jurisdictional Hazard Mitigation Plan (MHMP) https://firedept.imperialcounty.org/wp-content/uploads/2021/01/Imperial-County-MHMP-2021-Plan-Update-2021_01_11.pdf. Accessed February 2023

HYDROLOGY AND WATER QUALITY

2015. Imperial County General Plan Water Element

Porter-Cologne Water Quality Control Act

Clean Water Act, 1972 (CWA 33 U.S.C. 1251 et seq.)

LAND USE AND PLANNING

2016. Executive Summary for the Record of Decision: Desert Renewable Energy Conservation Plan.

ICGP (Imperial County General Plan)

Public Land Orders https://www.federalregister.gov/public-land-orders

QTCP (Quechan Tribe Comprehensive Plan)

BOR (Bureau of Reclamation)

YCWUA (Yuma County Water Users' Association)

MINERAL RESOURCES

DOC (Department of Conservation),

2019. Surface Mining and Reclamation Control Act (SMACRA). [Online]: https://www.conservation.ca.gov/dmr/lawsandregulations. Accessed October 2022.

CGS (California Geological Survey). 2018. Aggregate Sustainability in California: Fifty-Year Aggregate Demand Compared to Permitted Aggregate Reserves.

NOISE

Federal Transit Administration, 2018. Transit Noise and Vibration Impact Assessment Manual. Available online at: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf

Fretzer, L., Murphy, D., Harshman, W. 2022. "Noise Induced Hearing Loss in Agriculture". PennState Extension. Available online at: https://extension.psu.edu/noise-induced-hearing-loss-in-agriculture

Imperial County Planning and Development Services, 2015. Imperial County General Plan, Noise Element. Available online at: https://www.icpds.com/planning/land-use-documents/general-plan/noise-element#:~:text=The%20Noise%20Element%20of%20the,which%20are%20sensitive%20to%20noise.

United States Department of Transportation, 2006. FHWA Highway Construction Noise Handbook. Available online: https://rosap.ntl.bts.gov/view/dot/8837/dot_8837_DS1.pdf?%20

United States Department of Transportation. 2009. Handbook for Railroad Noise Measurement and Analysis. Available online: https://www.fra.dot.gov/eLib/Details/L03061

POPULATION AND HOUSING

2022. Imperial County Housing Element 2021-2029.

ICGP (Imperial County General Plan)

QTCP (Quechan Tribe Comprehensive Plan)

PUBLIC SERVICES

ICGP (Imperial County General Plan)

QTCP (Quechan Tribal Comprehensive Plan

The California Fire Code (Title 24, CCR, Part 9). [Online]: https://codes.iccsafe.org/content/CAFC2022P1/california-code-of-regulations-title-24. Accesses January 2023.

RECREATION

ICGP (Imperial County General Plan). Parks and Recreation Element

TRANSPORTATION

CalTrans (California Department of Transportation)

AASHTO (American Association of State Highway and Transportation Officials)

California Manual on Uniform Traffic Control Devices

ICGP (Imperial County General Plan). Circulation and Scenic Highways Element

TRIBAL CULTURAL RESOURCES

Imperial County General Plan Conservation and Open Space Element https://www.icpds.com/assets/planning/conservation-open-space-element-2016.pdf. Accessed September 2023.

Bean, Lowell John, and Charles R. Smith

1990 Gabrielino. In California, edited by Robert F. Heizer, pp. 538-549. Handbook of North American Indians, vol. 8, W.C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Bee, Robert L. 1983 Quechan. In Southwest, edited by Alfonso Ortiz, pp. 86-98. Handbook of North American Indians, vol. 10, W.C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Byrd, Brian F. and L. Mark Raab 2010 Prehistory of the Southern Bight: Models for a New Millennium. In Colonization, Culture, and Complexity: California's Chaotic Prehistory, edited by Terry L. Jones and Katherine A. Klar, pp. 215-227. Altamira Press, Lanham, MD.

CalTrans 2019 Structure Maintenance & Investigations: Historical Significance- Local Agency Bridges. CalTrans.

Erlandson, Jon M., Douglas J. Kennett, B. Lynn Ingram, Daniel A. Guthrie, Don P. Morris, Mark A. Tveskov, G. James West, and Phillip L. Walker

1996 An Archaeological and Paleontological Chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. Radiocarbon 38(2): 169-228.

2022 About Us. Fort Yuma Quechan tribe. Electronic document, https://www.quechantribe.com/about-us.html, accessed November 1, 2022.

Glassow, Michael 2010 Channel Islands National Park, Archaeological Overview and Assessment. Channel Islands National Park. (coauthor, compiler, and editor)

Griffith, G.E., Omernik, J.M., Smith, D.W., Cook, T.D., Tallyn, E., Moseley, K., and Johnson, C.B. 2016 Ecoregions of California (color poster with map, descriptive text, and photographs): Menlo Park, California.

Gumerman, George J. and Carol S. Weed 1973 Archaeological Survey, Yuma County, Arizona, Colorado River International Salinity Control Project. Prescott College Archaeological Survey. Submitted to the Bureau of Reclamation, Department of the Interior and the National Park Service (Contract No. CX80C040004).

Maxon, James 1984 Proposed Yuma Division Dredge Spoil. Submitted to the "regional environmental officer".

McDonald, Meg and Ken Victorino 1997 Archaeological Survey of Two Segments of the Interstate 8 Right-of-Way, Imperial County, California. ASM Affiliates. Submitted to the CalTrans.

National Audubon Society 2022 California: Short History of the Salton Sea. National Audubon Society, Audubon California. Electronic document, https://ca.audubon.org/short-history-salton-sea, accessed November 1, 2022.

Natural Resources Conservation Service (NRCS), USDA 2022 National Cooperative Soil Survey, Web Soil Survey. Electronic document, http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, accessed November 8, 2022.

Norris, Robert M. and Robert W. Webb 1976 Geology of California. John Wiley & Sons Inc, Santa Barbara.

Pfaff, Christine, Rolla L. Queen, and David Clark 1999 The Historic Yuma Project: History, Resources Overview, and Assessment, Bureau of Reclamation, Denver.

Initial Study #24-0037, Environmental Checklist Form & Miligaled Negative Declaration for PICACHO ROAD BRIDGE REPLACEMENT AT YUMA

Prescott College Archaeological Survey 1973 Archaeological Survey of the Yuma Division Colorado River Front Work and Levee System. Prescott College Archaeological Survey. Submitted to the Bureau of Reclamation, Department of the Interior.

Rick, Torben C., Jon M. Erlandson, Rene L. Vellanoweth, and Todd J. Braje

2005 From Pleistocene Mariners to Complex Hunter-Gatherers: The Archaeology of the California Channel Islands. Journal of World prehistory 19: 169-228.

Rockwell, Thomas K., Aron J. Meltzner, Erik C. Haaker, and Danielle Madugo 2022 The late Holocene history of Lake Cahuilla: Two thousand years of repeated fillings within the Salton Trough, Imperial Valley, California. Quaternary Science Reviews 282.

Schaefer, Jerry and Don Laylander 2010 The Colorado Desert: Ancient Adaptations to Wetlands and Wastelands. In California Prehistory: Colonization Culture and Complexity, edited by Terry L. Jones and Kathryn A. Klar, pp. 247-258. Altamira Press, Lanham, MD.

Stene, Eric A. 1996 Yuma Project and Yuma Auxiliary Project. Historic Reclamation Projects. Bureau of Reclamation.

Stone, Lyle M. 1990 Archaeological Resources of the Fort Yuma Indian Reservation Portion of Yuma Crossing National Historic Landmark in Imperial County, California and Yuma County, Arizona. Archaeological Research Services, Inc. Submitted to the Quechan Indian Tribe Fort Yuma Indian Reservation.

Sutton, Mark Q. Mark E Basgall, Jill K. Gardner, and Mark W. Allen 2010 Advances in Understanding Mojave Desert Prehistory. In California Prehistory: Colonization Culture and Complexity, edited by Terry L. Jones and Kathryn A. Klar, pp. 229-246. Altamira Press, Lanham, MD.

von Werlhof, Jay 1996 Archaeological Investigations of Picacho Road and Yuma Main Canal Bridge, No. 58C0028. Imperial Valley College Desert Museum. Submitted to County of Imperial, Department of Public Works.

2002 From Yuma Lift Station to Quechan Community Center, An Engineering Project Funded by An Environmental Protection Agency Borders 21 Program. ASM Affiliates. Submitted to the Environmental Protection Agency.

Waldman, Carl 1999 Encyclopedia of Native American Tribes. Checkmark Books, New York, NY.

Warren, Claude N. 1967 The San Dieguito Complex: A Review and Hypothesis. American Antiquity 32(2): 168-185.

UTILITIES AND SERVICE SYSTEMS

Department of Resources Recycling and Recovery (CalRecycle)

Porter-Cologne Water Quality Control Act

AB 341 (Chapter 476, Statutes of 2011). [Online]: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201120120AB341 . Accessed January 2023

ICGP (Imperial County General Plan)

The California Integrated Waste Management Act

WILDFIRE

https://bof.fire.ca.gov/projects-and-programs/state-responsibility-area-viewer/. Accessed on December 28, 2022.

CAL FIRE (California Department of Forestry and Fire Protection). 2022a. FHSZ Viewer. Website:

https://calfire-https://egis.fire.ca.gov/FHSZ/. Accessed on December 28, 2022.

CAL FIRE (California Department of Forestry and Fire Protection). 2022b. Fire Hazard Severity Zones in

State Responsibility Area. November 21, 2022. [Online]: https://calfire-forestry.maps.arcgis.com/apps/webappviewer/index.html?id=4466cf1d2b9947bea1d4269997e86553. Accessed December 2022.

CAL FIRE (California Department of Forestry and Fire Protection). 2022c. Imperial County State

Responsibility Area Fire Hazard Severity Zones. November 21, 2022.

VI. MITIGATED NEGATIVE DECLARATION - County of Imperial

The following Mitigated Negative Declaration is being circulated for public review in accordance with the California Environmental Quality Act Section 21091 and 21092 of the Public Resources Code.

Project Name: Imperial County Project No. 6811, Picacho Road Bridge Replacement Project at Yuma Main Canal, Initial Study (IS) # 24-0037.

Project Applicant: Imperial County Public Works Department

Project Location: The Picacho Road Bridge over the Yuma Main Canal is located along Picacho Road in Winterhaven, CA. The bridge lies within APN 056-600-011 with coordinates 32.7358 N, 114.6241 W. The existing bridge is approximately 95 feet in length and 29 feet wide and is used as a pathway leading into the Townsite of Winterhaven in Imperial County. The Project Site is approximately 0.3 miles south of Interstate 8 (I-8), 0.6 miles east of First Street, and approximately 6 miles southeast of Mexico. Specifically, the Project Site is located between Winterhaven Drive and Quechan Road and runs adjacent to the Union Pacific Railroad tracks. The immediate surrounding area consists of agricultural land. Surrounding areas also include industrial, commercial, warehouse, and residential lands. The nearest residential community is located approximately 0.2 miles to the south of the Project Site. The Project Site is located directly to the west of the Quechan Tribal Administration buildings which is intended to benefit from the bridge reconstruction. The Project Site is located within the Quechan Tribal territory and spans the Yuma Canal system owned by the Bureau of Reclamation (BOR). The canal is operated and maintained by the Yuma County Water Users' Association (YCWUA).

Description of Project: The proposed Project is located at Picacho Bridge over Yuma Main Canal (Picacho Road, Winterhaven, CA 32.7358 N, 114.6241 W and within APN 056-600-011) and is intended to replace the existing bridge leading into the Townsite of Winterhaven in Supervisorial District 1. The proposed Project presents a unique opportunity to construct a modern bridge that implements Best Management Practices (BMPs) concurrently with transportation amenities. Due to cracking and outliving its useful life, the existing wood bridge must be replaced to support commerce, access to the Quechan Reservation and the Bard community, and provide a safer crossing of the Yuma Main Canal. The bridge is owned by Imperial County and its National Bridge Inventory (NBI) number is 58C0028. The bridge crosses the Yuma Main Canal, which is a Bureau of Reclamation facility that is operated and maintained by their managing partner the Yuma County Water Users' Association.

Due to its deteriorating condition, it is proposed to replace the existing bridge with a new Precast Prestressed Concrete Girder Bridge that spans over the canal with no intermediate supports, to minimize disturbance to canal operations during construction and to keep debris out of the canal as much as possible. The roadway profile is proposed to be raised to approximately 5 feet-4 inches higher than the existing condition, achieving a minimum of 2 feet of vertical clearance over the existing canal bank elevation per the BOR's Engineering and O&M Guidelines for Crossings.

The replacement bridge will have a total width of 48'-11". This includes two vehicle lanes of 12', two 8' wide shoulders, and a 6'-0" wide sidewalk on the north side of the bridge. A typical section is also shown below (Exhibit C, Bridge Design). The Yuma Main Canal is a man-made unlined irrigation main canal that flows in a southerly direction under the existing bridge

VII. FINDINGS

determ	nine if t	he project may	unty of Imperial, act have a significant ollowing findings:	ting as the lead effect on the e	agency, has con- evironment and is	ducted an Initial Study to proposing this Negative
	The In	itial Study shows		stantial evidence of ATION will be pre	hat the project may epared.	have a significant effect on
\$		The Initia	I Study identifies pote	entially significant	effects but:	
V	(1)	was released	ide or agreed to by th for public review woul effects would occur.	e applicant befor Id avoid the effec	e this proposed Mit is or mitigate the eff	igated Negative Declaratior ects to a point where clearly
	(2)	There is no su		efore the agency	that the project may	r have a significant effect or
	(3)	Mitigation mea		ensure all poten	tially significant imp	acts are reduced to levels o
		A MITIGA	ATED NEGATIVE DE	CLARATION will	be prepared.	
D1 Ma	ain Stree	et, El Centro, CA	à 92243 (442) 265-17.	36. NOTICE		
2	blic is i	1-202	Jim Minnick, Director	or The	eenl	uring the review period.
The Ap	oplicant i	hereby acknowle to implement all	edges and accepts the Mitigation Measures,	e results of the E if applicable, as o	nvironmental Evalu outlined in the MMR	ation Committee (EEC) an
				PH.	M	2/27/

SECTION 4

VIII. RESPONSE TO COMMENTS

(ATTACH DOCUMENTS, IF ANY, HERE)

X.	MITIGATION MONITORING & REPORTING PROGRAM (MMRP)	
(ATTACH DO	CUMENTS, IF ANY, HERE)	

IMPERIAL COUNTY PROJECT NO. 6811 PICACHO ROAD BRIDGE REPLACEMENT PROJECT AT YUMA MAIN CANAL INITIAL STUDY (IS) # 24-0037

MITIGATION MONITORING AND REPORTING PROGRAM

Introduction

The Mitigation Monitoring and Reporting Program (MMRP) supplements the Initial Study/Mitigated Negative Declaration (IS/MND) for the proposed Picacho Road Bridge Replacement Project ("Project") by providing a mechanism by which all measures in the IS/MND are implemented. The MMRP will be adopted by the County of Imperial (County) Planning Commission in conjunction with the Project.

Purpose of the Mitigation Monitoring and Reporting Program

As the lead agency, the County is responsible for implementing the MMRP, which has been prepared in conformance with Section 21081.6 of the California Public Resources Code as identified below:

- (a) When making the findings required by paragraph (1) of subdivision (a) of Section 21081 or when adopting a mitigated negative declaration pursuant to paragraph (2) of subdivision (c) of Section 21080, the following requirements shall apply:
 - (1) The public agency shall adopt a reporting or monitoring program for the changes made to the project or conditions of project approval, adopted in order to mitigate or avoid significant effects on the environment. The reporting or monitoring program shall be designed to ensure compliance during project implementation. For those changes which have been required or incorporated into the project at the request of a responsible agency or a public agency having jurisdiction by law over natural resources affected by the project, that agency shall, if so requested by the lead agency or a responsible agency, prepare and submit a proposed reporting or monitoring program.
 - (2) The lead agency shall specify the location and custodian of the documents or other material which constitute the record of proceedings upon which its decision is based.

The MMRP consists of mitigation measures that avoid, reduce, or fully mitigate potential environmental impacts. The mitigation measures have been identified and recommended through preparation of the IS/MND and drafted to meet the requirements of the California Environmental Quality Act (CEQA) Guidelines, Section 15097.

Mitigation Monitoring and Reporting Program Table

Project-specific mitigation measures are contained in the MMRP Table below. The table describes the specific mitigation measures, the responsible party that must comply with the mitigation measure, the regulatory agency having approval of and oversight over the mitigation measure, and the mitigation timeframe describing the timing and/or time range that applies to the mitigation measure. The MMRP will serve as the basis for scheduling the implementation of and compliance with all mitigation measures.

IMPERIAL COUNTY PROJECT NO. 6811 PICACHO ROAD BRIDGE REPLACEMENT PROJECT AT YUMA MAIN CANAL INITIAL STUDY (IS) # 24-0037 MITIGATION MONITORING AND REPORTING PROGRAM

MITIGATION MEASURE	RESPONSIBLE PARTY	REGULATORY AGENCY	MITIGATION TIMEFRAME
SECTION II. AGRICULTURE AND FOREST RESOURCES	ES		
MM AG-1: Create an on-site buffer zone surrounding the Project Site to ensure no indirect impacts would occur to surrounding agricultural lands. It is recommended the County will need to obtain a signed statement from adjacent property owners stating that no indirect impacts will occur to their property.	Imperial County	Imperial County	Prior to the Start of Construction
SECTION IV. BIOLOGICAL RESOURCES			
MM BIO-1: Nesting surveys by qualified biologists during nesting season (February through August); preferably time construction during non-nesting season (September through January). Time nesting surveys within 3-5 days prior to start of construction for nesting birds and fourteen days prior to start of construction for burrowing owl. A biologist should be present at the start of groundbreaking activities.	Imperial County, Project Biologist		February Ihrough August (Breeding Season), Prior to the Start of Construction
 MM BIO-2: Worker environmental awareness training for nesting birds, Gila Woodpecker and Burrowing Owl (BUOW): Biology and status; Protection measures designed to reduce potential impacts to the species, function of flagging designating authorized work areas; Reporting procedures to be used if a species is encountered in the field; and driving procedures and techniques, for commuting, and driving on, to the Project Site; Identification of nesting birds and procedures to follow if nesting is suspected. 	Imperial County, Project Biologist	Imperial County, California Department of Fish & Wildlife (CDFW), US Fish & Wildlife Service (USFWS)	Prior to the Start of Construction
SECTION V. CULTURAL RESOURCES			
MM CUL-1: In all phases of construction work an Inadvertent Discovery Plan should be developed and shared with staff on-site. If archaeological or cultural resources are encountered during project work, all work in the immediate vicinity of the find will be suspended until assessed by the qualified archaeologist and a treatment is determined.	Imperial County, Project Archaeologist	Imperial County, NAHC,	Prior to the Start of Construction, and Throughout Construction Process
MM CUL-2: Should human remains be encountered during ground disturbing activities; all work will cease, and the County Medical Examiner will be contacted.	Imperial County, County Medical Examiner, Project Archaeologist	מום לפסומו	Throughout Construction Process
SECTION VII. GEOLOGY AND SOILS			
MM GEO-1: Prior to earthmoving activities, a certified geotechnical engineer or equivalent, shall perform a final geotechnical evaluation of the soils. The evaluation will follow the requirements of Caiffornia Building Code Title 24, Part 2, Chapter 18, Section 1803.1.1.2, related to expansive soils and soil conditions. The structural design, lests and inspections, and soils and foundation standards will be in accordance with requirements from California Building Code Title 24, Part, 2, Chapter 16, 17, and 18. The final geotechnical evaluation shall include design recommendations to ensure that soil conditions do not pose a threat to the health and safety of people or structures, including threats from liquefaction, subsidence, lateral spreading, or collapse. The grading and improvement plan for each phase of the project shall be designed in accordance with the recommendations provided in the final geotechnical evaluation.	Imperial County, Project Geotechnical Engineer or Equivalent	Imperial County	Prior to the Start of Construction

IMPERIAL COUNTY PROJECT NO. 6811 PICACHO ROAD BRIDGE REPLACEMENT PROJECT AT YUMA MAIN CANAL INITIAL STUDY (IS) # 24-0037 MITIGATION MONITORING AND REPORTING PROGRAM

MITIGATION TIMEFRAME		Throughout Construction Process	Prior to the Start of Construction, and Throughout Construction Process		Throughout Construction Process
REGULATORY AGENCY		Imperial County	Imperial County		Imperial County
RESPONSIBLE PARTY	rs	Imperial County	Imperial County		Imperial County
MITIGATION MEASURE	SECTION IX. HAZARDS AND HAZARDOUS MATERIALS	MM HAZ-1: If in-situ potentially hazardous materials are encountered, all construction in the vicinity of the encounter will be halted. All construction contractors shall immediately stop all surface or subsurface activities in the event that potentially hazardous materials are encountered, an ordor is identified, or considerably stained soil is visible. Contractors shall follow all applicable local, state, and federal regulations regarding the discovery, response, disposal, and remediation of hazardous materials encountered during the construction process. These requirements shall be included in the contractor's specifications. If any hazardous materials, waste sites, or vapor intrusion risks are identified prior to or during construction, a qualified professional, in consultation with appropriate regulatory agencies, will develop and implement a plan to remediate the contamination and property dispose of the contamination certifying that the imported materials are free of contamination.	MM HAZ-2: Implementing agencies shall prepare and implement maintenance practices that include periodic removal and replacement of surface soils and media that may accumulate constituents that could result in further migration of constituents to subsoils and groundwater. A BMP Maintenance Plan shall be prepared by Implementing Agencies upon approval of the BMP projects that identify the frequency and procedures for removal and/or replacement of accumulated debris, surface soils, and/or media (to a depth where constituent concentrations do not represent a hazardous condition and/or have the potential to migrate further and impact groundwater) to avoid the accumulation of hazardous concentrations and the potential to migrate further to sub-soils and groundwater. The BMP Maintenance Plan may consist of a general maintenance cuvenant that includes requirements to avoid the accumulation of hazardous concentrations in these BMPs that may impact underlying subsoils and groundwater. Structural BMPs shall be designed to prevent the migration of constituents that may impact groundwater.	SECTION XIX. UTILITIES AND SERVICE SYSTEMS	MM UTIL-1: Implementing agencies shall encourage construction contractors to recycle construction materials and divert inert solids (asphalt, brick, concrete, dirt, fines, rock, sand, soil, and stone) from disposal in a landfill where feasible. Implementing agencies shalt incentivize construction contractors with waste minimization goals in bid specifications where feasible. Upon completion, the proposed Project will not add to solid waste demand or generate excessive solid waste. The proposed Project will comply with federal, slate, and local regulations related to solid waste. Impacts would be less than significant with mitigation measures.

IS#24-0037 APPLICATION

Picacho Bridge Project Detailed Report

Table of Contents

- 1. Basic Project Information
- 1.1. Basic Project Information
- 1.2. Land Use Types
- 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
- 2.1. Construction Emissions Compared Against Thresholds
- 2.2. Construction Emissions by Year, Unmitigated
- 2.3. Construction Emissions by Year, Mitigated
- 3. Construction Emissions Details
- 3.1. Thear, Grubbing & Land Clearing (2024) Unmitigated
- 3.2. Thear, Grubbing & Land Clearing (2024) Mitigated
 - 3.3. Ghear, Grading & Excavation (2024) Unmitigated
 - 3.4. Pear, Grading & Excavation (2024) Mitigated
- 3.5. प्राear, Drainage, Utilities, & Sub-Grade (2024) Unmitigated റ

3.7. Linear, Paving (2024) - Unmitigated

3.8. Linear, Paving (2024) - Mitigated

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

5. Activity Data

5.1. Construction Schedule

5.2. wf-Road Equipment

5.<mark>∑</mark>f. Unmitigated

5.22. Mitigated

5.3. Sonstruction Vehicles

- 5.3.1. Unmitigated
- 5.3.2. Mitigated
- 5.4. Vehicles
- 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
- 5.118.1. Land Use Change TT 5018.1.1. Unmitigated

- O **知**18.1.2. Mitigated 5.<mark>独</mark>.1. Biomass Cover Type
 - P.18.1.1. Unmitigated
 U.7. Mitigated
 D.7. Mitigated

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Ayerall Health & Equity Scores

7.4. (Realth & Equity Measures

7.5. Xaluation Scorecard

7.6. 掉alth & Equity Custom Measures 8. UserChanges to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Picacho Bridge Project
Construction Start Date	1/1/2024
Lead Agency	Ĭ
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.40
Precipitation (days)	4.80
Location	32.735839, -114.624
County	Imperial
City	Unincorporated
Air District	Imperial County APCD
Air Basin	Salton Sea
TAZ	5614
EDFZ T	19
Electricovility	Imperial Irrigation District
Gas Utim	Southern California Gas
App Version	2022.1.1.19

1.2. Land Use Types

Land Use Subtype Size	Size	Unit	Lot Acreage	Building Area (sq ft)	Building Area (sq. ft) Landscape Area (sq. Special Landscape Population (t) Area (sq. ft)	Special Landscape Area (sq ft)	Population	Description
Bridge/ Property Construction	0:30	Mile	0.04	0.00	1	Î	T	1
OOIISH GCHOL								

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	2*	Limit Heavy-Duty Diesel Vehicle Idling
onstruction	C-10-C	

^{*} Qualitative or supporting measure. Emission reductions not included in the mitigated emissions results.

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria	Polluta	yp/ql) str	Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHG	ly, ton/yr	for annu) and (lar	S	o/day for	daily, M	(Ib/day for daily, MT/yr for annual	annual)				12			
Un/Mit	TOG	ROG	NOx	00	S02	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BC02	NBC02	CO2T	CH4	N20	œ	CO2e
Daily, Summer (Max)	1	1	1	Ţ	ĵ	1	1	1	Î	Î	1	1	i.	Ī	1	ļ	Ĭ	ĵ
Unmit.	8.64	7.28	63.7	0.79	0.12	2.89	82.1	85.0	2.66	8.30	11.0	1	14,334	14,334	0.58	0.14	3.18	14,394
Mit.	8.64	7.28	63.7	67.0	0.12	2.89	82.1	85.0	2.66	8.30	11.0	ı	14,334	14,334	0.58	0.14	3.18	14,394
% Reduced	1	1	1	<u>i</u>	1	ı	1	ı	1	ı	1	ı	1	1	f	ĵ	1	1
Daily, Winter Community (Max)	EEC	1	1	Ï)	1	1	I	1	1	1	I	ì	1	I	Î	1	1
Unmit. 0 8.54	8.54	7.18	63.8	64.1	0.12	2.89	82.1	85.0	2.66	8.30	11.0	Ĩ	14,206	14,206	0.58	0.14	0.08	14,262
Mit	8.54 RI	7.18	63.8	64.1	0.12	2.89	82.1	85.0	2.66	8.30	11.0	ì	14,206	14,206	0.58	0.14	80.0	14,262
Gleence %		1	1	1	1	1	1	Ĩ	Ī	1	1	Ĭ	I	1	t	Ĩ.	ı	ī
Average Daily (Max)	ΔΙ ΡΙ	1	1	Ĩ	Ĩ	1	1	Ĩ	Í	1	1	Î	ĵ	1	1	I	1	ı
Unmit. 9 2.35	72.35	1.98	17.8	17.9	0.04	0.78	21.5	22.3	0.72	2.18	2.89	Ĩ	3,996	3,996	0.16	0.04	0.38	4,012
Mit.	2.35	1.98	17.8	17.9	0.04	0.78	21.5	22.3	0.72	2.18	2.89	1	3,996	3,996	0.16	0.04	0.38	4,012
									6 / 41									

	ti.	664	664		,	1	1	fe.				
I	1			I	1	1	1	ı	1		1	1
E.	Ī	90.0	0.0	1	1	1	1	1	1	1	1	1
Ĭ.	ī	0.01	0.01	1	Î	1	1	1	1	1	1	1
1	1	0.03	0.03	ļ	ļ	ļ	ì	Î	Ĭ	1	1	t
1	1	662	662	1	1	1	1	1	1	1	J	J.
Ĩ	1	662	662	1	1	1	1	1	1	1	1	1
Î	Ĩ	ì	Ĺ	Ĩ	1	I	1	ï	1	1	1	1
1	1	0.53	0.53	1	ı	Ī	1	Ĭ	1	1	1	Î
1	1	0.40	0.40	1	1	1	1	t	ı		j	ı
Ï	1	0.13	0.13	1	1	1	1	1	1	Ţ	1	1
Ĭ	I	4.07	4.07	1	ı	150	8	o _N	l	150	2	<u>8</u>
1	Ī	3.93	3.93	Ţ	j	1	Ĺ	Ï	1	1	1	I
11	1	0.14	0.14	1	1	1	1	1	1	Ţ	1	Į.
Í	1	0.01	0.01	1	1	1	Ĺ	1	1	1	1	1
Ĭ	1	3.26	3.26	1	1	550	8	S S	1	550	2	8
1	1	3.25	3.25	1	1	100	8	_S	1	100	N _o	N _O
1	4	0.36	98.0	1 .	1	75.0	No	S S	1	75.0	o N	8
1	1	0.43	0.43	1	1	1	1	1	1	li_	ı	L
% Reduced	Annual (Max)	Unmit.	Mit.	% Reduced	Exceeds (Daily Max)	Threshol d	Unmit.	Mit.	Exceeds (Average Daily)	Threshol d	Unmit.	Mit.

The struction Emissions by Year, Unmitigated

14,394 3.18 0.14 0.58 CH4 14,334 CO2T NBC02 14,334 BC02 Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T 11.0 8.30 2.66 85.0 82.1 2.89 802 0.12 0.79 ဝ္ပ ×ON 63.7 ROG 7.28 Alax) Alax (2024 Alax 64 Alax Year TOG Summe Nax)

2.3. Construction Emissions by Year, Mitigated

14,394 14,262 CO2e 4,012 664 3.18 0.08 0.38 90.0 N20 0.14 0.14 0.04 0.01 0.03 0.16 0.58 0.58 CH4 14,334 14,206 CO2T 3,996 662 NBC02 14,334 14,206 3,996 662 BC02 1 1 Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual) PM2.5T 11.0 11.0 2.89 0.53 PM2.5D 8.30 8.30 2.18 0.40 PM2.5E 2.66 0.13 0.72 2.66 PM10T 85.0 85.0 22.3 4.07 PM10D 21.5 3.93 82.1 82.1 PM10E 2.89 2.89 0.78 0.14 0.12 0.12 0.04 0.01 802 67.0 17.9 3.26 64.1 63.8 17.8 3.25 Š 63.7 ROG 7.18 0.36 1.98 7.28 **BB**.54 8.64 Average Summer Annual Daily -Daily -Winter 2024 (Max) (Max) 2024 2024 2024

3. Censtruction Emissions Details

3.1. Linear, Grubbing & Land Clearing (2024) - Unmitigated

	BCO2 NBCO2 CO2T CH4 N2O R CO2e	I I I I I I I I I I I I I I I I I I I	1 1 1	1 1 1	632 632 0.03 0.01 — 634		0.00 0.00 0.00 0.00 0.00	1 1 1 1	26.0 26.0 < 0.005 < 0.005 — 26.1		0.00 0.00 0.00 0.00 0.00		4.30 < 0.005 < 0.005 — 4.32	
(lent					Z.	2	0		<u></u>	< 0.005	0		< 0.005	< 0.005
or anr	D	1	I	1	0.25	0.02	0.00	1	0.01		0.00	-1) >	
AT/yr 1	PM2.5D	1	I.	1	1	0.02	0.00	1	ſ	< 0.005	0.00	1	1	< 0.005
daily, N	PM2.5E	1	I.	Ĺ	0.25	Í	0.00	I	0.01	I	0.00	1	< 0.005	I.
b/day fo	PM10T	1	Į.	I	0.27	0.21	0.00	ı,	0.01	0.01	0.00	I	< 0.005	< 0.005
BHGs (II	PM10D	1	ľ.	T.	1	0.21	0.00	li.	1	0.01	0.00	1	ı	< 0.005
al) and (PM10E	1	Ĺ		0.27	ť	0.00	Ľ.	0.01	1	0.00	1	< 0.005	1
for annu	S02	I	ĺ	Î	0.01	Ĭ	0.00	ſ	< 0.005	Ī	0.00	1	< 0.005	ţ
y, ton/yr	000		Ī	ı	4.54	ļ	0.00	I	0.19	1	0.00	Ī	0.03	ī
for daily	×ON	1		1	4.53	1	0.00	ı	0.19	1	0.00	ı	0.03	ĵ
s (Ib/day	ROG	ű	ĺ	1	0.53	1	0.00	1	0.02	1	0.00	1	< 0.005	ı
ollutants	100	i	î	Ď			0.00	ľ	0.03		0.00	ĩ	< 0.005	.1
Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)	Location T	Onsite -	Daily, Summer (Max)	Daily, Winter (Max)	Off-Road 0.63 Equipment	Dust From Material Movemen:	Onsite truck	Average Daily	Off-Road 0.03 Equipment	From Materia	, , ,	Annual	Off-Road: Equipment	Prom Prom Materia

0.00	ï																
0.00		1	1	1	Î	1	1		Ĩ	ī	ļ	1	Î	Ī	ı		
0.05	ı	1	1	1	Î	1	1	1	Ĩ	Ī	1	1	Ī	1	1	j	1
	1	1	1	1	1	Ï	1	1	ř	1	1		I	ı	1	1	ï
0.00	0.04	90.0	0.54	0.00	0.00	10.3	10.3	00.0	1.04	1.04	1	99.7	2.66	0.01	< 0.005	0.01	101
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	1	0.00	0.00	0.00	0.00	0.00	00.00
Hauling 0.00 0.	0.00	0.00	00.00	0.00	0.00	0.00	00.00	00.00	00.00	0.00	Į.	0.00	0.00	0.00	0.00	0.00	0.00
Average — — — Daily	ı	Ī	ľ	ĺ	Ù	1	ı	I	1	1	1	1	1	1	1	Ī	1
Worker < 0.005 <	< 0.005	< 0.005	0.03	0.00	0.00	0.42	0.42	0.00	0.04	0.04	ſ	4.40	4.40	< 0.005	< 0.005	0.01	4.46
Vendor 0.00 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Hauling 0.00 0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Annual —	1	1	1	Ī	ĵ	1	ı	Ī	ī	1	Į	Î	Ĩ	ı	1	Í	ı
Worker < 0.005 <	< 0.005	< 0.005	0.01	00.00	0.00	0.08	0.08	0.00	0.01	0.01	1	0.73	0.73	< 0.005	< 0.005	< 0.005	0.74
Vendor 0.00 0	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	00.00
Hauling 110.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00

3.2. Legear, Grubbing & Land Clearing (2024) - Mitigated

	CO2e	ſ	1
		į,	î
	0D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O R	Í	1
	CH4	1	1
	C02T	Ţ	1
	NBC02	Ĩ	1
	BC02	j	1
annual)	PM2.5T	1	1
MT/yr for	PM2.5D	1	1
or daily, I	PM2 5E	I	1
(lb/day fo	PM10T	1	Ĭ
GHGs	PM10D	1	1
ıual) and	PM10E PM10	1	Ţ.
r for ann	802	1	ľ
ily, ton/y	00	1	ř
ay for da	NO×	1	1
nts (lb/di	ROG	1	<u>I),</u>
Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual	Location TOG	Onsite X —	Daily, Summer CMax)

0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.27	0.00	0.00	0.02	<u> </u>	632	632	0.00	0.00	000 1 1
						0.01	0.01	1	< 0.005	< 0.005	1		1	1		_1
	0.00	0.00	00.0	0.00	0.00	00:00	000	0.0	0.00	0.00	1 1	0.00	0.00	00:0	00:0	00:00
	< 0.005	0.03	0.03	< 0.005	< 0.005		< 0.005	< 0.005	1	< 0.005	ĵ	4.30	4.30	< 0.005	< 0.005	
		Į	I	<u> </u>	Ĺ		0000	<u> </u>	200.0		ſ					
	0.00	0.00	0:00	0.00	0.00	0.00 I	0:00	0.00	0.00	0.00	1 1	0.00	0.00	0.00	0.00	0.00
1 1	ľ	Ĺ	1	<u>.</u>			1	1	1	-	1	1	1	Ĭ.	ī	1

Daily, Winter (Max)	Î	ì	1	ı	I	I	ı	ı	I	Ĭ	ſ	1	1	1	j.		I	ı
Worker	0.05	0.04	90.0	0.54	0.00	00.00	10.3	10.3	00.00	1.04	1.04	ı	99.7	2.66	0.01	< 0.005	0.01	101
Vendor	00.00	0.00	0.00	0.00	00.00	00.00	0.00	00.00	00:00	0.00	0.00	1	0.00	00.00	00.00	0.00	00.00	0.00
Hauling	00.0	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	00.00	00:00	ſ	00.00	0.00	00.00	0.00	0.00	0.00
Average Daily	Ĩ	Î	ı	1	Î	1	1	1	I	Ĭ	1	1	I	ı	1		ĺ	1
Worker	< 0.005	< 0.005	< 0.005	0.03	00.00	00.00	0.42	0.42	0.00	0.04	0.04	1	4.40	4.40	< 0.005	< 0.005	0.01	4.46
Vendor	00.00	0.00	0.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	ı	0.00	00.00	00.00	0.00	00.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	1	0.00	00.00	00.00	00.00	0.00	0.00
Annual	ĺ	I)	ı	I)	Ĩ	Ĩ,	ı	1	Î	Ů,	į.	f	Ĭ.	Ĭ	ľ	Ę	ſ	ĺ
Worker	< 0.005	< 0.005	< 0.005	0.01	00.00	00.00	0.08	0.08	0.00	0.01	0.01	1	0.73	0.73	< 0.005	< 0.005	< 0.005	0.74
Vendor	00:00	0.00	0.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	00.0	0.00
Hauling	0.00	0.00	0.00	0.00	00.00	00.00	0.00	00.00	0.00	0.00	0.00	I	0.00	0.00	00.0	00.00	0.00	0.00

3.3. Linear, Grading & Excavation (2024) - Unmitigated

Location TOG ROG NOx CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O R			0.12 2.89 — 2.89 2.66 — 2.66 — 13,476 13,476 0.55 0.11 —		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PM10D PM10T PM2.5E	I	1	2.89	2.48	0.00
2 PM10E PM10D			2.89	1	0.00
NOx CO SO	Î.]	63.3 60.3 0.1	I I	0.00 0.00 0.0
ocation TOG ROG N		Daily, O. Summed	Off-Road) 8.20 6.89 Equipment	Dust Y From T Materiald	Onsite O 0.00 0.00

11	13,522	1	0.00	ı	2,223	1	0.00	I	368		0.00	.1	1	838
ı	1	I	0.00	I	1	1	0.00	i	1	1	00.00	1	1	3.09
1	0.11	I	0.00	I	0.02	Î	0.00	1	< 0.005	l	0.00	1		0.03
ı	0.55	1	0.00	L	60.0	1	0.00	Ţ	0.01	I	0.00	Ĩ	1	0.03
1	13,476	1	0.00	1	2,215	1	0.00	1	367	L	00.0	ſ	1	826
Ī	13,476	1	00.00	1	2,215	1	0.00	1	367	1	00.00	1	1	826
1	<u>t</u>	1	1	1_	L	L	Ĩ	ű.	1	I	Ĺ	Ι,	1	ĵ
1	2.66	0.27	0.00	1	0.44	0.04	00.00	1	0.08	0.01	00.0	I	Ĩ	7.28
1	1	0.27	0.00	1	1	0.04	0.00	1	ı	0.01	0.00	ı	1	7.28
ļ	2.66	1	0.00	1	0.44	1	0.00	1	0.08	1	0.00	Ι;	1	0.00
1	2.89	2.48	0.00	Į	0.47	0.41	0.00	ļ	0.09	0.07	0.00		<u> </u>	72.1
1	<u>.</u>	2.48	0.00	j	1	0.41	00.00	Ţ	1	0.07	0.00	Ĩ	Î.	72.1
1	2.89	1	0.00	1	0.47	I	0.00	1	0.09	1	0.00	1	1	0.00
I	0.12	î	0.00	_1_	0.02	Ĭ	000	1	< 0.005	1	0.00	1	ſ.	0.00
1	60.3		00.00		9.91	Î	00.00	1	1.81	1	0.00	ì	Į.	6.70
1	63.3	1	0.00	1	10.4	<u> </u>	0.00	<u>.</u> [1.90	; <u>1</u>	0.00	Ī	Î	0.37
1	68.8	1	0.00	I	1.13		0.00	!	0.21	<u> </u>	0.00			0.39
L	1 8.20 int	l g	0.00	ī	1 1.35	I e	0.00	ľ	J 0.25		00.0 IGIN	ΙΔΙ	PKC	0.43
Daily, Winter (Max)	Off-Road 8.20 Equipment	Dust From Material Movemen	Onsite truck	Average Daily	Off-Road 1.35 Equipment	Dust From Material Movemen:	Onsite	Annual	Off-Road 0.25 Equipment	Dust From Materia Movem	Onsite	Offsite	Summer (Max)	Worker

33.5	0.00	ľ.	3 706	< 0.005 33.4	0.00	ľ	125	1 5.50	0.00	.1	4 20.7	< 0.005 0.91	
< 0.005 0.09	00.00	L	3 0.08	< 0.005 < 0.	00.00	ĵį.	< 0.005 0.22	< 0.005 0.01	0.00	Ĭ	< 0.005 0.04	< 0.005 < 0.	
< 0.005 < 0.	0.00	Ĺ	4 0.03	< 0.005 < 0.	00.00	Ì	Ė	< 0.005 < 0.	0 0.00	1	< 0.005 < 0.	< 0.005 < 0.	
	0.00	ľ	9 0.04		00.00	1	3 0.01		00.00	ı			
.1 32.1	00.00	l	8 698	.1 32.1	00.00	l	3 123	5.27	00.00	1	.4 20.4	37 0.87	
32.1	0.00	1	869	. 32.1	0.00	1	123	5.27	0.00	1	20.4	0.87	
0.75	0.00	I.	7.28	0.75	0.00	1	1.18	0.12	0.00	1	0.22	0.02	
0.75 0	0.00		7.28 7	0.75 0	0.00	1	1.18	0.12 0	0.00	1	0.22 0	0.02 0	
< 0.005	0.00	ĵ.	00.0	< 0.005	0.00	1	0.00	< 0.005	0.00	1	00.00	< 0.005	
7.51	00.00	Į	72.1	7.51	0.00	Ĭ	11.7	1.22	0.00	1	2.14	0.22	
7.51	0.00	1	72.1	7.51	0.00	1	11.7	1.22	0.00	1	2.14	0.22	
< 0.005	00.00	1	0.00	< 0.005	00.00	11	0.00	< 0.005	0.00	1	0.00	< 0.005	
< 0.005	0.00	Ĵ.	0.00	< 0.005	0.00	1	0.00	< 0.005	0.00	1	0.00	< 0.005	
0.02	0.00	ĵ	3.81	0.02	0.00	Ĩ	0.79	< 0.005	0.00	1	0.14	< 0.005	
0.04	00.00	1	0.43	0.04	00.0	1	0.07	0.01	0.00	Ţ	0.01	< 0.005	
< 0.005	0.00	1	0.28	< 0.005	0.00	1	0.05	< 0.005	00.00	1	0.01	< 0.005	
< 0.005	0.00	1	0.33	< 0.005	0.00	Î	90.0	< 0.005	00.0	1	0.01	< 0.005	
Vendor	Hauling	Daily, Winter (Max)	Worker	Vendor	Hauling	Average Daily	Worker	Vendor	Hauling	Annual	Worker	Vendor	

3.4. Linear, Grading & Excavation (2024) - Mitigated

	CO2e	1	1	13,522	
	œ	1	1	I.	
	NZO	1	Į.	0.11	
	CH4	Î	ì		
	100	1	f	13,476 13,476 0.55	
	NBC02	1	ı	13,476	
	3002	1	ı	Ĭ	
nnual)	10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T	i	ì	2.66	
/yr for a	M2.5D	1	1		
daily, MT	M2.5E	1	ľ	2.66	
day for o	M10T	1	ı	2.89	
HGs (lb/	M10D P				
and Gl	PM10E PM1	T	1	2.89	
- annual)2 PN	_1_	l	0.12 2.	
on/yr foi	802	1	1		
r daily, t	00 ×	I)	1	3 60.3	
b/day fo	NOX	1	1	63.3	
utants (I	s ROG	1	I	0 6.89	
TT Criterian Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)	Location TOG	Onsite O	Daily, Summe N	Off-Road 8.20 Equipment	G

Ĭ	0.00 0.00	ı	0.11	Ĭ	0.00 0.00	ľ	0.02	1	0.00 0.00	Î	< 0.005	I.	0.00 0.00
f.	0.00	L	0.55	1	0.00	1	0.09	ı	00:00	ı	0.01	ļ	0.00
ſ	00.00	1	13,476		0.00	<u> </u>	2,215	I	0.00	ı	367	t	0.00
ı	0.00	Í	13,476	1	0.00	Ĺ	2,215	1	0.00	ı	367	ľ	0.00
<u> </u>	1				<u> </u>		,		Ĭ	1	1	1	Í
0.27	0.00	1	2.66	0.27	0.00		0.44	0.04	0.00	L	0.08	0.01	0.00
0.27	0.00	t	Ĭ.	0.27	0.00	1	1	0.04	0.00	1	1	0.01	0.00
1.	0.00	Ě	2.66	Ī	0.00	į	0.44	1	0.00	1	0.08	I	0.00
2.48	0.00	1 :	2.89	2.48	0.00	ļ	0.47	0.41	0.00	1	0.09	0.07	0.00
2.48	0.00	ľ.	ļ.	2.48	0.00	1	1	0.41	0.00	1	I	0.07	0.00
1	0.00	Ī.	2.89	1	00.0	1	0.47	1	0.00	1	60.0	I	0.00
I	0.00	1	0.12	11	0.00	Ĩ	0.02	.1	0.00	1	< 0.005	i	0.00
1	0.00	Į.	60.3	1	0.00	Î	9.91	1	0.00	<u>: 1</u> .	1.81	Ĩ	00.00
1	0.00	1	63.3	1	0.00	ţ	10.4	1	0.00	1	1.90	Ï	0.00
1	0.00	I	6.89]	0.00		1.13	<u></u>	0.00		0.21	<u> </u>	0.00
Dust — From Material Movemen:	Onsite 0.00 truck	Daily, — Winter (Max)	Off-Road 8.20 Equipment	Dust — From Material Movemen:	Onsite 0.00 truck	Average — Daily	Off-Road 1.35 Equipment	Dust From Materia Movemen	Onsite 00.00 truck	Annual X	Off-Road 0.25 Equipment	Dust Prom From Material Movement	Onsite 90.00 truck

		1	1	ı	Ĺ	Î.	1	1	ı	ľ	t	ſ	1	1	1	ı	1	1
		1	1	I	ì	1	1	I	Ĩ	Ī	1	1	Ī	1	1	I	ï	1
0.43		0.39	0.37	6.70	0.00	0.00	72.1	72.1	0.00	7.28	7.28	1	826	826	0.03	0.03	3.09	838
< 0.005	5	< 0.005	0.04	0.02	< 0.005	< 0.005	7.51	7.51	< 0.005	0.75	0.75	Į	32.1	32.1	< 0.005	< 0.005	60.0	33.5
0.00		00.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	L	0.00	0.00	00.00	0.00	0.00	0.00
			I	Ĩ	t	1	1	1	ĺ	1	1	I	1	1	1	ì	1	1
0.33		0.28	0.43	3.81	0.00	0.00	72.1	72.1	0.00	7.28	7.28	Ĺ	698	869	0.04	0.03	0.08	902
0.	< 0.005	< 0.005	0.04	0.02	< 0.005	< 0.005	7.51	7.51	< 0.005	0.75	0.75	Î	32.1	32.1	< 0.005	< 0.005	< 0.005	33.4
0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Ĩ	0.00	0.00	0.00	0.00	0.00	0.00
		1	Į	I	Ü	l)	Į.	Ĺ	T.	1	1	1	1	1	1	1	1	1
90.0		0.05	0.07	0.79	0.00	0.00	11.7	11.7	00.00	1.18	1.18	1	123	123	0.01	< 0.005	0.22	125
<u> </u>	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	1.22	1.22	< 0.005	0.12	0.12	1	5.27	5.27	< 0.005	< 0.005	0.01	5.50
0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	1	0.00	0.00	0.00	0.00	0.00	00.0
		1	Ĩ	ĵ	1	1	Ĺ	1	1	1	Í	I	1	1	ĵ	ĵ	Ţ	ľ
0.01		0.01	0.01	0.14	0.00	0.00	2.14	2.14	00.00	0.22	0.22	ĵ	20.4	20.4	< 0.005	< 0.005	0.04	20.7
<u> </u>	Vendor - 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.22	0.22	< 0.005	0.02	0.02	Ĩ.	0.87	0.87	< 0.005	< 0.005	< 0.005	0.91
Hauling 0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	00.0	00.00

O 3.5. 社ear, Drainage, Utilities, & Sub-Grade (2024) - Unmitigated の

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) Location Trog ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T Onsite ————————————————————————————————————	ROG	NOX	00	802	PM10E PM	PM10D	10D PM10T PM2.5E PM2.5T BCO2 NBCO2 CO2T CH4 N2O	PM2.5E	PM2.5D	PM2.5T	BC02	NBCO2	C02T	CH4	N20	<u>«</u> 1	C02e
Daily, Summe Summe (Max)	Ì	Ĭ,	ť.	1	ĺ	1	1	1	ĺ	1	1	1		I I	1	1	I

10,083	1	0.00	1	1	1,464	1	0.00	1	242	1	0.00	1	<u> </u>	519
ĵ	1	0.00	I	î	1	I	0.00	1	T	t	0.00	1	ı	1.91
0.08	ĵ	00.0	1	Î.	0.01	!	0.00		< 0.005		0.00	1	1	0.02
0.41		0.00		<u> </u>	90.0	1	00:00	î	0.01	ı	0.00	1		0.02
10,049	1	0.00	1	I	1,459	1	0.00	1	242		0.00	1	I	511
10,049	1	0.00	I	1	1,459	1	0.00	1	242	1	0.00	1	1	511
ı	I	Ţ		ï	1	ì	1	1	Ĺ	ī	I.	1	1	_1
1.74	0.22	00.00	1	1	0.25	0.03	0.00	Ĺ	0.05	0.01	0.00	1	1	4.51
	0.22	0.00	: : :	1	1	0.03	0.00	ı	: 1	0.01	0.00	I	1	4.51
1.74	Ī	0.00	Ĩ	ì	0.25	1	00.0	1	0.05	1	0.00	1	1	0.00
1.89	2.07	0.00	Ĭ.	1	0.27	0.30	0.00	1	0.05	0.05	0.00	1	1	44.7
1	2.07	0.00	1	_1	1	0.30	0.00	1	: 	0.05	0.00	1	1	44.7
1.89	1	0.00	1	1	0.27	I	0.00	ī	0.05	1	0.00	1	İ	0.00
60.09	1	0.00	1	j	0.01	1	0.00	1	< 0.005	1	00:00		L	0.00
40.5	İ.	0.00	1	1	5.88	Û	0.00	1	1.07	j	0.00	13	I	4.14
46.1	1	0.00	ı	L	6.70		0.00	ĺ	1.22	1	0.00	1	Ě	0.23
4.76	<u> </u>	0.00		<u> </u>	0.69	-t	0.00	<u> </u>	0.13	<u> </u>	0.00	1	1	0.24
5.68 1t	1 2	0.00	1	1	0.82 nt	<u> </u>	00.00	1	0.15		00.00		DICC	0.27
Off-Road 5.68 Equipment	Dust From Material Movemen	Onsite	Daily, Winter (Max)	Average Daily	Off-Road 0.82 Equipment	Dust From Material Movemen	Onsite	Annual	Off-Road 0.15 Equipment	Dust From Material Movement	Onsite 0.00 truck	Offsite	Summer (Max)	Worker

0.00 00.00	0.00 00.00	1	Ī.	0.12 68.3	0.00 00.00	0.00 00.00	1	0.02 11.3	0.00 00.00	000
0.00	0.00	I	Ī	< 0.005 0.	0.00	0.00	1	< 0.005 0.	0.00	000
0.00	0.00	1	1	< 0.005	0.00	00.00	1	< 0.005	0.00	000
0.00	0.00	1	f	67.4	0.00	0.00	1	11.2	0.00	000
0.00	0.00	I	Ĩ	67.4	0.00	0.00	1	11.2	0.00	0
I	I	i,	Î.,	1	È	Ĩ	Ĩ	Ĭ	1	- 1
0.00	0.00	I	1	0.65	0.00	0.00	1	0.12	0.00	0
0.00	0.00	1	1	0.65	0.00	00.00	1	0.12	0.00	0
0.00	0.00	Ĭ.	ï	0.00	0.00	00.00	1	0.00	0.00	000
0.00	0.00	į	Î	6.40	0.00	00.00	1	1.17	0.00	
0.00	0.00	1	11	6.40	0.00	00.00	1	1.17	0.00	0
0.00	0.00	t	1	0.00	0.00	00.00	1	0.00	0.00	000
0.00	0.00	ı	Ĩ	0.00	0.00	0.00	ı	0.00	0.00	
0.00	0.00	Î	Ī	0.43	0.00	0.00	ı	0.08	0.00	
0.00	0.00	1	Ţ	0.04	0.00	0.00	_I	0.01	0.00	0
0.00	0.00	1	1	0.03	0.00	00.00	1	0.01	00.00	0
00.00	0.00	ī	1	0.03	0.00	00.00	1	0.01	0.00	0
Vendor	Hauling	Daily, Winter (Max)	Average Daily	Worker	Vendor	Hauling	Annual	Worker	Vendor	Harding

3.6. Linear, Drainage, Utilities, & Sub-Grade (2024) - Mitigated

) R CO2e	1	I.	3 — 10,083	1	0.00 0.00
	NZO	1	Ĺ	0.08	1	0.00
	CH4	1	Î	0.41	1	0.00
	C02T	1	t.	10,049 0.41	1	0.00
	NBCO2 CO2T	1	1	10,049	1	0.00
الماري وا	BC02	1	ı	1	Î	ľ
annual)	PM2.5T	1.	j	1.74	0.22	0.00
MT/yr for	PM10T PM2.5E PM2.5D PM2.5T BCO2	T	1	ı	0.22	0.00
ا, الالالا	PM2.5E	J.	1	1.74	1	0.00
lb/day fc	PM10T	1	11	1.89	2.07	0.00
GHGs (PM10D	Ţ.	Ĺ	Ī	2.07	0.00
ual) and	PM10E	Į.	.1	1.89	_1	0.00
r for anr	SO2	į.	Į	60.0	1	0.00
ily, ton/y₁	00	1	Ĩ	40.5	1	0.00
y for da	×ON	Ĺ	Ĭ	46.1	Î.	0.00
nts (Ib/da	ROG	ţ	1	4.76	1	0.00
Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)	n TOG	I E	EEC (Off-Road 5.68	JNAISI	Onsite A0.00 truck
Criteria	Location	Onsite	Daily, Summer (Max)	Off-Road Equipment	Dust From Materia Wovemen	Onsite truck

1	T.	1	1	0.00	1;		I	0.00	1	I	1.91	0.00	0.00	1	1
1	Ĺ	0.01	11	0.00	1	0.00	I	0.00	1	1	0.02	0.00	0.00	ı	I
1	L	90.0	1	0.00	1:	0.01	Ĩ	0.00	Ü	1	0.02		0.00	1	1
1	1	1,459	1	0.00	1	242	Ì	0.00	I	Ī	511			1	1
1	I	1,459	<u> </u>	0.00	1_	242	1	0.00	1	1	511	0.00	0.00		1_
1	1 }	1	1	1	1		1	ť	1;	L	1	ı	1	1	ı
	I	0.25	0.03	0.00	1	0.05	0.01	0.00	1 :			0.00		L -	1
1	I	Ţ	0.03	0.00	1	ł	0.01	0.00	1	1	4.51	0.00	00.0	L	ſ
1	1	0.25	1	0.00	1.	0.05	1	0.00	1	L	0.00		0.00	L	l
Ī	1	0.27	0.30	0.00	-	0.05	0.05	00.0	L	L		0.00		ľ,	Į.
1	Ï	<u>j</u>	0.30	0.00	1	1	0.05	00.0	1	1.		0.00		ţ	ľ
1	1	0.27	ľ	0.00	Ļ	0.05	Ï	0.00	Ī	1	0.00			Ĭ.	I
1	1	0.01	<u>I</u>	0.00	ſ	< 0.005	1	0.00	1	<u> </u>	0.00		00.00	Î	Ĩ
1	1	5.88	1	0.00	I	1.07	1	0.00	Ţ	I.	4.14	T		1	Į
Ţ	İ.	6.70		0.00	I	1.22	<u> </u>	0.00	1	1	0.23			I	
	1	0.69	1	0.00	1	5 0.13	<u>1</u>	0.00	_ [L	7 0.24			1	.1
Daily, Winter (Max)	Average — Daily	Off-Road 0.82 Equipment	Dust From Material Movemen:	Onsite 0.00 truck	Annual —	Off-Road 0.15 Equipment	Dust — From Material Movemen:	Onsite 0.00 truck	Offsite	Daily, Summed (Max)	Worker 30.27	Vendor 00.00	Hauling 70.00	Daily, Winter Winter (Max)	Averagen-

68.3	0.00	0.00	1	11.3	0.00	00.00
0.12	0.00	0.00	1	0.02	0.00	0.00
< 0.005	0.00	0.00	I	< 0.005	0.00	0.00
< 0.005	0.00	0.00	1	< 0.005	0.00	0.00
67.4	0.00	0.00	1	11.2	0.00	0.00
67.4	0.00	0.00	ī	11.2	0.00	0.00
ľ	1	ı	1	Į	I	1
0.65	0.00	0.00	1	0.12	0.00	0.00
0.65	0.00	0.00	1	0.12	00.00	0.00
00.00	0.00	0.00	ì	00.00	00.0	0.00
6.40	0.00	0.00	Ţ	1.17	00.00	0.00
6.40	0.00	0.00	1	1.17	00.0	0.00
00.00	0.00	0.00	1	00.00	00.0	0.00
0.00	0.00	0.00	1	0.00	0.00	0.00
0.43	0.00	0.00	J.	0.08	00.00	0.00
0.04	00.00	0.00	1	0.01	0.00	0.00
0.03	00.00	0.00	ı	0.01	0.00	0.00
0.03	00.0	00.0	į	0.01	0.00	0.00
Worker	Vendor	Hauling	Annual	Worker	Vendor	Hauling

3.7. Linear, Paving (2024) - Unmitigated

	œ	1	1	1	0.00	ſ			0.00	ī	1
	N2O F	ī		0.01	00.00	1	I.	< 0.005	0.00	1	< 0.005
	CH4		3	0.05	0.00	i i	ľ	< 0.005	00.00		< 0.005
	согт	1	1	1,337 0	0.00	e		84.2	0.00	ì	13.9
	NBCO2 C	1	1	1,337	0.00		I.	84.2 8	0.00		13.9
	BCO2 N	1								1	
nual)	PM2.5T BC	1	1	88	00	I	I	0.02	0.00	1	< 0.005
/r for an	PM2.5D PN	_1_	1	0.28	0.00	-	I	0.0		1	V
nd GHGs (lb/day for daily, MT/yr for annual)	PM2.5E PN	1		8	0.00	1	I	7	00.00	1	< 0.005
ay for da		1	l	0.28	0.00	1	1	2 0.02	00.00	1	> 0.005 >
ુક (Iþ/વા	OD PM10T	1	Ĕ	0:30	0.00	1	1	0.02	0.00	f	0 v
nd GHO	E PM10D	. 1	L.	Ĺ	0.00	Ì	1	1	0.00	Į.	05
nual) a	PM10E	1	1	0:30	0.00	1	ļ	5 0.02	0.00	1.	5 < 0.005
/r for an	802	1	1	0.01	0.00	1	1	< 0.005	0.00	Į.	< 0.005
illy, ton/y	00	1	1	8.85	0.00	1	1	0.56	0.00	ı	0.10
ay for da	×ON	_1.	Ĺ	6.31	0.00	Ì	1	0.40	0.00	ĵ	0.07
nts (Ib/da	ROG	1.	1	99:0	0.00		ì	0.04	0.00	Ī	0.01
Criteria Pollutants (Ib/day for daily, ton/yr for annual) a	TOG	ı	I	J 0.79	0.00	FFC.	ORI	GIX	00:0 A	Pk	9 0.04
Criteria	Location	Onsite	Daily, Summer (Max)	Off-Road 0.79 Equipment	Onsite truck	Daily, Winter (Max)	Average Daily	Off-Road 0.05	Onsite truck	Annual	Off-Road 0.01 Equipment

1,341

0.00

84.5

0.00

14.0

Onsite truck	Offsite	Daily, Summer (Max)	Worker	Vendor	Hauling	Daily, Winter (Max)	Average Daily	Worker	Vendor	Hauling	Annual	Worker	Vendor	To of Landing
0.00	1	1	0.10	0.00	0.00	1	ı	0.01	0.00	0.00	1	< 0.005	0.00	
0.00	1	1	60.0	0.00	0.00	1	1	< 0.005	0.00	0.00	1	< 0.005	0.00	000
0.00	1		60.0	0.00	00.0	ī	_1_	0.01	0.00	0.00	ĺ	< 0.005	0.00	000
0.00	ì	Ĭ	1.59	0.00	0.00	Ĭ.	1	0.07	0.00	0.00	Ĩ	0.01	0.00	000
0.00	i	Ĩ	00.0	00.00	00.0	1	1	00.0	0.00	00.0	1	00.00	0.00	000
0.00	1	1	00.0	00.00	00.00	1	1	00.0	00.00	0.00	1	00.0	0.00	000
0.00	1	1	17.2	00.00	0.00	1	1	1.07	0.00	0.00	1	0.19	0.00	000
0.00	ì	Ĩ	17.2	0.00	0.00	I	Ī	1.07	0.00	0.00	1	0.19	0.00	000
0.00	ĵ	Î	0.00	0.00	0.00	1	1	0.00	0.00	0.00	1	0.00	0.00	000
0.00	1		1.73	0.00	0.00	1	1 _	0.11	0.00	0.00	1	0.02	0.00	000
0.00	1	_f	1.73	0.00	0.00	Ĭ.	t	0.11	0.00	00:00	Ţ	0.02	0.00	000
I	1	Ï	Ï	Î	Í	Ī	I	Ĭ	ı	1	1	L	1	I
0.00	1	t	197	0.00	0.00	1	Ĩ	11.3	00.00	00.00	1	1.86	00.00	00.0
0.00	1	I	197	0.00	0.00	1	1	11.3	0.00	0.00	1.	1.86	0.00	0.00
0.00	1	t	0.01	00.0	00.00	1	1	< 0.005	0.00	0.00	I	< 0.005	0.00	0.00
0.00	ĩ	Î	0.01	00.00	0.00	Í	I	< 0.005	00.0	0.00	1	< 0.005	0.00	0.00
0.00	1	Ë	0.74	0.00	0.00	Î.	t	0.02	00.00	0.00	1	< 0.005	0.00	0.00
0.00	1	Į.	200	00.00	00.00	1	ı	11.4	0.00	0.00	1	1.89	0.00	0.00

3.8. Ligear, Paving (2024) - Mitigated

	C02e	J.	1	
	œ	1	1	
	NZO	1	Į.	
	CH4	1	ľ	
	10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O	i	I	
	BCO2 C			
	202 N		1	
nual)	12.5T BC	1	1	
r for an	2.5D PW	1	- Î	
ly, MT/y	5E PM:	_1	1	
y for dai	T PM2	1	1	
s (Ib/da	D PM1(1	1	
od GHG		1	1	
nual) ar	PM10E PM	ļ	ı	
/r for an	802	L	1	(9)
ily, ton/)	00	1	1	
ay for da	×ON	Ë	1	
ts (Ib/da	ROG	Ĭ	Î	
Criteriate (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)	TOG		اط ا	/ C
Criteria	Location TOG	Onsite 7	Daily, Summer	(Max)

0.00	0.00	0		100	2	000		000	000		000		1 227	1 227	300	5		1 2/1
0.00 0.00 <th< td=""><td>Off-Koad 0.79 Equipment</td><td>0.66</td><td>6.37</td><td>8.85</td><td>L0:0</td><td>0.30</td><td>Ī</td><td>0.30</td><td>97.0</td><td>ı</td><td>0.28</td><td>1</td><td>) (cc,</td><td>/cc' </td><td>co:0</td><td>0.0</td><td>ı</td><td>- 2</td></th<>	Off-Koad 0.79 Equipment	0.66	6.37	8.85	L0:0	0.30	Ī	0.30	97.0	ı	0.28	1) (cc,	/cc'	co:0	0.0	ı	- 2
- - - - - - - - - -		0.00	00.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	ı	0.00	0.00	0.00	0.00	0.00	0.00
0.04	Daily, — Winter (Max)	ı	1	1	Ĩ	Ï	1	1	Ĭ	Ĩ	1	1	Ï	Ĩ	Ť	ı	Î	1
0.04 0.40 0.56 < 0.005 0.02 — 0.02 — 84.2 84.2 0.00 0.00 0.00 0.00 0.00 0.00 — 0.00 — 0.00 — 0.00 0.00 — 0.00 0.00 0.00 — 0.00 <t< td=""><td>Average — Daily</td><td>1</td><td>1</td><td>1</td><td>1</td><td>ĵ</td><td>1</td><td>1</td><td>I</td><td>ĵ</td><td>I</td><td>1</td><td>ĵ</td><td>ĵ</td><td>ţ</td><td>ı</td><td>ı</td><td>1</td></t<>	Average — Daily	1	1	1	1	ĵ	1	1	I	ĵ	I	1	ĵ	ĵ	ţ	ı	ı	1
0.00 0.00 <th< td=""><td>Off-Road 0.05 Equipment</td><td>0.04</td><td>0.40</td><td>0.56</td><td>< 0.005</td><td>0.02</td><td>ı</td><td>0.02</td><td>0.02</td><td>1</td><td>0.02</td><td>1</td><td>84.2</td><td>84.2</td><td>< 0.005</td><td>< 0.005</td><td>1</td><td>84.5</td></th<>	Off-Road 0.05 Equipment	0.04	0.40	0.56	< 0.005	0.02	ı	0.02	0.02	1	0.02	1	84.2	84.2	< 0.005	< 0.005	1	84.5
0.01 0.07 0.10 <0.005 <0.005		0.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	1	0.00	00.00	0.00	0.00	0.00	0.00
0.01 0.07 0.10 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.00	Annual —	Ļ	1	Ĭ	Ĩ	I.	I,	ĺ	1.	1	1	I	1	1	1	1	1	1
0.00 0.00 <td< td=""><td>Off-Road 0.01 Equipment</td><td>0.01</td><td>0.07</td><td>0.10</td><td>< 0.005</td><td>< 0.005</td><td>1</td><td>< 0.005</td><td>< 0.005</td><td>1</td><td>< 0.005</td><td>I</td><td>13.9</td><td>13.9</td><td>< 0.005</td><td>< 0.005</td><td>ĵ.</td><td>14.0</td></td<>	Off-Road 0.01 Equipment	0.01	0.07	0.10	< 0.005	< 0.005	1	< 0.005	< 0.005	1	< 0.005	I	13.9	13.9	< 0.005	< 0.005	ĵ.	14.0
0.09 0.09 1.59 0.00 0.00 17.2 17.2 0.00 1.73 1.73 1.73 197 197 197 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Ì	0.00	0.00	0.00	0.00	0.00	0.00
0.09 0.09 1.59 0.00 0.00 1.72 17.2 0.00 1.73 1.73 197 197 197 0.09 0.00 <td< td=""><td>Offsite —</td><td>ı</td><td></td><td>Ê</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>Ĩ</td><td>1</td><td>1</td><td>1</td><td>Ĭ</td><td>Ĩ</td><td>1</td></td<>	Offsite —	ı		Ê	1	1	1	1	1	1	1	Ĩ	1	1	1	Ĭ	Ĩ	1
0.09 0.09 1.59 0.00 0.00 17.2 17.2 0.00 1.73 1.73 - 197 199 0.00 <td>Daily, — Summer (Max)</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>11</td> <td>1</td> <td>ĺ</td> <td>ť</td> <td>1</td> <td>I)</td> <td>ľ</td> <td>ľ.</td> <td>T.</td> <td></td> <td>É</td> <td>ı</td> <td>1</td>	Daily, — Summer (Max)	1	1	1	1	11	1	ĺ	ť	1	I)	ľ	ľ.	T.		É	ı	1
0.00 0.00 <td< td=""><td>Worker 10.10</td><td>0.09</td><td>0.09</td><td>1.59</td><td>0.00</td><td>0.00</td><td>17.2</td><td>17.2</td><td>0.00</td><td>1.73</td><td>1.73</td><td>ı</td><td>197</td><td>197</td><td>0.01</td><td>0.01</td><td>0.74</td><td>200</td></td<>	Worker 10.10	0.09	0.09	1.59	0.00	0.00	17.2	17.2	0.00	1.73	1.73	ı	197	197	0.01	0.01	0.74	200
0.00 0.00 <td< td=""><td>Vendor 0.00</td><td>00.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>00.00</td><td>1</td><td>00.00</td><td>0.00</td><td>0.00</td><td>00.00</td><td>0.00</td><td>0.00</td></td<>	Vendor 0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	1	00.00	0.00	0.00	00.00	0.00	0.00
Q0.01 < 0.005	Hauling 0.00	0.00	0.00	00.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	1	0.00	0.00	00.00	0.00	0.00	0.00
Q0.01 < 0.005	Daily, Winter (Max)	1	i.	1	1	1	ì	1	1	1	Í	ī	ı	1	Î	Ĩ	<u> </u>	t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Average \(\begin{align*} \text{T} \\ \text{Daily} \end{align*}	L	ì	1	1_	1	Ĭ	1	I	I	Î	Ĭ	1	1	Î	Ç.	ſ	ţ
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Worker 0.01	< 0.005	0.01	0.07	0.00	0.00	1.07	1.07	0.00	0.11	0.11	ī	11.3	11.3	< 0.005	< 0.005	0.02	4.11
	Vendor 00.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	1	00.00	00.0	00.00	0.00	0.00	0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Hauling 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	1	0.00	0.00	0.00	00:00	00.00	0.00

Picacho Bridge Project Detailed Report, 9/16/2023

Ĭ	1.89	0.00	0.00
ı	< 0.005	0.00	0.00
1	< 0.005	00.00	0.00
1	< 0.005	0.00	00.00
1	1.86	0.00	0.00
1	1.86	00.00	0.00
1	1	1	1
1	0.02	0.00	0.00
Ĭ	0.02	00.0	00.00
I	00.00	00.00	00.00
1	0.19	00.00	00.00
. 1	0.19	0.00	00.0
1	00.00	00.00	0.00 0.00
Ţ	0.00	0.00	00:00
1	0.01	0.00	0.00
1	< 0.005	0.00	00.00
1	< 0.005	0.00	0.00
Ĭ	Worker < 0.005	0.00	0.00
Annual	Worker	Vendor 0.00	Hauling

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Ĺ 1 1 Ì CO2T NBC02 BC02 Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) PM2.5E | PM2.5D | PM2.5T 1 I PM10T PM10D PM10E ROG Vegetatio TOG (Max)
Total Annual . Summer Winter Total (Max) Daily, Daily, Total

CO2e

4.10.24 bove and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criterid Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)

C02e	
~	
œ	
N20	
CH4	
CO2T	
NBCO2 CO2T	
PM2.5E PM2.5D PM2.5T BCO2	
PM2.5D	
PM2.5E	
10D PM10T	
PM10D	
PM10E	
S02	
00	
×ON	
ROG	
1 00	
	(G
Land	

Ü	1.	Ī	1	1	1
I.	1	Î	Ì.	ĺ	Î
1	1	1	1	1	1
1	Į	1	1	t	1
1	Ĺ	1	1	Ĺ	1
ı	1	J	Ī	İ	Ĭ.
	1	1	1	f	1
I.	ī	1	1	Ţ	1
1	1	1	1	ĺ	Ī
ı	I	1	Ì	Î	Î
1	1	1	ı		1
1	1	1	1	1	1
I	ĺ	1	j	Ï	1
1	I	Í	ì	Ĩ	1
1	1	1	1	Ţ	1
1	1	1	1	1	1
1	Ĭ	1	1	1	1
Ĩ	ï		1	I	1
Daily, Summer (Max)	Total	Daily, Winter (Max)	Total	Annual	Total

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

_	
ā	
Ę	
ā	
₽	
ķ	
, MT/yr for ar	
ily, MT/yr fo	
<u>a</u>	
Ä	
v fc	
day	
for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/)	
s)	
웃	
$\overline{\Omega}$	
nd	
<u>_</u> a	
nal	
I	
a	
₽	
چ	
ģ	
څے	
dai	
ō	ı
¥	
/d8	ı
€	
ants (lb/day for daily,	
Itar	
릊	
ቯ	
ïria	
rite	
Criteria Polluta	

î	ſ	1	1	ľ	1	1	1	1	ľ	1	1	1
1								ì				
								1		Ĩ		
1								ì			1	
ì								1		i		
1		i						1				ĺ
								i				
					i			1				ľ
ì								1			i	
1								į		ì		
	ľ	1		ľ	ì		1	1	1	1		1
i	ì	Î	1	ĺ	1	ı	1	1	1	1	1	1
i	Î.	i	1	Į.	ì	ı	1	1	ï	i	1	ı
		1		1	ĺ	Ī	i	Ī		i	ĺ	Î
	ľ	1		1	1	ı	1	1	1	1	i	1
i	ı	1		Î	1	ı	Ī	1	ſ			ſ
Ì	ī	1		Î	Ī			nyo.	l	ı	1	ı
Sequest	Subtotal	Remove d	Subtotal	Ĭ	Annual	Avoided	Subtotal	Sequest ered	Subtotal	Remove d	Subtotal	ı

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetat or TOG RC	Daily, O. Summed (Max)	Total Color	Daily, Vinter TY (Max)	Total No.	Annual C
ROG	_ !	1.	L	1	Ĺ
0 0 ×	I.	ľ	1	Î	1
	T.	Į.	1	1	ij.
PM10E	l.	1	.1	1	1
PM10D	1	į	I	ĵ	î
PM101		1			
PM2.5E		1		1	
MZ.5D	ı	I	1	1	1
MZ.51	T .	1	Ĭ	Î	
ZOZ		1	1	1	
707	1	1	1	ı	1
SO2 PM10D PM10D PM2.5E PM2.5D PM2.51 BCO2 NBCO2 CO21 CH4 NZO K CO28	1	1	1	Ĩ	1.
OZN	1	1	1	Î.	1
Ľ	1	1	I	1	1
9 7 7 7	1	1	I.	f	1

1	
-	
1.3	
Ĭ	
1 1	
-	
1	
Ĭ	
1	
١.	
_1	
-	
1	
- 1	
Ы	
-	
1	
1	
- 1	
1	
į	
- 1	
ì.	
<u> </u>	
Total	
-	-4

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)

	Follutar	Officeria Politicaries (16/0ay 101 daily, torry) for affiliaal) affic GRGs (16/0ay 101 daily, 17/17) for affiliaal)	IOI Mall	y, tOi // yi	מווום	מוומ (וש		Juay 101	dally, IVI	1/y1 IQ1 6	allinali							
Land Use	TOG	ROG	×ON	00	SO2	PM10E PM10D		PM10T PM2.5E PM2.5D PM2.5T BCO2	PM2.5E	PM2.5D	PM2.5T		NBCO2 CO2T		CH4	N20	œ	CO2e
Daily, Summer (Max)	ı	1	Î	ī	1	jį.	Ī	1	1	ı	Ī	Ĭ	1	i	1	1	1	1
Total	1	1	ì	ĵ	1	1	î	1	ī	1	i	ì	1	1	î	1	1	1
Daily, Winter (Max)	t	ı	ì	Í	ſ	ī	Ĺ	1	1	I	I	1	t	1	ì	1	1	1
Total	_1	1	Î	1	1	1	î	1	1	1	ĵ	i	1	1	ĵ	i	1	1
Annual	1	1	Î	Î	Ţ	I	Ĩ	Ē	ı	ſ	ĩ	ı	ı	f	Ĩ	Ê	1	T.
Total	1	1	1	1	1	1	ĵ	ì	1	1	Î	i	ı	i	Ĩ	Ĩ	1	t

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Criteria Pollutants (Ib/day for daily, ton/vr for annual) and GHGs (Ib/day for daily. MT/vr for annual)

Cilienta Foliatalits (15/day 101 daily, tolly) 101 allilidary and Oli 103	מוונט (וומיכו	מא וטו עמ	11y, 101 "y1	2	ימו) מווח י	50.10	(12) day for daily, twitty: for difficially	dally, IVI	2 10 16 1	al III Idail)							
Species TOG	ROG	×ON	00	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5E PM2.5D PM2.5T	PM2.5T	BC02	NBCO2 CO2T		CH4	N20	œ	CO2e
Daily, Summer O	İ.	Ē	1	1	I	I	T.	1	ı	i	1	1	1	1	1	1	ı
- Avoided	Í.	1	1	1	1	1	1			1	1	1	ı	1	1	1	1
Subtota	Ĩ	I	1	1	Į	ĩ	ı	ı	ı	1	1	1	I	I	ľ	1	ı
Sednes Pere	Î	1	1	1	ı	1	1	1	1	1	1	1	I	1	1	1	I
Subtota10	Ī	Ü	Į.	I	1	1	1	1	1	1	1	1	1	ĵ.	1	1	î
Remove	ï	I	1	1	Ĭ	ī	ı	1	Ĩ	1	ľ,	1	Ĩ	Ũ	ľ	ſ	Í

Subtotal	ĵ	Daily, Winter (Max)	Avoided	Subtotal	Sequest ered	Subtotal	Remove	Subtotal	Ī	Annual	Avoided	Subtotal	Sequest	Subtotal	Removed	Subtota	KIC
I	Ĩ	1	1:		ı	Į	6 I	1	ľ	Ĩ	1	ı	ı	۔ ا	- -	۲	die
1	1	Ü	1	I	1	1	1	1	Ī	ï	Ţ.	1	1	ı	1	1	1
ſ	1	ı	1	T	1	Ţ	1	1	Ī,	1	ľ	1	1	1	1	1	1
ı	1	Į.	1	1	1	1	1	1	ţ	1	1	1	1	1	1	1	Ļ
ļ	Ţ	Ī.	1	I	Ī	I	Î.	1	ĺ	Ĭ	1	Ĭ	1	Ĺ	Î	1	ï
l	1	ï	L	1	1	Ţ	ī	1	t	1	1	Î	1	Ī	1	1,	L
I	1	1	1	1	1	1	1	1	ĺ	1	1	I	1	ſ	1	1_	1
1	1	<u> </u>	Ţ	1	1	I	1	1	f	1	1	1	1	ſ	1	1	ţ
J,	Ţ	Ī	Ĺ	L	Ţ	I	İ	ĺ	ı	Î	I	İ	<u></u>	Ě	Ï	1	Į.
Ī	Ĵ	Ě	Ĺ	I	1_	I	ì	1	Ĺ	Ĩ	1	1	1	ĺ	1	1	ţ
1	1	ľ	ı	ļ	1	I	1	1	1	1	1	1	1	I	1	1	1
1	1	1	ļ	1	ı	ſ	1	1	Į.	1	1	ı	11	Ji	1	1	t
Ţ	ļ	I	Į	I	l	I	Ţ	1	Ţ	_]_	1,	I	1	Ĩ	Ï	Î	Ĺ
I	1	I	1	I	I	1	1_	Ĭ	I.	1	1.	1	1	Ĺ	Ĭ	ĵ	t
1	1	t	t	1	1	1	1	1	I.	1	1	1	1	_[1	1	1.
ı	1	1	t	1	_1	1	1	1	J)	1	Ţ	1	1	-1	.1	1	t.
J	1	Į.	I	1	L	Ţ	1	1	Ī	1	1	1	1	Ĺ	Î	1	Ĺ
Ť	el	Î	I.		I.	1:	!		k	1	. k	, Ł	I	I.		1	J.

5. Are vity Data 5.1. Construction Schedule

Start Date End Date Days Pe	Start Date	End Date Days Per W	Veek Work Days per Pha	se Phase Description
-----------------------------	------------	---------------------	------------------------	----------------------

1	1	1	1
15.0	0.09	53.0	23.0
5.00	5.00	5.00	5.00
1/22/2024	4/16/2024	6/30/2024	8/2/2024
1/1/2024	1/23/2024	4/17/2024	7/1/2024
Linear, Grubbing & Land Clearing	Linear, Grading & Excavation	inear, Drainage, Utilities, & Linear, Drainage, Utilities, & 4/17/2024 Sub-Grade	Linear, Paving
Linear, Grubbing & Land Clearing	Linear, Grading & Excavation	Linear, Drainage, Utilities, & Sub-Grade	Linear, Paving

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Linear, Grubbing & Land Clearing	Signal Boards	Electric	Average	0.00	8.00	6.00	0.82
Linear, Grubbing & Land Clearing	Crawler Tractors	Diesel	Average	1.00	8.00	87.0	0.43
Linear, Grubbing & Land Clearing	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Linear, Grading & Excavation	Graders	Diesel	Average	2.00	8.00	148	0.41
Linear, Ora ding & Excaval ron	Excavators	Diesel	Average	4.00	8.00	36.0	0.38
Linear, <mark>Gra</mark> ding & Excava ti⊙	Crawler Tractors	Diesel	Average	2.00	8.00	87.0	0.43
Linear, <mark>Ald</mark> ding & Excavat <mark>on</mark>	Cranes	Diesel	Average	1.00	8.00	367	0.29
Linear, Seding & Excavative	Rollers	Diesel	Average	3.00	8.00	36.0	0.38
Linear, Grading & Excavatido	Rubber Tired Loaders	Diesel	Average	3.00	8.00	150	0.36
Linear, anding & Excavation	Scrapers	Diesel	Average	4.00	8.00	423	0.48

Linear, Grading & Excavation	Tractors/Loaders/Backh Diesel	Diesel	Average	2.00	8.00	84.0	0.37
Linear, Grading & Excavation	Signal Boards	Electric	Average	0.00	8.00	0.00	0.82
Linear, Drainage, Utilities, & Sub-Grade	Signal Boards	Electric	Average	0.00	8.00	0.00	0.82
Linear, Drainage, Utilities, & Sub-Grade	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37
Linear, Drainage, Utilities, & Sub-Grade	Scrapers	Diesel	Average	4.00	8.00	423	0.48
Linear, Drainage, Utilities, & Sub-Grade	Rough Terrain Forklifts	Diesel	Average	1.00	8.00	0.96	0.40
Linear, Drainage, Utilities, & Sub-Grade	Plate Compactors	Diesel	Average	1.00	8.00	8.00	0.43
Linear, Drainage, Utilities, & Sub-Grade	Pumps	Diesel	Average	1.00	8.00	11.0	0.74
Linear, Drainage, Utilities, & Sub-Grade	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Linear, Drainage, Utilities, & Sub-Grade	Graders	Diesel	Average	2.00	8.00	148	0.41
Linear, Drainage, Utilities, & Sub-Grade	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Linear, Paving	Rollers	Diesel	Average	1.00	8.00	36.0	0.38
Linear, ea ving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Linear, <mark>Ø</mark> ving	Paving Equipment	Diesel	Average	1.00	8.00	89.0	0.36
Linear, Saling	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37
Linear, Ra ing	Signal Boards	Electric	Average	0.00	8.00	00.9	0.82

2.2. Witigated

Load Factor	
Horsepower	
Hours Per Day	
Number per Day	
Engine Tier	
Fuel Type	
Equipment Type	
Phase Name	

Signal Boards	Crawler Tractors	Excavators	Graders	Excavators	Crawler Tractors	Cranes	Rollers	Rubbei	Scrapers	Tracto	Signa	Signs Sub-Grade	Linear, Brainage, Tracte Utilities, & Sub-Grade oes	Linear, Brainage, Scrapers Utilities, & Sub-Grade	Linear, Deinage, Rough Utilities, Sub-Grade	Linear, Mainage, Utilities, & Sub-Grade
ırds	γo				Tractors			Rubber Tired Loaders	ers	Tractors/Loaders/Backh Diesel oes	Signal Boards	Signal Boards	Tractors/Loaders/Backh Diesel	oers	Rough Terrain Forklifts	Plate Compactors
Electric	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Electric	Electric	Diesel	Diesel	Diesel	Diesel
Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average
0.00	1.00	2.00	2.00	4.00	2.00	1.00	3.00	3.00	4.00	2.00	0.00	0.00	2.00	4.00	1.00	1.00
8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
6.00	87.0	36.0	148	36.0	87.0	367	36.0	150	423	84.0	6.00	6.00	84.0	423	96.0	8.00
0.82	0.43	0.38	0.41	0.38	0,43	0.29	0.38	0.36	0.48	0.37	0.82	0.82	0.37	0.48	0.40	0.43

Linear, Drainage, Utilities, & Sub-Grade	Pumps	Diesel	Average	1.00	8.00	11.0	0.74
Linear, Drainage, Utilities, & Sub-Grade	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Linear, Drainage, Utilities, & Sub-Grade	Graders	Diesel	Average	2.00	8.00	148	0.41
Linear, Drainage, Utilities, & Sub-Grade	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Linear, Paving	Rollers	Diesel	Average	1.00	8.00	36.0	0.38
Linear, Paving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Linear, Paving	Paving Equipment	Diesel	Average	1.00	8.00	89.0	0.36
Linear, Paving	Tractors/Loaders/Backh Diesel	Diesel	Average	2.00	8.00	84.0	0.37
Linear, Paving	Signal Boards	Electric	Average	0.00	8.00	00.9	0.82

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Linear, Grubbing & Land Clearing		1	Ï	I
Linear, Ghubbing & Land Clearing	Worker	7.50	18.5	LDA,LDT1,LDT2
Linear, Grubbing & Land Clearing	Vendor	0.00	10.2	ннот,мнот
Linear, Chibing & Land Clearing	Hauling	0.00	20.0	ннот
Linear, Garbing & Land Clearing	Onsite truck	1	Ĭ	ННОТ
Linear, Gading & Excavation	1	1	Ţ	j
Linear, Cading & Excavation	Worker	52.5	18.5	LDA,LDT1,LDT2
Linear, Grading & Excavation	Vendor	1.00	10.2	ннрт,мнрт
Linear, Grading & Excavation	Hauling	0.00	20.0	ННОТ
Linear, Glading & Excavation	Onsite truck	1	I	НН

	LDA,LDT1,LDT2	ннот,мнот	Ti	Ti		LDA,LDT1,LDT2	ннот,мнот	Ţ)T
1	LDA,	ННО	HHDT	HHDT	1	LDA,	НН	HHDT	HHDT
I,	18.5	10.2	20.0	1	1	18.5	10.2	20.0	ı
1)	32.5	0.00	0.00	Ē	1	12.5	0.00	0.00	
ļ	e Worker	e Vendor	e Hauling	e Onsite truck	1	Worker	Vendor	Hauling	Onsite truck
Linear, Drainage, Utilities, & Sub-Grade	Linear, Drainage, Utilities, & Sub-Grade Worker	Linear, Drainage, Utilities, & Sub-Grade Vendor	Linear, Drainage, Utilities, & Sub-Grade Hauling	Linear, Drainage, Utilities, & Sub-Grade Onsite truck	Linear, Paving	Linear, Paving	Linear, Paving	Linear, Paving	Linear, Paving

5.3.2. Mitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Linear, Grubbing & Land Clearing	Ī	Ĭ	1	1
Linear, Grubbing & Land Clearing	Worker	7.50	18.5	LDA,LDT1,LDT2
Linear, Grubbing & Land Clearing	Vendor	0.00	10.2	ннот,мнот
Linear, Grubbing & Land Clearing	Hauling	0.00	20.0	ННДТ
Linear, Gubbing & Land Clearing	Onsite truck	Ĭ	Į	ННОТ
Linear, Glading & Excavation		Î	Î	I
Linear, Grading & Excavation	Worker	52.5	18.5	LDA,LDT1,LDT2
Linear, ending & Excavation	Vendor	1.00	10.2	ннот,мнот
Linear, anding & Excavation	Hauling	0.00	20.0	ННДТ
Linear, Szading & Excavation	Onsite truck		Ĩ	ННДТ
Linear, Palnage, Utilities, & Sub-Grade	Ĺ	L	1	Ĩ
Linear, Dreinage, Utilities, & Sub-Grade Worker	Worker	32.5	18.5	LDA,LDT1,LDT2
Linear, Mainage, Utilities, & Sub-Grade Vendor	Vendor	0.00	10.2	ннот,мнот
Linear, Drainage, Utilities, & Sub-Grade Hauling	Hauling	0.00	20.0	ННОТ

Picacho Bridge Project Detailed Report, 9/16/2023

Linear, Drainage, Utilities, & Sub-Grade Onsite truck	Onsite truck	ı	1	ннрт
Linear, Paving	I	I	1	I
Linear, Paving	Worker	12.5		LDA,LDT1,LDT2
Linear, Paving	Vendor		10.2	ннот,мнот
Linear, Paving				НН
Linear, Paving	Onsite truck	ľ		

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Control Strategies Applied	PM10 Reduction	PM2.5 Reduction
Apply dust suppressants to unpaved roads	84%	84%
Limit vehicle speeds on unpaved roads to 25 mph	44%	44%
Sweep paved roads once per month	%6	%6

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated	Residential Exterior Area Coated	Exterior Area Coated Non-Residential Interior Area	Non-Residential Exterior Area	Parking Area Coated (sq ft)
I	(sq ft)	(sd ft)	Coated (sq ft)	Coated (sq ft)	
=					

5.6. Dust Mitigation Oo 5.6.1. Sanstruction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.) Acres Paved (acres)	Acres Paved (acres)
Linear, <mark>Ar</mark> bbing & Land Clearing	Л		0.04		I
Linear, Grading & Excavation —			0.04	0.00	1
Linear, <mark>Ma</mark> nage, Utilities, & Sub-Grade	I		0.04	0.00	T

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
	2 619	%	61%
Water Demolished Area		36%	36 %

5.7. Construction Paving

Bridge/Overpass Construction 0.04	Land Use	Area Paved (acres)	% Asphalt
	Overpass Construction	0.04	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (Ib/MWh)

NAVII pei leal alla Ellissioli I actol (Ib/IV	CLOI (ID/INIVALI)			
Year	kWh per Year	CO2	CH4	N2O
2024	0:00	457	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

Vegetation Land Use Type 5.18.1 Mitigated	Vegetation Soil Type	Initial Acres	Final Acres
---	----------------------	---------------	-------------

Final Acres

Vegetation Land Use Type

Vegetation Soil Type

7 5.18.1 ∰iomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres

5.18.1.2. Mitigated

П	- 14
	-
П	
	10
	res
	Ac
	Jal
	Ē
	П
	Sre
	۲
	tia
	드
П	
	ø
	Type
	er Type
	over Type
	s Cover Type
	nass Cover Type
	iomass Cover Type

5.18.2. Sequestration

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

(bt	
Electricity Saved (kWh/year)	
Number	
Tree Type	

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adacemideentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Liazard	Result for Project Location	Unit
Temperatre and Extreme Heat	37.6	annual days of extreme heat
Extremetecipitation		annual days with precipitation above 20 mm
Sea Leverise	0.00	meters of inundation depth
Wildfire	1.90	annual hectares burned

Temperation and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mil.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040-2059 average under RCP 8.5), and consider historical data of climate, different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	ĸ	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	.N/A
Sea Level Rise	N/A	N/A	.N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	0	0	0'	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt

The oversulance and calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Mazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Femperature and Extreme Heat	വ	1	-	4
Extreme Decipitation	N/A	N/A	N/A	N/A
Sea Lever Rise	N/A	N/A	N/A	N/A
Wildfire	N/A		N/A	N/A

Flooding	-looding N/A	N/A	N/A	N/A
Drought	1	_	·	2
	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	I/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the

greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

er than 50) reflects a higher nothition burden compared to other census tracks in the state

Exposure Indicators — AQ-Dzone 50.6 AQ-PM 38.0 AQ-PM 11.2 AQ-PM 31.1 Ininking/Mater 31.5 Pesticide/AD 82.2 Traffic 82.2 Traffic 57.0 Effect Indicators — CleanUp/Netes 0.00 Ground/Metr 30.9	Indicator	Result for Project Census Tract
uusing ss ors	Exposure Indicators	
er nusing as ors	AQ-Ozone	50.6
using ss ors		
using ss ors		
using ss ors	Drinking Water	31.1
ss ors		
ors S		
ors S	Toxic Referes	61.4
ors S	Traffic V	
	Effect Indicators	
	CleanUpplites	

Haz Waste Facilities/Generators	16.6
Impaired Water Bodies	43.8
Solid Waste	0.00
Sensitive Population	1
Asthma	9.57
Cardio-vascular	36.1
Low Birth Weights	1
Socioeconomic Factor Indicators	I
Education	76.0
Housing	25.7
Linguistic	68.4
Poverty	96.2
Unemployment	99.7

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. Result for Project Census Tract Indicator

Economic — Above Parenty 14.21788785 Employed 1.680995765 Median (A) 5.800076992 Education — Education — Bachelorizer higher 13.64044655 High school enrollment 6.313358142 Preschool enrollment 88.27152573 Transportation — Auto Acoess 6.55716688		
er ment ent	Economic	Ī
er ment ent	Above Poverty	14.21788785
·	Employed?	1.680995765
	Median 🔁	5.800076992
1	Education	
ollment	Bachelorsor higher	13.64044655
ollment	High school enrollment	6.313358142
	Preschool enrollment	88.27152573
	Transportation	
		6.557166688

Active commuting	33.31194662
Social	Ī
2-parent households	15.32144232
Voting	0.590273322
Neighborhood	
Alcohol availability	74.90055178
Park access	23.94456564
Retail density	4.824842808
Supermarket access	16.04003593
Tree canopy	30.71987681
Housing	Ì
Homeownership	31.90042346
Housing habitability	45.04042089
Low-inc homeowner severe housing cost burden	92.78839985
Low-inc renter severe housing cost burden	91.89015783
Uncrowded housing	40.97266778
Health Outcomes	
Insured adults	19.41485949
Arthritis	0.0
Asthma 😝 Admissions	83.7
High Bl <mark>o</mark> d Pressure	0.0
Cancer (Acluding skin)	0.0
Asthma Asthma	0.0
Coronary Beart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnose Diabetes	0.0
Life Experiment at Birth	4.2
Life Expectancy at Birth	7:1

Cognitively Disabled	16.7
Physically Disabled	7.2
Heart Attack ER Admissions	44.5
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	19.6
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	31.0
Elderly	19.2
English Speaking	62.0
Foreign- <mark>60</mark> n	6.5
Outdoorworkers	25.8
Climate Adaptive Capacity	
Impervious Surface Cover	95.5
Traffic Desity	2.1
Traffic Access	23.0
Other Indices	
Hardshi	90.5

	ļ	
		j
1	0.0	
-	0	
٠		
t		
pport		
pport		
pport	bu	
pport	bu	
t	0	

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	40.0
Healthy Places Index Score for Project Location (b)	3.00
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	ON
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures Health & Equity Evaluation Scorecard not completed.

No Healins Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Trips and VMT	I
Construction: On-Road Fugitive Dust	Assumes travel is o

Assumes travel is on 95% paved roads for worker trips.

(Minimal Impacts)

Picacho Road at Bridge Improvement Project

Imperial County, California north of the Township of Winterhaven and west of the City of Yuma, Arizona

Picacho Road Bridge

February 2023

Revised August, 2024

Prepared By and Certified as performed in accordance with established biological practices by:

Marie Barrett

Biologist

Barrett's Biological Surveys

marie D. Barrett

(760) 427 7006

26 August 2024

Summary

The Picacho Road at Yuma Main Canal Bridge Improvement Project ("project") involves emergency replacement to the existing Picacho Road bridge. Deficiencies have caused the bridge to be rated as structurally deficient. The purpose of the project is to provide safe passage for the commuters, residents, freight, and emergency responders over Yuma Main Canal at Picacho Road. The project, with avoidance, minimization and mitigation measures, would not cause adverse impacts to environment.

The project site is approximately ½ mile east of the town of Winterhaven, California, along the California/Arizona border. The project site is comprised of 2.8 acres and includes the Picacho Road bridge, the intersection of Picacho Road and Quechan Road, and adjacent right-of-way and offsite areas. General reconnaissance biological surveys of the project site were conducted on November 5, 2022, August 8, 2024 (AM/PM), and August 9, 2024.

No special-status plant and no special-status wildlife species were found to occur within the Biological Study Area. The project would not result in impacts to habitats/Natural Communities of Special Concern or endangered, threatened, or plant or animal species of concern. Bank swallows were observed in the project buffer zone, however, no nests were observed on site. No swallows or bats were observed nesting under the bridge. Pre-construction nesting bird surveys should be conducted during the nesting season (February through August) and worker environmental awareness training is recommended to minimize the potential for impacts to nesting birds from construction activities. Any invasive plant should be removed in a manner that will not spread seeds or root material. All equipment will be cleaned prior to being onsite. Worker environmental awareness training is recommended to minimize the potential for invasive plants to spread within and outside of the project site.

This report presents the findings of two general reconnaissance biological surveys. No jurisdiction delineation issues occur and no special-status plant or special-status wildlife species were found to occur within the Biological Study Area; migratory bird nesting can occur. Therefore, preconstruction surveys are recommended.

Table of Contents

Su	nmai	y		i
1.	Intr	oduc	tion	4
1	1.1	Hist	ory	4
]	1.2	Proj	ect Purpose and Need	4
2.	Stu	dy M	ethods	5
2	2.1	Reg	ulatory Requirements	5
	2.1	.1	Federal Endangered Species Act	6
	2.1	.2	Migratory Bird Treaty Act	6
	2.1	.3	California Endangered Species Act	7
2	2.2	Stuc	lies Required	7
	2.2	.1	Literature Search	7
	2.2	.2	Survey Methodologies	7
	2.2	.3	Personnel and Survey Dates	
	2.2	.4	Limitations That May Influence Results	8
3.	Re	sults:	Environmental Setting	8
3	3.1	Des	cription of the Existing Biological and Physical Conditions	8
	3.1	.1	Biological Study Area (BSA)	8
	3.1	.2	Physical Conditions	8
	3.1	.3	Biological Conditions in the Study Area 1	
	3.1	.4	Habitat Connectivity 1	2
2	3.2	Reg	ional Species and Habitats/Natural Communities of Concern	2
	3.2	.1	Habitat/Natural Communities of Special Concern	2
	3.2	2	Special-Status Plant Species	3
	3.2	3	Special-Status Animal Species	3
4.	Re	sults:	Biological Resources, Discussion of Impacts & Mitigation	3
4	4.1	Hab	oitats/Natural Communities of Special Concern	3
4	1.2	Spe	cial-Status Plant Species1	3
	4.2	2.1	Discussion of Plant Species	3
4	4.3	Spe	cial-Status Animal Species1	4
	4.3	.1	Discussion of Animal Species	5
5.	Co	nclus	ions & Regulatory Determination1	6

 5.1 Agency Coordination
 16

 6. References
 16

 7. Appendix
 17

1. Introduction

1.1 History

The project is located approximately 0.53 miles east of the Township of Winterhaven in Imperial County, at the crossing of Picacho Road (S24) and Yuma Main Canal. The original bridge was built in 1925 and has been in service for 96 years; 46 years past its functional design life. It was designed as a 5-span bridge, 19-foot spans, all timber superstructure and substructure. In 1931, the bridge was extended by adding a 19' span on each end with new R.C. abutments, and was also raised by 2 feet using a solid redwood cap. The Redwood timber superstructure was replaced and AC surfacing was used as a riding surface. In February of 1943, the inspection report noted multiple cracks in the AC surfacing, and also pointed out that "the bridge is taking a considerable amount of military traffic". Subsequent to that report, a heavy asphaltic mix blanket was placed over the entire deck. In 1944, the AC surfacing continued to have several cracks. In 1945, some deck patching done but not all. In 1946, more cracks were found; no repair was done due to anticipated re-decking of the entire bridge. In 1951, deck cracks were noted by an inspector. In 1955 considerable horizontal cracking was noted, but no recommendations were made. In 1956, cracking was progressing, probably due to reactive aggregate. One stringer was found to be broken and needed to be supplemented. These deficiencies have caused the bridge to be rated as structurally deficient.

Project Purpose and Need

The project is located approximately 0.28 miles north of Interstate 8 along Picacho Road where it crosses the Yuma Main Canal in Imperial County, California. The project site consists of 2.8 acres. Picacho Road (S24) is an essential farm to market road and directly connects to I-8 via the bridge and ensuring access to this route is critical. Due to cracking and outliving its useful life, the bridge must be replaced to support commerce, access to the Quechan Reservation and the Bard community.

Project Objectives include:

- Safety Bridge, Railings, and Approaches need to be designed to current Standards
- Durability 75-Year Design Life has been greatly exceeded
- Meeting all stakeholders' reasonable concerns to ensure a successful buildout

Picacho Road is a farm to market road and provides emergency services access to a rural community. Picacho Road is an east/west road that offers direct access to I-8 and Quechan Road which accesses Bard and Yuma for local commuters as well as farming. Replacing the bridge structure will improve safety for all commuters that either live, or work along that stretch of Picacho Road and for emergency response vehicles.

Project Timeline:

- Phase 1 Prelim. Bridge Strategy Report and CEQA/NEPA Clearance
- Site Investigation
- Strategy Report/Type Selection Report

- Surveying Services and Geotechnical Investigations
- Detour / Traffic Evaluation
- Environmental Documentation
- Phase 2 Final Design and Permitting
- Phase 3 Bidding and Construction Support Services

The Picacho Road Bridge over the Yuma Main Canal and is located along Picacho Road in Winterhaven, CA. The existing bridge is approximately 95 feet in length and 29 feet wide and is used as a pathway leading into the Townsite of Winterhaven in Imperial County. The Project Site is approximately .3 miles south of Interstate 8 (I-8), 0.6 miles east of First Street, and approximately 6 miles southeast of Mexico. Specifically, the Project Site is located between Winterhaven Drive and Quechan Road and runs adjacent to the South Pacific Railroad tracks. The immediate surrounding area consists of agricultural land. Surrounding areas also include industrial, commercial, warehouse, and residential lands. The nearest residential community is located approximately 0.2 miles to the south of the Project Site. The Project Site is located directly to the west of the Quechan Tribal Administration buildings which is intended to benefit from the bridge reconstruction. The Project Site is located within the Quechan Tribal territory and spans the Yuma Canal system owned by the Bureau of Reclamation (BOR). The canal is operated and maintained by the Yuma County Water Users Association (YCWUA).

The bridge is owned by Imperial County and its National Bridge Inventory (NBI) number is 58C0028. The bridge crosses the Yuma Main Canal, which is a Bureau of Reclamation facility that is operated and maintained by their managing partner the Yuma County Water Users' Association. The replacement bridge will have a total width of 48'-11". This includes two vehicle lanes of 12', two 8' wide shoulders, and a 6'-0" wide sidewalk on the north side of the bridge.

All construction activities will be contained within the area highlighted by the red boundary (attached map). The total construction work area is approximately 2.8 acres. Tree removal and removal of other vegetation adjacent to the site will be necessary for the proposed Project. Existing vegetation will need to be cleared and grubbed prior to grading operations. Temporary construction easements will be needed to facilitate utility relocations and allow construction access. Construction is anticipated to last for a period of one year. All construction activities such as site preparation, grading, utility relocation, and site restoration would be contained within the construction work area.

This report addresses environmental documentation.

2. Study Methods

2.1 Regulatory Requirements

The primary regulations affecting biological resource impacts are discussed in this section. If construction of this project, or related activities associated with construction, impact federal-and/or state-listed species, the project may be subject to the California Endangered Species Act (CEPA) and the federal Endangered Species Act (ESA). If activities directly impact migratory birds or cause the destruction or abandonment of nests, the project would be subject to the

Migratory Bird Treaty Act. Additional regulations could also apply to the project. The following paragraphs provide a brief summary of the applicable provisions of these regulations.

2.1.1 Federal Endangered Species Act

The federal ESA provides protection for plants and animals listed as threatened or endangered by U.S. Wildlife and Forestry Service (USWFS) and the National Oceanic and Atmospheric Administration (NOAA) Marine Fisheries Service. Section 9 of the ESA (50 CFR 17.3) prohibits the take, possession, sale, or transport of any federal ESA-listed species. Take is defined as "to harass, harm, pursue, hunt, shoot, wound, kill, capture, collect, or attempt to engage in any such conduct" (16 U.S. Code [USC] Section 1532(19)). Federal regulation 50 CFR 17.3 further defines the term harm in the take definition to mean any act that actually kills or injures a federally listed species, including significant habitat modification or degradation. For plants, the federal ESA prohibits removing, possessing, maliciously damaging, or destroying any listed plant on areas under federal jurisdiction, and removing, cutting, digging up, damaging, or destroying any listed plant on non-federal land in knowing violation of state law (16 USC Section 1538(a)(2)(B)).

The federal ESA requires the federal government to designate critical habitat for any species listed under the federal ESA but also allows areas to be excluded from critical habitat (16 USC Section 1533(b)(2)). Critical habitat is a specific area(s) that is essential for the conservation of a threatened or endangered species and that may require special management and protection. Critical habitat may also include specific areas outside the geographical area occupied by the species if the agency determines that the area itself is essential for conservation.

Section 7 of the federal ESA requires federal agencies to consult with USFWS and/or NOAA Marine Fisheries Service for any federal activity that may affect any federally listed species or its critical habitat. Informal consultation may precede and obviate the need for formal consultation if USFWS and/or NOAA Marine Fisheries Service concur that the proposed agency action is not likely to adversely affect listed species. In the formal consultation process, USFWS and/or NOAA Marine Fisheries Service must issue a Biological Opinion as to the potential for effect to listed species. USFWS and/or NOAA Marine Fisheries Service may issue an incidental take permit, allowing take of the species that is incidental to an authorized activity, provided that the action will not jeopardize the continued existence of the species. Section 10(a) of the ESA provides for issuance of incidental take permits for private actions that have no federal involvement, through the development of a Habitat Conservation Plan (HCP).

2.1.2 Migratory Bird Treaty Act

The Migratory Bird Treaty Act (MBTA) provides protection for migratory birds. Conditions for permits to "take" migratory birds (as defined in the MBTA) are set forth in 50 CFR Part 13 [General Permit Procedures] and 50 CFR Part 21 [Migratory Bird Permits]). Unless expressly authorized in the regulations or by permit, activities such as hunting, pursuing, capturing, killing, selling, and shipping migratory birds are prohibited. The MBTA allows USFWS to issue permits to qualified applicants for certain types of activities. This protection extends to all migratory birds, parts, nests, and eggs. The full list of species protected under this act is found in 50 CFR 10.13.

2.1.3 California Endangered Species Act

The California Endangered Species Act (CESA) provides protection for candidate plants and animal species as well as those listed as threatened or endangered by CDFW. CESA prohibits the take of any such species unless authorized; however, California case law has not interpreted habitat destruction, alone, as included in the state's definition of take. Take is defined in Section 86 of the Fish and Game Code as "hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill" (Cal. Fish and Game Code §86). CDFW administers the act and authorizes take through Section 2081 agreements, Section 2080.1 consistency determinations (for species that are also listed under the federal ESA) or NCCPs.

2.1.4 Porter-Cologne Water Quality Control Act, as amended

This act is administered by the State Water Resource Control Board (SWRCB) to protect water quality and is an avenue to implement CA responsibilities under the federal Clean Water Act. This act regulates discharge of waste into a water resource.

2.1.5 Clean Water Act, 1972 (CWA 33 U.S.C. 1251 et seq.)

This act regulates discharges into waters of the U.S. Army Corp of Engineers (ACOE) is given the responsibility to implement programs to prevent pollution.

2.2 Studies Required

2.2.1 Literature Search

Prior to conducting field surveys, a review of pertinent literature, regulatory requirements, special-status species lists and recorded occurrences was conducted to determine if the proposed bridge repairs are within the range of sensitive resources such as state and/or federal listed threatened and/or endangered species. Available literature was reviewed including the California Natural Diversity Database (CNDDB) for the Yuma East and Yuma West U.S. Geological Survey (USGS) 7.5-minute Topographic Quadrangle and previous Barrett's Biological Surveys (BBS) surveys.

Survey Methodologies

Glenna Barrett, Jacob Calanno and Jeremy Scheffler performed the biological assessment surveys within and adjacent (500 foot buffer where possible) to the Biological Study Area (BSA) on November 5, 2022 and August 8 (AM/PM) and August 9, 2024.

All proposed impact areas within the BSA were visited on foot where possible.

Personnel and Survey Dates

Glenna Barrett, Jacob Calanno and Jeremy Scheffler of Barrett's Biological Surveys performed the biological assessment survey on November 5, 2022 (52-55°F, 0-25% cloud cover, 0-8 mph; 0800-0900 (3 hours on site) and Glenna Barrett on August 8 (88-93°F, 0-15% cloud cover, 4-8 mph 0730-0845), August 8 (106°F, 0% cloud cover, 8-10 mph 1730-1845), August 9 (93-94°F, 30-75% cloud cover, 7-10 mph 1730-1845(3.5 hours)). Resumes are attached.

2.2.2 Limitations That May Influence Results

Due to a wet summer-fall, rain fall was sufficient to germinate seeds and therefore, botanical specimens were present.

This area is highly disturbed by vehicles during all seasons and typical damage was observed. Also, a portion of the vegetation had been burned.

3. Results: Environmental Setting

3.1 Description of the Existing Biological and Physical Conditions

3.1.1 Biological Study Area (BSA)

This site is located within the Colorado Desert which is a subdivision of the larger Sonoran Desert and covers approximately 7 million acres. The desert encompasses Imperial County and includes parts of San Diego County, Riverside County, and a small part of San Bernardino County. This site is in Imperial County.

This desert lies at a relatively low elevation, below 1,000 feet, with the lowest point of the desert floor is 275 feet below sea level at the Salton Sea; northeast of the site. The highest peaks of the Peninsular Ranges which reach elevations of nearly 10,000 feet are to the west of the site.

The Colorado Desert's climate differs from other deserts. The region experiences greater summer daytime temperatures (up to 120°F) than higher-elevation deserts and rarely experiences frost. In addition, the Colorado Desert experiences two rainy seasons per year usually in the winter and late summer in this portion. This area is within the agricultural portion that is irrigated by Colorado River water delivered through water conveyance structures maintained by the Bureau of Reclamation, Bard Water District and Yuma County Water Users. This Pichaco Picacho Road Bridge spans the Yuma Main Canal which carries irrigation water to local farmers.

3.1.2 Physical Conditions

The original bridge has degraded requiring replacement. If the bridge is closed, traffic will need to be detoured several miles to bypass the closed bridge.

FEMA Map Panel 06025C2275C maps the area as Zone X: Areas of 0.2% annual flood; areas of 1% annual chance flood will average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

The United States Department of Agriculture Web Soil Survey classified the approximate 2.4 acres in the project site as:

12 Holtville Clay (0.96 acres/34%)

Map Unit Setting

- National map unit symbol: 1sf1
- Elevation: 80 to 600 feet
- Mean annual precipitation: 5 to 10 inches

- Mean annual air temperature: 72 to 76 degrees F
- Frost-free period: 250 to 325 days
- Farmland classification: Prime farmland if irrigated and reclaimed of excess salts and sodium

Map Unit Composition

- Holtville and similar soils: 100 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Holtville Clay Setting

- Landform: Flood plains
- Landform position (two-dimensional): Summit
- Landform position (three-dimensional): Dip
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Mixed alluvium

Typical profile

- Ap 0 to 13 inches: clay
- C1 13 to 23 inches: clay
- 2C2 23 to 75 inches: stratified silty clay loam

Properties and qualities

- Slope: 0 to 1 percent
- Depth to restrictive feature: More than 80 inches
- Drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Calcium carbonate, maximum content: 15 percent
- Maximum salinity: Very slightly saline to strongly saline (2.0 to 32.0 mmhos/cm)
- Sodium adsorption ratio, maximum: 13.0
- Available water supply, 0 to 60 inches: Very high (about 12.2 inches)

• 13—Indio silt loam, 0 to 1 percent slopes (0.25 acres/9%)

Map Unit Setting

- National map unit symbol: 2tdtv
- Elevation: 80 to 990 feet
- Mean annual precipitation: 3 to 7 inches
- Mean annual air temperature: 72 to 74 degrees F
- Frost-free period: 260 to 350 days
- Farmland classification: Prime farmland if irrigated and reclaimed of excess salts and sodium

Map Unit Composition

- Indio and similar soils: 88 percent
- Minor components: 12 percent

• Estimates are based on observations, descriptions, and transects of the mapunit.

• Description of Indio Silt Loam

Setting

- Landform: Flood plains
- Landform position (two-dimensional): Summit
- Landform position (three-dimensional): Talf
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Mixed stream alluvium derived from igneous, metamorphic and sedimentary rock

Typical profile

- Ap 0 to 12 inches: silt loam
- C 12 to 58 inches: stratified very fine sandy loam to silt loam
- 2C 58 to 60 inches: loamy sand

Properties and qualities

- Slope: 0 to 1 percent
- Depth to restrictive feature: More than 80 inches
- Drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: Occasional, None
- Frequency of ponding: None
- Calcium carbonate, maximum content: 5 percent
- Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
- Sodium adsorption ratio, maximum: 13.0
- Available water supply, 0 to 60 inches: High (about 10.6 inches)

• 18—Lagunita loamy sand (0.19 acres/7%)

Map Unit Setting

- National map unit symbol: 1sf7
- Elevation: 80 to 600 feet
- Mean annual precipitation: 5 to 10 inches
- Mean annual air temperature: 72 to 76 degrees F
- Frost-free period: 250 to 325 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Lagunita and similar soils: 100 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lagunita

Setting

- Landform: Alluvial fans, flood plains, drainageways, terraces
- Landform position (two-dimensional): Summit
- Landform position (three-dimensional): Tread, dip
- Down-slope shape: Linear
- Across-slope shape: Linear

Parent material: Recent mixed alluvium

Typical profile

A - 0 to 8 inches: loamy sand
C - 8 to 60 inches: loamy sand

Properties and qualities

- Slope: 0 to 1 percent
- Depth to restrictive feature: More than 80 inches
- Drainage class: Somewhat excessively drained
- Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Calcium carbonate, maximum content: 5 percent
- Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
- Sodium adsorption ratio, maximum: 30.0
- Available water supply, 0 to 60 inches: Low (about 3.9 inches)

The area has 0.22 acres of water (8%) within a canal and 1.18 (42%) acres of right of way.

The area contains 1.21 acres of ground that would be considered prime farmground if irrigated and reclaimed of excess salts 0.19 acres of not prime farmground. The vegetation community found in these areas is ruderal vegetation such as saltcedar, Russian thistle and saltbush.

3.1.3 Biological Conditions in the Study Area

The top of the bridge is asphalt, heavily traveled and is not biologically sensitive. Areas within the BSA included ruderal vegetation. Underneath the bridge, within the Yuma Main Canal, sparse vegetation was observed. Approximately 0.93 acres were burned northeast of bridge with in the BSA. An agricultural crop of lettuce was observed to the north of the site in 2022. Currently the field is disked prior to planting. Tables 1 and 2 (below) list species observations within the buffer zone of the site.

Table 1: Vegetation Found in On Site or Vicinity (2022 and 2024)

Common nama	Scientific name	Cal-IPC Rating*	Year Observed
Common name			
Arrowweed	Pluchea sericea	None	2022/2024
Desert shaggy	Podaxis pistillaris	None	2022
mane			
Desert mallow	Sphaeralcea	None	2022
	ambigua		
Mesquite	Prosopis glandulosa	None	2022/2024
Palm trees	Washingtonia spp.	None	2022
Palo verde	Parkinsonia	None	2022/2024
	floridum		
Pigweed	Chenopodium sp.	None	2022
Russian thistle	Salsola tragus	Ca Noxious Weed	2022/2024
		Cal-IPC rating:	
		Limited*	

Common name	Scientific name	Cal-IPC Rating*	Year Observed
Saltbush	Atriplex spp.	None	2022/2024
Saltcedar	Tamarix sp.	Ca Noxious Weed Cal-IPC rating: High *	2022/2024
Spanish needle	Palafoxia arida	None	2022

^{*}High – These species have severe ecological impacts on physical processes, plant and animal communities, and vegetation structure. Their reproductive biology and other attributes are conducive to moderate to high rates of dispersal and establishment. Most are widely distributed ecologically.

Limited – These species are invasive but their ecological impacts are minor on a statewide level or there was not enough information to justify a higher score. Their reproductive biology and other attributes result in low to moderate rates of invasiveness. Ecological amplitude and distribution are generally limited, but these species may be locally persistent and problematic

No vegetation was found that would be considered endangered, threatened or species of concern.

Table 2: Animals/Insects Found in Onsite or Vicinity

Common Name	Scientific Name	Year	Location
Aberts Towhee	Melozone aberti	2024	Onsite
Barn swallows	Hirundo rustica	2022	Offsite
Black phoebe	Sayornis nigricans	2022	Offsite
Black tailed gnatcatcher	Polioptila melanura	2024	Offsite
Eurasian collared dove	Streptopelia decaocto	2024	Onsite
Great tailed Grackle	Quiscalus mexicanus	2022	Onsite
House Finch	Haemorhous mexicanus	2024	Onsite
Mourning dove	Zenaida macroura	2024	Onsite

No animals were found onsite that would be considered endangered, threatened or species of concern. Bank swallows were observed in the buffer zone; no nests were observed on site. No swallows or bats were observed nesting under the bridge.

Habitat Connectivity

The habitat is divided by Picacho Road (S24) which runs from I-8 to Bard, CA. Picacho Road can be accessed by wildlife. This project will not change the existing connectivity.

3.2 Regional Species and Habitats/Natural Communities of Concern

3.2.1 Habitat/Natural Communities of Special Concern

There are no Habitat/Natural Communities of Special Concern found within the BSA.

Table 3: Vegetative Communities

Parcels	Acreage	Description	Vegetative Communities
Not known	2.4	Weeds, invasive species (saltcedar)	Ruderal

3.2.2 Special-Status Plant Species

Appendix: Sensitive Botanical and Zoological Species (CNDDB/CNPS) Yuma East and West Quadrangle, November, 2022 and August, 2024 (attached) listed 10 botanical species within the Quadrangle searched. None would be expected within the BSA.

3.2.3 Special-Status Animal Species

Appendix: Sensitive Botanical and Zoological Species (CNDDB/CNPS) Yuma East and West Quadrangle November, 2022 and August, 2024 (attached) listed 37 zoological species within the Quadrangles searched. Of these, five species: black-tailed gnatcatcher (Polioptila melanura) were observed offsite; no appropriate nesting habitat was observed. Burrowing owl could be expected outside the ESA but were not observed during survey. Gila woodpeckers could be found roosting or nesting in palm trees present off site and out of the ESA. Bank swallows or Yuma ridgeway's rail would not be expected; no habitat was observed.

4. Results: Biological Resources, Discussion of Impacts & Mitigations

4.1 Habitats/Natural Communities of Special Concern

There are no habitats/Natural Communities of Special Concern.

4.2 Special-Status Plant Species

No special-status plant species are expected as there is no habitat to support them.

4.2.1 Discussion of Plant Species

Survey Results

No special species observed within the BSA during survey. Vegetation observed was mostly ruderal or invasive (saltcedar and Russian thistle) and would be expected to grow back rapidly if disturbed.

Project Impacts

None are expected.

Avoidance and Minimization Efforts/Compensatory Mitigation

A preconstruction burrowing owl and nesting bird survey should be conducted by a qualified biologist. These survey dates will vary and will be determined by species found. Most generally, raptor surveys will be between Jan and July; nesting birds and burrowing owls between February and August.

4.3 Special-Status Animal Species

Bank Swallow (Riparia riparia) listed as CDFW Threatened. Sexes similar in appearance, and plumage similar throughout year. Adult has grayish brown mantle, rump, and wing coverts, contrasting with darker brown remiges and rectrices; tertials entirely brown or brown with pale edgings; throat white, contrasting with distinct brown breast-band and grayish brown crown. Brown breast-band can extend to belly as sharp spike. Juveniles (hatch-year birds) are distinguished from adults by buff-edged or whitish upperparts, and buffy pink wash to throat. Slight notch in the medium-length tail is visible in the hand and while bird is perched. No sexual dimorphism; sexes are reliably distinguished by presence or absence of brood patch or cloacal protuberance. Presently breeds primarily in lowland areas along ocean coasts, rivers, streams, lakes, reservoirs, and wetlands (Cramp 1988, Turner and Rose 1989a, Am. Ornithol. Union American Ornithologists' Union 1998a). Vertical banks, cliffs, and bluffs in alluvial, friable soils characterize nesting-colony sites throughout North America. Nesting colonies also found in artificial sites such as sand and gravel quarries and road cuts. Historically, all colonies in North America were found in natural sites such as banks along rivers, streams, lakes, and coasts; today, many colonies are in human-made sites. Breeding habitat ephemeral; suitability of sites depends on erosion, which both creates new sites and destroys established ones. Also, prefers new, fresh banks without old burrows. Takes flying or jumping insects almost exclusively on the wing. Occasionally eats terrestrial and aquatic insects or larvae. Diet varies within and between years and sites, depending on local availability of insects. Rare consumption of vegetable matter appears to be accidental. Seen offsite; none observed in canal bank.

Black-tailed Gnatcatcher (Polioptila melanura) is a California Watch List species (CDFW Watch List Species: Watch list species are taxa that were previously SSCs but do not currently meet SSC criteria, and for which there is concern and a need for additional information to clarify status.). Small, long-tailed songbird similar in size to other gnatcatchers. Adult male, about 108 mm total length, 5.3 g mass; female, about 97 mm length, 5 g Sexually dimorphic in coloration. Adult male in breeding (Alternate) plumage distinguished by long, black, graduated tail, with outer web and terminal portion of inner webs of outermost 2 rectrices white (third outermost rectrix often tipped white); glossy bluish-black cap extending down to upper edge of lores and auriculars; white eye-ring (upper half less distinct in eastern [P. m. melanura] populations); deep neutral gray to deep slate gray or brownish upperparts; and grayish-white underparts. Breeding female lacks dark cap and has more brownish greater wing coverts, back, and rump than male does. In winter (Basic) plumage, both sexes have paler upperparts and male lacks black cap but has dark streak over eye. Habitat: honey mesquite, honey-screwbean mesquite, and screwbean mesquite-salt cedar along lower Colorado River, Yuma Co., AZ, plant species with higher proportion of foliage used more often. Additionally, average foraging height corresponded directly to foliage volume. In Yuma Co., seasonal shift in foraging behavior and substrate also corresponded to foliage volume. Observed offsite; no nests observed onsite.

Burrowing Owl (Athene cunicularia) is considered a California Department of Fish and Wildlife: Species of Special Concern. They are small raptors that nest in burrows that have been borrowed from other species or by the raptor in open grassland areas and water conveyance structures in Imperial County. Have adapted well in Imperial County using canals/drains/ditches to establish

burrows and foraging for insects in agricultural fields. Owls/burrows not found on site but could be found outside of BSA.

Gila Woodpecker (*Melanerpes uropygialis*) is listed as Federally and CDFW Endangered. Appearance: Bill black to grayish black with dark red to reddish hazel eyes. About 9.3 inches long with brownish green or bluish legs and feet. Black and white barring on back male has red cap on head. Buff-brown face, neck and breast with barred rump and central tail feathers. Habitat: Uncommon to resident in southern California along the Colorado River, and locally near Brawley. Occurs mostly in desert riparian and desert wash habitats. Cottonwoods and other desert riparian trees, shade trees, and date palms supply cover. None observed or heard; palm trees or other trees to roost or nest are available.

Yuma Ridgway's Rail (Rallus obsoletus yumanensis) is 15-16" (38-41 cm). Chicken-sized with a long, thin bill. Mostly olive brown on crown and back, warm cinnamon on face and breast, with gray and white barring on flanks. Juvenile is darker and duller. Typically secretive and rarely seen, most usually know the bird is around when it vocalizes and letting off a repetitive, sharp clapping. The Yuma race is a species found in the marshes of the lower Colorado River, the Salton Sea in California, the Ciénega de Santa Clara in Mexico, and the Gila River in Arizona. They prefer younger stands of cattail and bulrush, and eat crayfish, freshwater clams, and other invertebrates. California and federally endangered species. No cattails, dense vegetation or marshes for habitat found onsite.

4.3.1 Discussion of Animal Species

Survey Results

Burrowing owl, Gila woodpecker, or Yuma Ridgeway Rail, were not found within the BSA during the survey. No swallows or bats were observed nesting under bridge. Bank swallows were observed in 2022 offsite as were black-tailed gnatcatcher in 2024.

Project Impacts

No impacts are expected with avoidance and minimization efforts.

Avoidance and Minimization Efforts/Compensatory Mitigation

- 1. Nesting surveys by qualified biologists during nesting season (generally February through August); preferably time construction during non nesting season (generally September through January). Time nesting surveys within 3-5 days prior to start of construction for nesting birds and fourteen days prior to start of constrution for burrowing owl. A biologist should be present at start of ground breaking activities
- 2. Any invasive plant should be removed in a manner that will not spread seeds or root material. All equipment will be cleaned prior to being onsite.
- 3. Worker environmental awareness training for nesting birds, Gila Woodpecker and Burrowing Owl(BUOW) and invasive plants which will include the following aspects:

- Biology and status
- Protection measures designed to reduce potential impacts to the species, function of flagging designating authorized work areas;
- Reporting procedures to be used if a species is encountered in the field; and driving procedures and techniques, for commuting, and driving on, to the project site
- Identification of nesting birds and procedures to follow if nesting is suspected.
- 3. Areas outside of the project footprint will be designated as an "Environmentally Sensitive Area" (ESA) on project plans. No project-related activities will take place within the ESA-designated areas.

5. Conclusions & Regulatory Determination

5.1 Agency Coordination

There are no proposed permanent or temporary impacts to the Yuma Main Canal as a result of the project. The proposed bridge work will occur outside of the active channel and, thus, will not require permits from the California Department of Fish and Wildlife. The Yuma Main Canal, which is a man-made structure built wholly in uplands, is not within the jurisdiction of the U.S. Army Corps of Engineers and the California Regional Water Quality Control Board.

The original bridge pylons will be removed by crane; best management practices will be employed to minimize removal impacts and will not alter the streambed or employ dredging activities.

Table 4: Expected Impacts

Area	Endangered/threatened/ Species of Concern Habitat	Riparian Habitat	Wetlands	Wildlife Corridors	Local Ordinances	Waters of the U.S.
2.4 acres	None with avoidance/minimization/mitigation measures listed	No	No	No	No	No

6. References

Baldwin, Bruce G., et al, The Jepson Desert Manual, Los Angeles, University of California Press, 2002.

Behler, Jack L., and F. Wayne King, Natural Audubon Society Field Guide to North American Reptiles & Amphibians, New York, Chanticleer Press, 1996.

Birds of the World, https://birdsoftheworld.org/bow/species/banswa/cur/foodhabits

Birds of the World, https://birdsoftheworld.org/bow/species/bktgna/cur/identification

Borror, Donald J. and Richard E. White, Insects, The Easton Press, Norwalk, Ct. 1970.

Bowers, Nora, Rick Bowers, Kenn Kaufman, Mammals of North America, Houghton Mifflin Company, Singapore, 2004.

California Native Plant Society, CNPS Inventory of Rare and Endangered Plants, online: www. Northcoast.com, November, 2022.

California Natural Diversity Database, November, 2022. Sacramento, Ca California Department of Fish and Wildlife.

https://msc.fema.gov/portal/search?AddressQuery=winterhaven%2C%20ca#searchresultsanchor

https://southwest.audubon.org/our-work/water/yuma-ridgways-rail

https://websoilsurvey.nrcs.usda.gov/app/

Griggs, Jack, American Bird Conservancy's Field Guide, All the Birds of North America, New York HarpersCollins Publishers, Inc. 1997.

Imperial County Planning and Building Department, General Plan, September 1, 2004.

Jameson, E.W., Hans J. Peeters, Mammals of California, Los Angeles, University of California, 2004.

Sawyer, John O. and Todd Keeler-Wolf, A Manual of California Vegetation, California Natural Plant Society, 2008.

Sibley, David Allen, The Sibley Guide To Birds, Alfred A. Knopf, New York, 2000.

United States Fish and Wildlife Service, Birds of Conservation Concern.

7. Appendix

Sensitive Botanical and Zoological Species (CNDDB/CNPS) Yuma Quadrangle (Nine Quad Search) November, 2022 and August, 2024

Biological Study Area Map

Photographs

FEI	/IA map		
Eng	ineering Plans		
Qu	alifications		

SENSITIVE BOTANICAL AND ZOOLOGICAL SPECIES (CNDDB/CNPS) SPECIES

Yuma East and West Nine Quad November 2022/August 2024

ZOOLOGI	ICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	навітат	OBSERVATION/ SITE POTENTIAL	
American badger	Taxidea taxus	SSC	Burrowing animals that feed on ground squirrels, rabbits, gophers and other small animals. Prefer grasslands, agricultural areas.	Found in drier open areas with friable soils	None seen; no burrows observed with badger characteristics. Not expected because of farming activities	
Arizona Bells vireo	Vireo bellii arizonae	Endangered	V.b. arizonae is a small 4.0-4.75 inch (10-12 cm) bird with drab gray-green plumage above and white to yellow plumage below, with sides and flanks faintly washed with grayish olive-yellow. This bird has a white-eye ring and two pale wing bars, with the lower bar being prominent. The feet and bill are bluish-gray. It has a thickened bill, heavy legs and dark eyes.	Inhabits lowland riparian areas, with willows, mesquite and seepwillows. The vireo prefers dense, low, shrubby vegetation in riparian areas. Below 1066m (3500 ft). Lower sonoran zone in desert riparian communities,	No riparian communities	
Arizona Myotis	Myotis occultus	SSC	Medium sized Myotis (total length = 80.0-97.0 mm [3.2-3.88 in.] and forearm length = 36.0-41.0 mm [1.44-1.64 in.]) with sleek glossy fur. Small ears (11.0-16.0 mm [0.44-0.64 in.]) and large feet (8.0-11.0 mm [0.32-0.44 in.]) are characteristic. Long hairs occur on the toes and extend beyond the tips of the claws. Color often bright, generally tawny, ochraceous, pale tan, or reddish-brown to dark brown. It is the only long-footed (i.e. hind foot length >8.0 mm [0.32 in.]) Myotis in Arizona with a gradually sloping forehead and the only Myotis in Arizona with only 1 small upper premolar behind the canine. In the rare individual with 2, it is on 1 side only or 1 is crowded out of alignment.	pine and oak-pine woodland near water. However, it is also found along permanent water or in riparian forest in some desert areas such as along the lower Colorado and Verde rivers. In New Mexico it is considered to be resident around large permanent bodies of water and transient elsewhere. Vegetation zone is not thought to be an important influence there.		

zoologica	AL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL	
banded Gila monster	nded Gila monster Cinctum		It has a stocky body with a large head and a short, fat tail. The skin consists of many round, bony scales, a feature that was common amongst the dinosaurs but is unusual in today's reptiles. Gila monsters have a striking bright pink and black coloration	They inhabit scrubland, succulent desert, and oak woodland, seeking shelter in burrows, thickets, and under rocks in locations with ready access to moisture.	No habitat	
Burrowing Owl	Athene cunicularia	CDFG: SC Species of Concern	Small raptors that nest in burrows that have been borrowed from other species in open grassland areas. Have adapted well in Imperial County using canals/drains/ditches to establish burrows and foraging for insects in agricultural fields	Open, dry annual or perennial grasslands; deserts & scrublands	No owls or burrows found on site. Could be found around adjacent agricultural fields	
California leaf-nosed bat	Macrotus californicus	SSC	The California leaf-nosed bat weighs between 12 and 20 grams, has a wingspan of over 30 centimeters and a body length of over 6 centimeters, and is brown in color. As its name implies, it has a triangular fleshy growth of skin, called a noseleaf, protruding above the nose	California leaf-nosed bats can be found in Sonoran and Mojave Desert scrub habitats in the Colorado River valley in southern California, Nevada and Arizona, and throughout western Mexico. It is nonmigratory and does not hibernate.	No caves or abandoned mines in adjacent habitat; not expected.	
Colorado Desert fringe- toed lizard	Uma notata	SSC	2 3/4 to 4 4/5 inches long from snout to vent (7 - 12,2 cm). (Stebbins 2003) The tail is about the same length as the body. Color is white, with a contrasting pattern of broken black lengthwise lines and round, eye-like spots	Sparsely-vegetated arid areas with fine wind-blown sand, including dunes, flats with sandy hummocks formed around the bases of vegetation, washes, and the banks of rivers. Needs fine, loose sand for burrowing.	No riparian communities, none expected	
Colorado pikeminnow	Ptychocheilus lucius	State and ferderally endangered	It has an elongated body reminiscent of the pike. The cone-shaped and somewhat flattened head is elongated, forming nearly a quarter of the body length. Color grades from bright olive green on the back to a paler yellowish shade on the flanks, to white underneath. Young fish also have a dark spot on the caudal fin. Both the dorsal and anal fins typically have nine rays. The pharyngeal teeth are long and hooked	Their usual habitat is the backwaters of the turbulent and turbid rivers that make up the Colorado system.	No habitat; not part of the Colorado River; not expected	

ZOOLOGICA	AL SPECIES	STATUS*	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL	
Crissal thrasher	Toxostoma crissale	SSC	A large thrasher found in the Southwestern United States to central Mexico. The bird grows to 32 cm (12.5 inches), and has a deeply curved bill. It can be found near water in dense underbrush, and in the low desert near canyon chaparral; seldom flies in the open.	Dense vegetation along streams/washes in mesquite/ willows/arroweed	No habitat; not expected	
desert tortoise	Gopherus agassizii	state and ferderally threatened	The head of a desert tortoise is scaly, and the body has thick skin. Desert tortoises also have extremely long nails, which are used in digging through the desert sand to find shelter. The upper shell of a desert tortoise ranges in length from 15 to 36 centimeters, and its color varies from dull brown to a dull yellow.	Desert tortoises live in different habitats in different parts of their range. In the south, (northern Sinaloa and southern Sonora) they inhabit thornscrub and tropical deciduous forests, further north, this habitat gives way to foothills thornscrub and Sonoron desertscrub, and in the northenmost part of their range (California, Nevada, and Utah), Mohave desertscrub.	No habitat; not expected	
elf owl	Micrathene whitneyi	Endangered	is a small grayish-brown owl about the size of a sparrow. It has pale yellow eyes highlighted by thin white "eyebrows" and a gray bill with a horn-colored tip.	found in the Southwestern United States, central Mexico, and the Baja California peninsula.The elf owl frequently inhabits woodpecker holes in saguaro cacti; it also nests in natural tree cavities.	No habitat; not expected	
flat-tailed horned lizard	Phrynosoma mcallii	SSC	Closely related to Desert horned lizard (scat indistinguishable); only found in Imperial, Riverside County, Ca and Yuma area, Az. Small round lizard with distinguishing round spots on back. Diet of ants; needs sandy soil, shade bushes to survive.	Desert washes/sandy areas with vegetative cover. Diet of ants	No habitat; not expected	
Gila woodpecker	Melanerpes uropygialis	Endangered	Bill black to grayish black with dark red to reddish hazel eyes. About 9.3 inches long with brownish green or bluish legs and feet. Black and white barring on back male has red cap on head. Buff-brown face, neck and breast with barred rump and central tail feathers.	Uncommon to resident in southern California along the Colorado River, and locally near Brawley. Occurs mostly in desert riparian and desert wash habitats. Cottonwoods and other desert riparian trees, shade trees, and date palms supply cover.	No habitat; not expected	

ZOOLOGI	CAL SPECIES	STATUS'	DESCRIPTION OF SPECIES	навітат	OBSERVATION/	
gilded flicker	Colaptes chrysoides	Endangered	Golden-yellow underwings distinguish the gilded flicker from the northern flicker found within the same region, which has red underwings. It is a largesized woodpecker (mean length of 29 cm (11 in).	of the Sonoran, Yuma, and eastern Colorado Desert regions of the southwestern United States and northwestern Mexico, including all of Baja California, except the extreme northwestern region.	No habitat; not expected	
Le Contes thrasher	Toxostoma lecontei	SSC	A large songbird with a very long tail and a very long, curved bill. It has short, rounded wings and long, strong legs	LeConte's thrasher is a pale bird found in the southwestern United States and northwestern Mexico. It prefers to live in deserts with very little vegetation, where it blends in with the sandy soils.	No habitat; not expected	
least bittern	lxobrychus exilis	SSC	is a small heron, the smallest member of the family Ardeidae. Least bitterns are a small secretive marsh bird averaging 11 - 14 inches (28-36cm) in length with a wingspan of 16 - 18 inches (41-46cm).	Found in the Americas. Nests are shallow cups woven of dead cattails, bulrushes, or occasionally twigs and may have nearby vegetation bent overhead giving it the appearance of a handbasket. Nests are placed in tall, dense stands of emergent vegetation over water 4-30 inches deep (10 - 75 cm) and are typically only a few meters from a nearby opening.	No habitat; not expected	
loggerhead shrike	Lanius ludovicianus	SSC	Loggerhead Shrikes are thick bodied songbirds. They have large, blocky heads and a thick bill with a small hook. The tail is fairly long and rounded.	Open country with scattered shrubs and trees is the typical habitat of Loggerhead Shrike, but the species can also be found in more heavily wooded habitats with large openings and in very short habitats with few or no trees.	Could be observed passing through area; sparse prey opportunities on site	
lowland leopard frog	Lithobates yavapaiensis	SSC	Tan,gray-brown or light gray green to green above; yellow below. Vague upper lip stripe, tuberculate skin. Dark network on rear of thighs; yellow groin color often extends onto rear of belly and underside of legs. Male will exhibit a swollen and darkened thumb base	Find in desert grassland and in woodlands. Uses permanent water sources, stays near water. Breed Feb-April. Bullfrogs are predators	Extirpated in most areas because of presence of bullfrogs. Not expected	
Lucys warbler	Leiothlypis luciae	SSC	The species' gray plumage is highlighted with rich cinnamon on the crown and rump. Lucy's Warblers nest in tree cavities—one of only two warbler species that do so (the other is the Prothonotary Warbler of the Southeast)	Lucy's Warbler nests in the driest habitat of any U.S. or Canada warbler: the mesquite bosques and riparian washes of the Desert Southwest. These scattered stands offer shade and insects, and Lucy's Warbler pairs may nest almost on top of each other when they find good patches of habitat.	No habitat; not expected	

zoologi	CAL SPECIES	STATUS1	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
olive-sided flycatcher	Contopus cooperi	SSC	This husky, barrel-chested flycatcher is the largest of the pewees, with heavy grayish markings on the sides as if the bird is wearing a waistcoat.	The Olive-sided Flycatcher whistles an instantly recognizable quick, three beers! across its rugged habitat of coniferous mountain forests, bogs, and muskeg.	No habitat; not expected
pallid bat	Antrozous pallidus	SSC	Antrozous pallidus is a large (forearm 48?60 mm), pale bat with large ears, blunt snout (with ridge across the top), and a distinctive skunk?like odor. Pallid bats are gregarious, and often roost in colonies of between 20 and several hundred individuals	Pallid bats are typically found in arid or semi-arid habitats, often in mountainous or rocky areas near water. They are also found over open, sparsely vegetated grasslands.	No roosting habitat; may hunt over water; not expected to roost on site
razorback sucker	Xyrauchen texanus	State and ferderally endangered	One of the largest suckers in North America can grow to up to 13 pounds and lengths exceeding 3 feet. The razorback is brownish-green with a yellow to white-colored belly and has an abrupt, bony hump on its back shaped like an upsidedown boat keel	Colorado River	No habitat; not expected
Sonoran Desert toad	Incilius alvarius	SSC	Large: 7.5 inches or more in length. Smooth, typically olive-green/brown skin, cranial crests, and prominent, elongated glands on both sides of the back of the head (parotoid glands) and on the hind legs. Young toads have small dark, orange-tipped spots on the back. Larger tadpoles are gray or brown with a rounded tail tip, and grow to about 2.25 inches	Sonoran Desert scrub, semi- desert grasslands. Can be tied to permanent water, such as major rivers or the edges of agriculture. May be found many miles from water, particularly during the summer monsoons. Can be found in rodent burrows or underground retreats.	Habitat not favorable; no rodent or burrows available on site
Sonoran mud turtle	Kinosternon sonoriense	SSC	Mud turtles lack an entoplastron (the near-circular plastral bone located along the midline, in between the forelimbs, and in between the epiplastra and hypoplastra). The kinosternid carapace is normally domed	ranges from north temperate to tropical habitats, and from rain forest to grasslands to desert. It includes totally aquatic to semi-terrestrial species,	Not seen; not expected water swift

ZOOLOGICAL SPECIES		STATUS1	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL	
Sonoran yellow warbler	Setophaga petechia sonorana	SSC	In summer, the buttery yellow males sing their sweet whistled song from willows, wet thickets, and roadsides across almost all of North America. The females and immatures aren't as bright, and lack the male's rich chestnut streaking, but their overall warm yellow tones, unmarked faces, and prominent black eyes help pick them out	Listen for Yellow Warblers singing when you're in wet woods, thickets, or streamsides—they're one of the most commonly heard warblers in spring and summer.	No habitat; not expected	
southwestern willow flycatcher	Empidonax traillii extimus	State and ferderally endangered	Small; usually a little less than 6 inches in length, including tail. Conspicuous light-colored wingbars. Lacks the conspicuous pale eyering of many similar Empidonax species. Overall, body brownish-olive to graygreen above. Throat whitish, breast pale olive, and belly yellowish. Bill relatively large; lower mandible completely pale. The breeding range of extimus includes Arizona and adjacent states.	At low elevations, breeds principally in dense willow, cottonwood, and tamarisk thickets and in woodlands, along streams and rivers. Migrants may occur more widely. Prefers riparian willow/cottonwood but will use salt cedar thickets	No habitat; not expected	
summer tanager	Piranga rubra	SSC	The only completely red bird in North America, the strawberry-colored male Summer Tanager is an eyecatching sight against the green leaves of the forest canopy. The mustard-yellow female is harder to spot, though both sexes have a very distinctive chuckling call note.	Look for them in open woodlands (particularly of oaks and other deciduous trees) where they are usually in the mid-canopy and above.	No habitat; not expected	
Townsends big-eared bat	Corynorhinus townsendii	SSC	Townsend's big-eared bats are medium-sized bats with broad wings. They have two large, fleshy glands on either side of the muzzle. The snout is short with elongated nostril slits. Coloration varies from population, although all fur colors tend to be some hue of brown or gray	Their most typical habitat is arid western desert scrub and pine forest regions. These agile fliers venture out to forage only after dark, using their keen echolocation to hunt moths and other insects. In the spring and summer, females form maternity colonies in mines, caves, or buildings.	No roosting habitat; may hun over water; not expected to roost on site	

ZOOLOGI	CAL SPECIES	STATUS1	DESCRIPTION OF SPECIES	навітат	OBSERVATION/ SITE POTENTIAL
Vauxs swift	Chaetura vauxi	SSC	An aerialist of western forests, Vaux's Swift is a dark, tiny-bodied, narrowwinged bird much like the Chimney Swift of the eastern U.S. They spend most of the day in the air, taking small insects and spiders in rapid, twisting flight. They roost and even nest communally in hollow trees in mature evergreen forests (less often in chimneys).	Found in areas rich in flying insects, including forest openings, edges of waterways, and over burned areas.	Could be found foraging in areas adjacent to site during migration.
vermilion flycatcher	Pyrocephalus rubinus	SSC	Length: 5 inches The adult male has a Bright red cap, throat and underparts; with a Black eyeline, nape, back, wings, and tail The Immature male similar to female but has variable amount of red on underparts. The female and immature has Brown upperparts with White underparts with faint streaks on breast with an undertail coverts tinged pink The adult male Vermilion Flycatcher is very distinctive. The female and immatures are more nondescript but the streaking on the breast and pink tinge to the undertail coverts distinguish them from other flycatchers.	Frequents streams and ponds in arid areas; agricultural areas	Could be found foraging in areas adjacent to site; not expected onsite
western yellow-billed cuckoo	Coccyzus americanus occidentalis	Threatened and Endangered	Medium-sized cuckoo with gray-brown upperparts and white underparts. Eye-rings are pale yellow. Bill is mostly yellow. Wings are gray-brown with rufous primaries. Tail is long and has white-spotted black edges. Sexes are similar	Found in forest and open woodlands, especially in areas with dense undergrowth, such as parks, riparian woodlands, and thickets	No habitat; not expected
yellow warbler	Setophaga petechia	SSC	In summer, the buttery yellow males sing their sweet whistled song from willows, wet thickets, and roadsides across almost all of North America. The females and immatures aren't as bright, and lack the male's rich chestnut streaking, but their overall warm yellow tones, unmarked faces, and prominent black eyes help pick them out	Spend the breeding season in thickets and other disturbed or regrowing habitats, particularly along streams and wetlands. Found among willows but also live in the West where they may occur up to about 9,000 feet elevation. On their wintering grounds Yellow Warblers live in mangrove forests, dry scrub, marshes, and forests, typically in lowlands but occasionally up to 8,500 feet elevation.	

ZOOLOGICAL SPECIES		STATUS ¹	DESCRIPTION OF SPECIES	навітат	OBSERVATION/ SITE POTENTIAL	
yellow-breasted chat	lcteria virens	SSC	Yellow-breasted Chats are noticeably larger than all other warblers, reaching a length of 7.5 in (19 cm) and a wingspan of 9.75 in (24.8 cm). These birds have olive upperparts with white bellies and yellow throats and breasts; they also have long tails, thick heavy bills, large white eye-rings, and dark legs	The breeding habitats of this species are dense, brushy areas and hedgerows. The nests of these birds are cup-shaped, and are placed in thick shrubs. These birds eat insects and berries, and will forage in dense vegetation, occasionally gripping food with their feet.	No habitat; not expected	
yellow-headed blackbird	Xanthocephalus xanthocephalus	SSC	Large, black, with a yellow head, a white patch on black wings; and a call that sounds like a rusty farm gate opening.	Perch out of view in cattails or reeds	No habitat, no cattails or reeds; not expected	
Yuma hispid cotton rat	Sigmodon hispidus eremicus	SSC	A subspecies of Sigmodon hispidus of large size, long tail and hind feet, large skull, dorsum, including head, pale; sides pale ochraceous" (Hoffmeister 1986). Head and body 5"-8" (127-203mm). Tail 3.5"-6" (81-152mm). Weight 4-7oz. Skull has 16 teeth. 8-10 mammae.	Dense grassy areas such as fields and along roadside edges, brushy or weedy areas among weeds and cattails along the Colorado River and streams or ponds, in irrigated fields, and desert scrub (AGFD 1988).	No habitat; not expected	
Yuma Ridgways rail	Rallus obsoletus yumanensis	Threatened and Endangered	A chickenlike marsh bird with a long, slightly drooping bill and an often upturned tail. Light brownish with dark streaks above. Rust-colored breast; bold, vertical gray and white bars on the flanks; white undertail coverts. Very shy.	Lives in freshwater and brackish marshes. Prefers dense cattails, bulrushes, and other aquatic vegetation. Nests in riverine wetlands near upland, in shallow sites dominated by mature vegetation, often in the base of a shrub. Prefers denser cover in winter than in summer.	No habitat, no cattails or reeds; not expected	
Yuma ringtail	Bassariscus astutus yumanensis	FP	Small cat like animal	Ringtails utilize a variety of habitats. They prefer habitats with rocky outcroppings, canyons, or talus slopes and can be found in semi-arid country, deserts, chaparral, oak woodlands, pinyon pine woodlands, juniper woodlands and montane conifer forests	No habitat; not expected	

PLANT SPECIES		STATUS'	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL	
giant spanish-needle	Palafoxia arida var gigantea	CNPS 1B.2	The erect, slender stem grows 30–60 cm tall, branching in the lower half and is sparsely leaved. It is glandular and hairy on the upper parts. The glabrous, glandular leaves are lanceolate, 3–20 mm wide and 4–7.5 cm long, and are arranged alternately.	These are drought-tolerant, annual herbs growing on sandy plains, dunes, deserts (Mojave desert, Sonoran desert) and rangeland, native to North America and Mexico	No habitat; not expected	
Eliassons woolly tidestromia	Tidestromia eliassoniana	2B.2	annual or subshrub perennial plants native to desert and semi-arid regions of the western United States, Mexico and tropical America	desert habitat	No habitat; not expected	
saguaro	Carnegiea gigantea	28.2	a tree-like cactus species in the monotypic genus Carneg iea that can grow to be over 12 meters (40 feet) tall. The saguaro is a columnar cactus that grows notable branches, usually referred to as arms. Over 50 arms may grow on one plant, with one specimen having 78 arms.	It is native to the Sonoran Desert in Arizona, the Mexican state of Sonora, and the Whipple Mountains and Imperial County areas of California.	No habitat; not expected	
Wiggins croton	Croton wigginsit	2B.2	shrub approaches a meter-3 feet in height. Its sparse foliage is made up of long oval-shaped leaves covered in a coating of white hairs. It is dioecious, with male plants bearing staminate flowers with thready stamens and female plants bearing pistillate flowers composed of the rounded immature fruits	native to California, and also found in Baja California; Sonora, Mexico and Arizona Sand dunes	No habitat; not expected	
Harwoods milk-vetch	Astragalus insularis var. harwoodii	2B.2	Annual; +- gray strigose. Stem: decumbent to ascending, 540 cm, slender. Leaf: 212 cm; leaflets (9)1119(21), +- spaced, 420 mm, +- narrowly elliptic or oblong, tips generally notched. Inflorescence: among leaves; flowers 49, spaced, early spreading, then reflexed.	Sandy or gravelly areas; Elevation: < 500 m.	No habitat; not expected	

PLANT SPECIES		STATUS'	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL	
narrow-leaf sandpaper- plant	Petalonyx linearis	2B.3	Plant 15100 cm. Leaf: generally sessile, 1025 mm, linear to narrowly (ob)lanceolate, obtuse to acute, entire to irregularly toothed. Inflorescence: 410 cm; outer bract 58 mm, ovate to +- round; inner bracts 3-4 mm, ovate, +- cordate, acute to notched, lobed; pedicels 12 mm. Flower: petals 25.5 mm, free, white; stamens 3- 7 mm, +- exserted; style +- 3- 6 mm	Sandy or rocky canyons, generally in creosote-bush scrub; Elevation: < 1000 m.	No habitat; not expected	
mud nama	Nama stenocarpa	28.2	Plant short-soft-silky-hairy and short-glandular-hairy; some hairs stiff, swollen at base. Stem: prostrate to ascending, 840 cm, branches many. Leaf: petiole 0(3) mm; 530 mm, oblanceolate, oblong, or spoon-shaped, base generally +- clasping stem, margins wavy, generally +- rolled under.	marshes and swampy valley wetlands Intermittently wet areas; Elevation: < 810 m.	No habitat; not expected	
desert beardtongue	Penstemon pseudospectabilis ssp. pseudospectabilis	28.2	The plant is generally a shrub growing to a maximum height of one meter, with many erect stems. The thin leaves are roughly oval with wide pointed tips and serrated edges. They are arranged oppositely in pairs and many pairs are completely fused at the bases about the stem, forming a disc.	Native to hot, arid locations; Gravelly or rocky places, usually mountain or high desert	No habitat; not expected	

PLANT SPECIES		STATUS1	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL	
Arizona cottontop	Digitaria californica var. californica	2B.3	Cespitose perennial herb. Stem: generally erect, 40-100 cm. Leaf: sheath glabrous or long-hairy; ligule 16 mm, entire or ragged; blade generally 212 cm, 2-5 mm wide, glabrous to tomentose. Inflorescence: panicle-like with 410 appressed to ascending 1° branches (2° branches occasionally present); spikelets paired, unequally stalked. Spikelet: 34 mm (except hairs), lanceolate; lower glume 0.40.6 mm, translucent, veinless; upper glume 2.5-5.1 mm, 3-veined; lemma 2.5-5 mm, 3-5(7)-veined; upper glume, lower lemma densely hairy, hairs 1.5-5 mm, white to purple.	Rocky hillsides; Elevation: < 1500 m.	No habitat; not expected	
roughstalk witch grass	Panicum hirticaule ssp. hirticaule	2B.1	Annual. Stem: 18 dm. Leaf: sheath 2-6 cm, axis glabrous to short-hairy; ligule membrane 0.52 mm, ciliate; blade 720 cm, 3-15 mm wide, upper surface generally sparsely short- hairy. Inflorescence: 520 cm, open; 1° branches 38 cm, glabrous; spikelets 12 per node, stalk 0.53 mm, generally appressed. Spikelet: +- 2.53 mm, +- 1 mm wide, lanceolate to ovate, green; axis between glumes and florets visible; lower glume + 1.52.5 mm, generally 5- veined, acute; lower floret sterile, lemma 7-veined, acuminate to acute, palea generally < lemma; upper floret 0.70.8 × lower floret, stipitate, with paired crescent-shaped scars, often enlarged.	Ecology: Sandy soils, open sites, creosote-bush scrub; Elevation: < 1400 m. Bioregional Distribution: D; Distribution Outside California: to Texas, South America. Flowering Time: Aug—Dec	No habitat; not expected	

CNPS Species or Co	mmunity Level		
G1 = Less than 6 viable element occurrences (EOs) OR less than 1,000 individuals OR less than 2,000 acres,			
G2 = 6-20 EOs OR 1,000-3,000 individuals OR 2,000-10,000 acres			
G3 = 21-80 EOs OR 3,000-10,000 individuals OR 10,000-50,000 acres.			
G4 = Apparently secure; this rank is clearly lower than G3 but factors exist to cause some concern; i.e., there	is some threat, or somewhat narrow habitat.		
G5 = Population or stand demonstrably secure to ineradicable due to being commonly found in the world.			
State Ran	king		
The state rank (S-rank) is assigned much the same way as the global rank, except state ranks in California often also contain a threat designation attached to the S-rank.	The R-E-D Code contains information on Rarity, Endangerment, and Distribution, ranked as a 1, 2, or 3 for each value (as below). This code was originally known as the R-E-V-D Code (through the 3rd edition 1980), and the V (Vigor) was removed in the 4th edition (1984).		
S1 = Less than 6 EOs OR less than 1,000 individuals OR less than 2,000 acres	R - Rarity		
S1.1 = very threatened	1 – Rare, but found in sufficient numbers and distributed widely enough that the potential for extinction is low at this time		
S1.2 = threatened	2 – Distributed in a limited number of occurrences, occasionally more if each occurrence is small		
S1.3 = no current threats known	3 – Distributed in one to several highly restricted occurrences, or present in such small numbers that it is seldom reported		
S2 = 6-20 EOs OR 1,000-3,000 individuals OR 2,000-10,000 acres	E - Endangerment		
52.1 = very threatened	1 – Not very endangered in California		
S2.2 = threatened	2 – Fairly endangered in California		
S2.3 = no current threats known	3 – Seriously endangered in California		
S3 = 21-80 EOs or 3,000-10,000 individuals OR 10,000-50,000 acres	D - Distribution		
53.1 = very threatened	1 – More or less widespread outside California		
S3.2 = threatened	2 – Rare outside California		
S3.3 = no current threats known	3 – Endemic to California		
S4 = Apparently secure within California; this rank is clearly lower than S3 but factors exist to cause some concern; i.e. there is some threat, or somewhat narrow habitat. NO THREAT RANK.			
SS = Demonstrably secure to ineradicable in California. NO THREAT RANK.			

Sources: CDFW/CNDDB 2022/4, California Wildlife 2022/4; CNPS 2022/4;

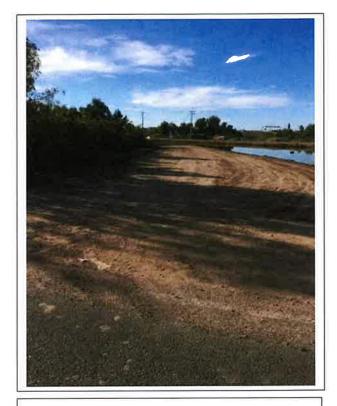
USFWS, 2022/4

State/CDFW:

E = Listed as an endangered species; or previously known as "rare, fully

protected" Listed as an endangered species

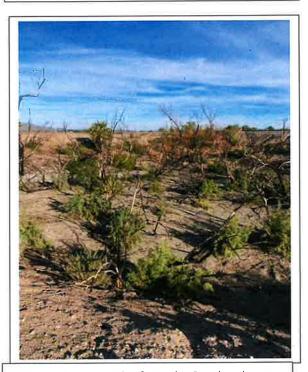
EEC ORIGINAL PKG

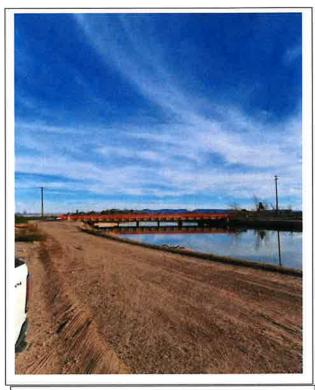

1Status: Federal: E =

BIOLOGICAL RESOURCES MAP

PHOTOGRAPHS

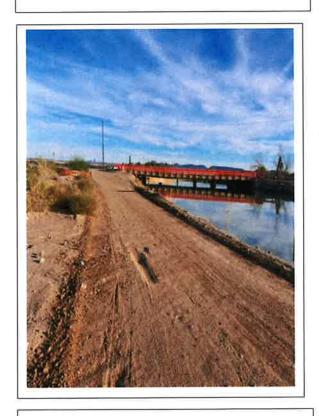

PHOTOGRAPHS 2022


1. The east bank south of Picacho Road. was surveyed

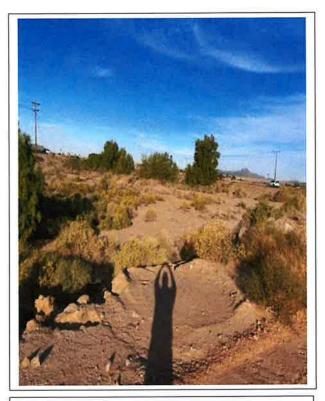

3. North side of Picacho Road was surveyed

2. Saltcedars on site and adjacent to site were surveyed for nests; none found

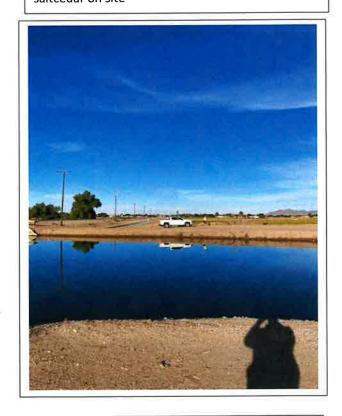
4. Burned area north of Picacho Road and east of Yuma Main Canal Approximately 0 33acre area with saltcedar regrowth


5. Bridge to be replaced; looking north sparse vegetation along banks of Yuma Main Canal

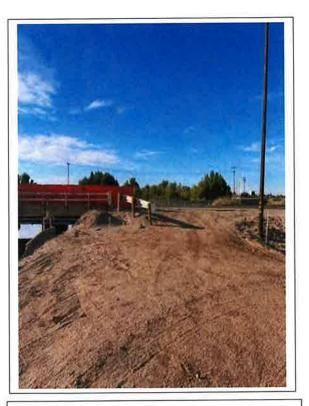
7. Looking north from west end of site; crops off site in background

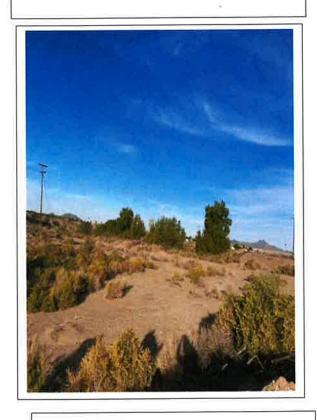


6. Desert shaggymane on site



8. Facing north at bridge; ruderal vegetation to left

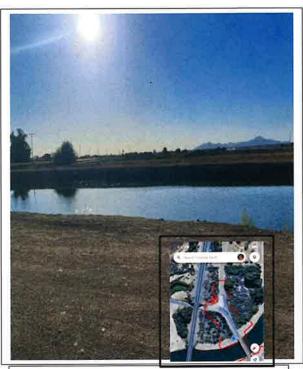

EEC ORIGINAL PKG


9. Facing west at bridge; ruderal vegetation and saltcedar on site

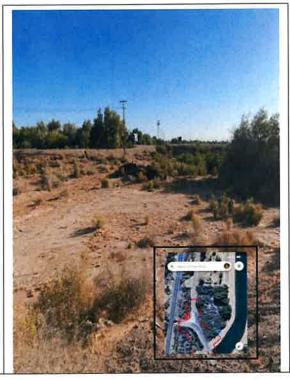
11. West at northeast end of site; no vegetation observed along Yuma Main Canal

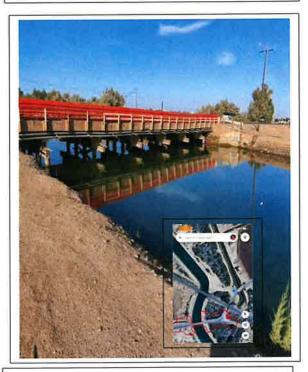


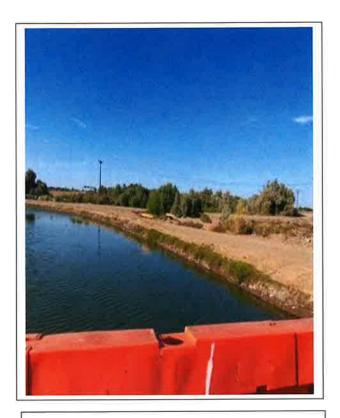
10. Facing south from north side of C St at bridge

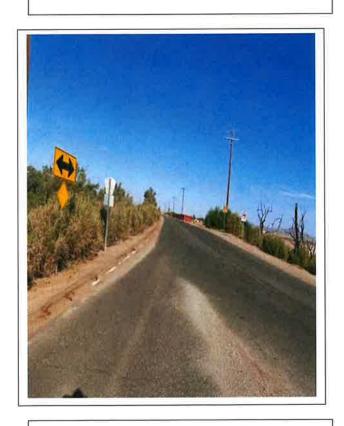


12. Typical ruderal vegetation found on site

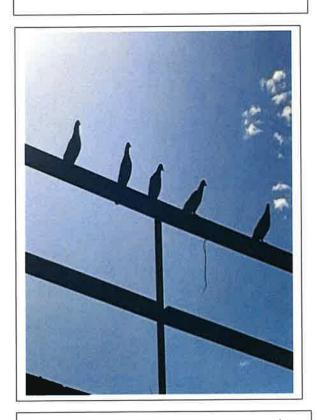

PHOTOGRAPHS 2024

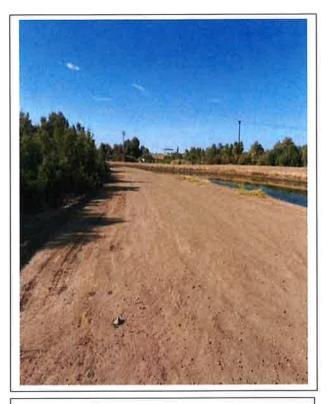

1. Facing south towards Picacho road at burned area in buffer zone 8/8

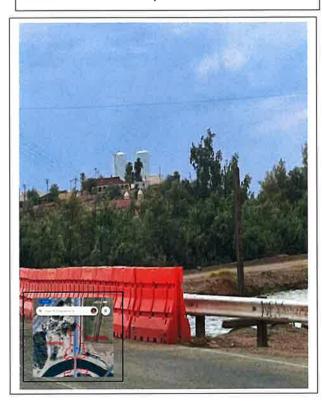

3. Facing west at buffer zone looking at canal and disced field. One mature saltcedar in background 8/8


2. Buffer zone looking south to Picacho road. Not much vegetation, mostly arrowweed and saltbush 8/8


4. Facing south at bridge from north side 8/8 EEC ORIGINAL PKG


5. Facing south while on bridge 8/8

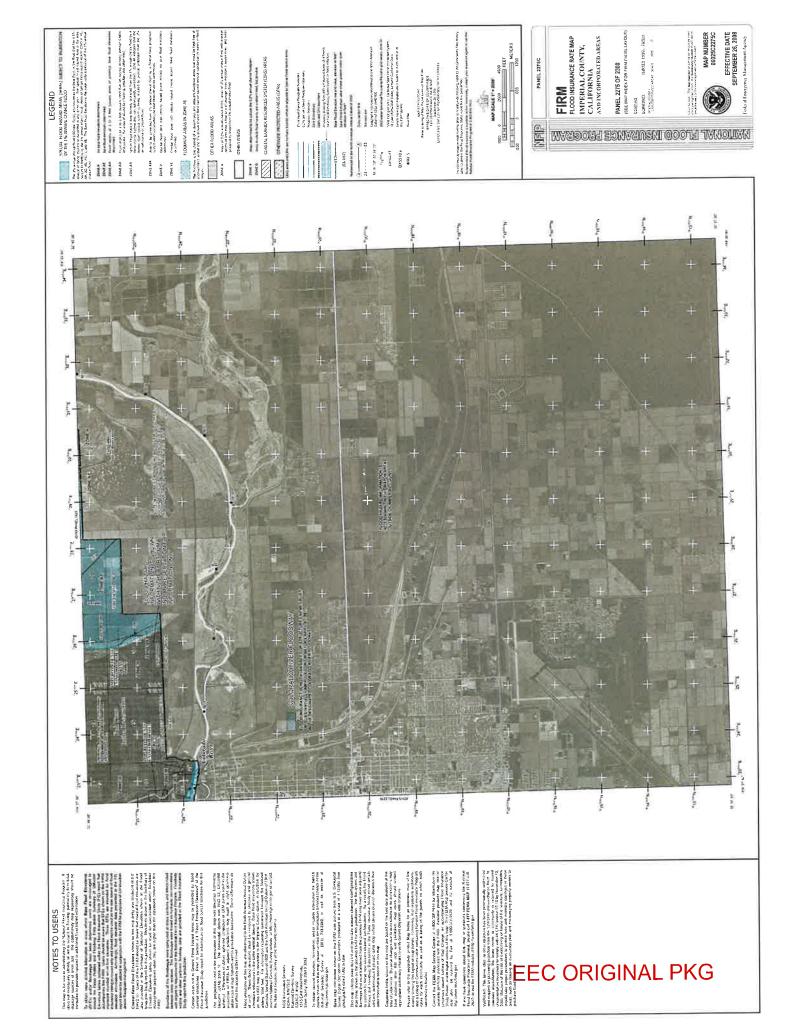

7. Facing west looking at Picacho bridge 8/8


6. Facing east while standing on bridge 8/8

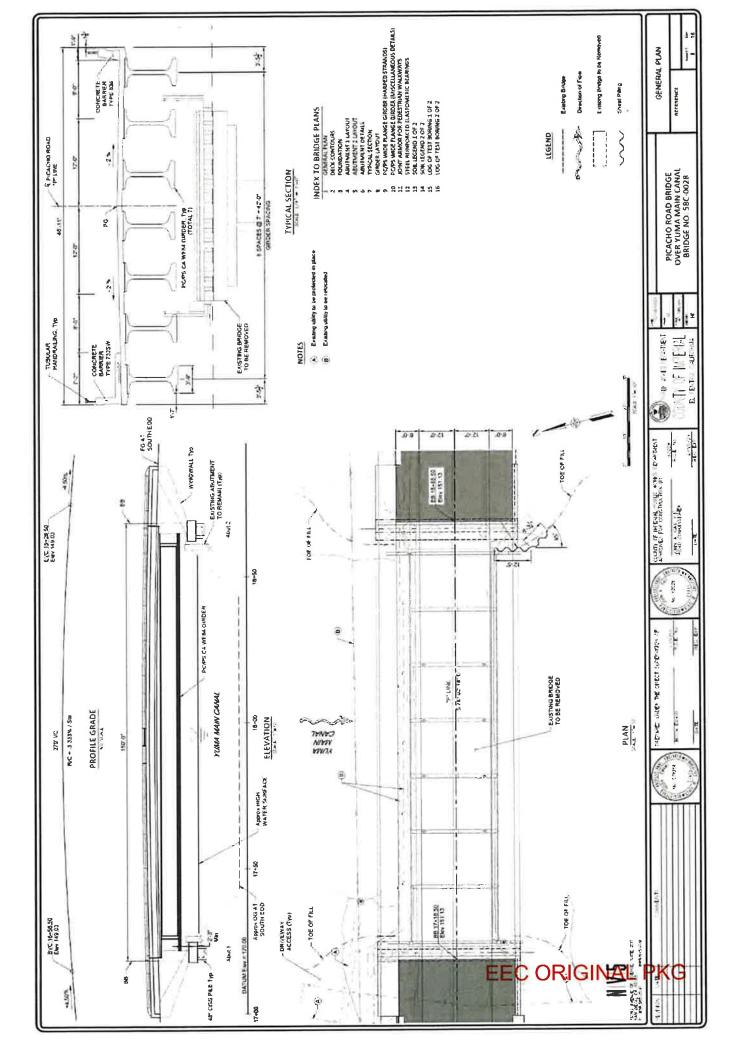
8. Mourning doves perching on the bridge railing; no nests observed 8/8 EEC ORIGINAL PKG

9. Facing south from bridge; looking at a two roads between canal 8/8

11. Vacant lot with vegetation south of Picacho road 8/9



10. Disced field to the north outside of buffer zone 8/9



12. Vacant lot with over grown vegetation in buffer zone 8/9

FEMA MAP

ENGINEERING PLANS

QUALIFICATIONS

GLENNA MARIE BARRETT

PO Box 636 Imperial, California 92251 (760) 425-0688 glennabarrett@outlook.com

PROFILE

Organized and focused individual, adept at implementing multifaceted projects while working alone or as an integral part of a team .Skilled in client/employee communications ,report preparation ,program analyses and development. Cost conscious ,safety oriented and empathetic .A strong communicator with excellent interpersonal skills ,which allows development of rapport with individuals on all levels . A sound professional attitude ,strong work ethic and pride in personal performance.

WORK EXPERIENCE

Senior Biologist Barrett's Biological Surveys, Imperial County, CA April 2016-currently. Principal Biological Consultant, Barrett Enterprises. Imperial, CA December 2001 - currently. Compile information and complete local, state, and federal government forms; such as conditional use permits, reclamation plan applications, Financial Assurance Cost Estimates, zone changes, CEQA, Environmental Evaluation Committee responses, and 501 (c)(3) tax exemption applications. Act as liaison between local businesses and local, state, and federal government agencies. Certified to survey for Flat-Tailed Horned Lizards in California and Arizona. Certified to survey for the Desert Tortoise.

Kruger- Environmental Compliance Coordinator (ECC) for Seville Solar Complex for a 626-acre solar farm in Imperial County, CA. Compiled and submitted data and reports for APCD such as equipment lists and man hours, water hours for dust suppression; Planning reports such as weekly monitoring reports and scheduling with the third party monitor for work on BLM land; Assisted in writing the Emergency Response Action Plan; CDFW quarterly reports for the Incidental Take Permit for the Flat Tail Horned Lizard (FTHL), CNDDB reports, FTHL Observation Data Sheets, site tours and any other information required by CDFW; Agriculture Commissioner's Office quarterly reports; provided the hazardous reporting information for the CERS online reporting system; assisted writing the FTHL ITP; trained new hires; contacted various local businesses for different on-call services; also provided any updates for plans and schedules necessary throughout the life of the project; etc. (January 2015- March 2016). Grant writing experience: Awarded two grants for BUOW educational programs for \$15,000 each from Imperial Valley Community Foundation. Awarded \$35,700 for a total of \$75,000 with matching funds to establish the Imperial Valley Small Business Development Center with the Imperial Reginal Alliance. Awarded \$450,000 from the California Public Utilities Commission for a broadband connectivity initiative in Imperial County with Imperial Reginal Alliance and Imperial Valley Economic Development Corporation (IVEDC).

FIELD EXPERIENCE

Ms. Barrett has done the field work and contributed to the required reports for the following projects:

•8ME-Burrowing Owl/MBTA/Avian Mortality Monitoring and training for the Mount Signal Solar

Projects in Calexico, CA (April 2010-2022)

•Salton Sea Species Conservation Habitat Project - Imperial County, CA: Nov 2020 - July 2022 monitoring construction for desert pupfish, Ridgway Rails and other species. Found both species on site and consulted with agencies for protective measures.

- •Burrtec- FTHL/MBTA Surveys in Salton City, CA: Team leader for eight people to complete a preconstruction site sweep for 320 acres in Imperial County. 2014-2022
- •Applied Biological Consulting- Approved Biological Monitor on DPV2: The 500kV transmission line traverses approximately 153 mi from Bythe, CA to Menifee in Riverside County, CA. Crossing private, state and Federal lands, such as the Bureau of Land Management [BLM],

U.S. Forest Service [USFS]. Desert tortoise, nesting birds, fringe toed lizard, flat tailed lizard (November 2011 to May 31, 2013)

• Chandi Group, Conduct Habitat Assessment Survey (as outlined in Western Riverside Multispecies Habitat Conservation Plan: Burrowing Owl/Narrow Endemic Species) within the City of Jurupa Valley, Riverside County, 2015

EDUCATION AND TRAINING

Received Bachelor of Science in Business Administration with a focus on Management, along with Economics and Leadership minors, December 2000. Humboldt State University, Arcata, CA. Special Status/listed species observed/ identified, surveyed, monitored and/or relocated: Mohave desert tortoise, Coachella valley milkvetch, Desert kit fox, Mountain lion, Coachella valley fringe toed lizard, Mohave fringe toed lizard, Stephen's kangaroo rat, Mohave ground squirrel, Coast horned lizard, Flat-Tail Horned lizard, Burrowing Owl.

Extensive knowledge in southwestern United States, non-migratory and migratory avian biology and ecology. Strong knowledge of common Flora and Fauna communities associated with Southern California and surrounding environs. CEQA, NEPA, California Endangered Species Act (CESA) and Federal Endangered Species Act (ESA) knowledge gained through work experience. I have excellent analytical skills, multi-tasking and writing abilities. My past work experience has provided me with many years of hands on experience working with and managing others to find practical solutions to solve problems and achieve common goals.

CERTIFICATIONS/ WORKSHOPS

- Desert Pupfish Training CA Department of Fish and Wildlife Sharon Keeney, Summer/Fall 2019-21
- Introduction to Plant Identification CA Native Plant Society June. 2019
- FTHL Workshop, 2008 El Centro BLM office.
- Yuma Clapper Rail Training Colorado River Yuma Bird Festival AZ Game and Fish 2008
- USFW Desert Tortoise Egg Handling Desert Tortoise Council Survey Techniques Workshop Certificate, 2008 and 2010.
- Anza Borrego State Park Wildflower Identification Workshop, 2010.
- Southwest Willow Flycatcher Workshop Kernville, CA, 2010.
- SCE TRTP Construction Monitoring Training Class and WEAP Redlands, CA 2011.
- DPV2 Construction Monitoring Training Class and WEAP Santa Ana, CA 2011.
- Helicopter flight trained on DPV2, 2012.
- Certified to handle/ move venomous snakes on DPV2, 2012.
- Bat monitoring with Ms. Pat Brown BLM El Centro, CA Office, 2010.
- Salton Sea International Bird Festival 2007 Coordinator
- Mountain Plover/ Long-billed Curlew surveys, L.A. Museum of Natural History
- Presented at the Fourth Annual BUOW Symposium in Pasco, Washington, 2014.
- Board Member- Colorado River Citizens Forum, 2014-2016.
- BUOW Educational outreach grantee from IVCF, interacting with IID, IVROP, ICFB, Ag Commissioner's Office, 2015.
- Friends of the Sonny Bono National Wildlife Refuge, Member 2015

Jacob Calanno

Post Office Box 458 Niland, California 92257 760-550-4214

Biological Surveys and Monitoring, Mechanical Process Applications, Field operations. SPECIALTIES:

EDUCATION: Imperial Valley College, Imperial, Ca. - Municipal Water and Waste Water

Treatment; Licensing pending.

COMPUTER

Basic computer skills, Lab View for Engineers. SKILLS:

CERTIFIED SPECIALIZED

Environmental Review & Compliance for Natural Gas Facilities Seminar- June 5-7, 2012 TRAINING:

Desert tortoise Surveying, Monitoring and Handling Techniques Certificate Nov. 5-6, 2012

Flat Tail Horn Lizard Training- June 20, 2012

Introduction to Plant Identification, CA Native Plant Society, June, 2019

Desert Pupfish Training CA Department of Fish and Wildlife, Sharon Keeney, Summer Fall

2019

40 Hour Hazwoper Feb. 8, 2013 **CALIFORNIA OSHA TITLE-2011** Confine Space Training, 2005 Lockout/Tagout, 2005 Respirator Training, 2005 Operators Safety Training, 2005

Foreman Field Crew Supervisory and Operations Training, 2005

Biological surveyor and Monitor/ Field Operations Crew Foreman/Operations Technician SUMMARY:

For the past ten years I have been specifically working on biological surveys and

monitoring including burrowing owl, flat tail horned lizard, desert tortoise and migratory birds. I have 15 years' experience in the environmental remediation industry. My area of expertise is in biological monitoring, remedial mechanical applications, equipment,

operations and maintenance programs.

Training and hands on experience working in the field with endangered species:

Desert Tortoise and the Flat Tail Horned Lizard, Desert Pupfish, Ridgway Rail followed compliance policy and procedure when encountering endangered species. This training was received while working on specific projects such as:

WORK EXPERIENCE:

Barrett's Biological Surveys 2012-18

Salton Sea Species Conservation Habitat Project: Imperial, CA: Nov 2020 -current monitoring construction for desert pupfish, Ridgway Rails and other species. Found both species on site and consulted with agencies for protective measures. 8 hrs/day/5 days per week

Project Salton City Burrtec Landfill: 320 acre clearance and provided FTHL training to construction crew(42 hrs)

Project AECOM/IID Burrowing Owl habitat surveys June, 2015

Project Imperial County Public Works Desert Tortoise/MBTA monitoring: 195.7 hours at Walters

Camp, near Palo Verde, CA

Project Mesquite Mine: 30 acre desert tortoise clearance; fence installation monitoring (25 hrs)

Project Oat Mine: FTHL monitoring (186 hrs) Project CalTrans: FTHL monitoring (50 hrs)

Project: Arms and Dudes Film Project FTHL/MBTA monitoring Project PKG Project Niland Wastewater Project BUOW/Biological surveys (5 days)

Project: Hell's Kitchen MBTA Nesting Bird/Burrowing Owl Surveys (5 days)
BLM, El Centro, CA office: Volunteer Bat Surveys with Pat Brown (20 hours)

CDFW, Avian Carcass Collection Volunteer (5 hours)

2005 to 2010 Volper, LLC, Burbank, Ca.

Provided field supervision of construction

Responsibilities include plan and coordinate field construction and activities,

field reports and tracking hours.

Manager/Grower

2003 to 2005 Cape Environmental, Irvine, California

Field Operations Supervisor/Sr. Operations Technician

Provided technical equipment applications support on various environmental

remediation projects.

Responsibilities included; construction, planning and field supervision for the installation, operation and maintenance of ground water remediation equipment.

2000 to 2003 <u>Foster Wheeler Environmental, San Diego, California</u>

Field Operation Supervisor/Sr. Operations Technician

Provided technical equipment applications support on various environmental

remediation projects.

Responsibilities included; construction, planning and field supervision for the

installation, operation and maintenance of ground water remediation

equipment.

REFERENCES:

Mr. Fredrick Rivera

IR Manager,

Naval Air Facility - El Centro

760-339-2226

Marie Barrett

2035 Forrester Rd

El Centro, CA 92243

760 427 7006

Ed Cooney

Engineering Technician

FEAD/PW Bldg.504 NAF El Centro, CA 92243

760-339-2469

Jeremy Scheffler

310 N H Street Imperial, CA 92251 jscheffler29@gmail.com 760-457-5154

INTRO:

I am a recent graduate from CSU Chico, and I majored in Environmental Science. I pride myself on my problem-solving abilities and my capacity to view situations through different perspectives to find a solution.

EDUCATION:

August 2016- May 2020	California State University, Chico
	Undergraduate, Senior GPA: 3.04
	Environmental Science: Atmosphere & Climate
	Pathway Minor: Sustainability
August 2012- June 2016	Imperial High School, Imperial, CA
	Diploma, June 2016 GPA: 3.4
SKILLS:	
-Experience with tools	-Experience with groups to complete assignments
-Knowledge of Plant and Insects	-Experience with inspection of ag commodities
-Experience creating/presenting reports	-Familiarity with ArcGIS software
-Analyzing Data	-Communication (Written & Verbal)
EXPERIENCE:	
January 2022-Present	Wildlife Biologist, Imperial County, Westmorland, CA
•	monitored construction areas at Salton Sea Species
	Conservation Habitat Project. Identified nests and
	established buffer zones. Searched for/identified tree
	and ground nesting birds and notified lead biologist
	and helped establish buffers. Monitored to protect
	buffer zones. Identified various avian species.
	Observed burrowing owls/burrows, killdeer/black-
	tailed gnatcatcher/dove/stilt nests/eggs; 100 hrs.
June-Sept, 2022	Wildlife Biologist, Imperial County, Niland, CA
	monitored construction areas at ORMAT Wister Solar
	Project. Gained knowledge of mechanics of
	construction monitoring. Identified various avian
	species and determined buffer zones. 25 hrs.
Nov, 22-Oct,23	Wildlife Biologist, Imperial County, Niland, CA
	monitored solar farm for bird carcasses. Surveyed solar
	farm with a second biologist to determine any bird
	mortality and completed a format so that a statistical
	analysis could be performed
April 11/18/Nov 5,2021	Wildlife Biologist, Imperial County, Niland, CA
	Under guidance of Barrett's Biological Surveys
	biologist Marie and Glenna Barrett, performed
	transects on 100 acres observing for desert tortoise,
	Harwoods' milkyetch and American badger
	preconstruction surveys prior to solar project PK
	preconstruction surveys Front Only Grand PK

April 2, 2021	construction. Found milkvetch plants, assisted collecting plant samples; observed raven nest, performed transect surveys. 20 hours. Wildlife Biologist, Imperial County, Winterhaven, CA Under guidance of Barrett's Biological Surveys biologists Marie and Glenna Barrett, Barrett's Biological Surveys performed a pedestrian nesting bird
March 1 - Current (2021)	survey on a linear project of 1mile. Found nesting egrets in a rookery. 2 hours. Agriculture Biologist, Imperial County, El Centro, CA -Enforce compliance of CCR and CFAC -Inspect and investigate pesticide use and incidents -Sample and ship specimens to lab for ID
September 21 - February 16 (2021)	Agriculture Technician, CDFA, Winterhaven, CA
, , ,	-Enforce CA Food and Ag Code
	-Inspect Ag commodities for invasive pests
	-Input necessary data into computer
January 24 – May 15 (2020)	Teaching Assistant/ Grader, Shane Mayor, CSU Chico
	-Teaching Assistant for the Weather Class -Assist Students With Help on Course Material
	-Assist Students with Help on Course Material -Grade Assignments and Tests
RELEVANT COURSE WORK:	-Grade Assignments and Tests
-Ecology (Fall 2018)	-Evolutionary Biology (Sp. 2018)
-Earth System Science (Sp. 2019)	-Water & Soils (Fall 2017)
-Sustainability Issues (Fall 2019)	-Senior Seminar in Environmental Science (Sp. 2020)
ACHIEVEMENTS:	Schlor Schling. III Elivino.iii.e.i.e.i.e.i.e.i.e.i.e.i.e.i.e.i.e.
Spring 2020	Sustainability Leadership, Certificate, CSU Chico
Spring 2020	Dean's Honor List, Certificate, CSU Chico
Fall 2019	Dean's Honor List, Certificate, CSU Chico

Date: August 27, 2024

To: John Gay, Director of Public Works

County of Imperial 155 S. 11th Street El Centro, CA 92243

From: Karry L. Blake, MA, RPA, Principal Archaeologist

NV5, Inc.

9450 SW Commerce Circle, Suite 300

Wilsonville, Oregon 97070

Subject: Cultural Resources Survey for the proposed Picacho Bridge Replacement over Yuma Main Canal Replacement Project, Bridge No. 58C-28, County Project No. 6811, County of Imperial, California

Dear Mr. Gay,

The following letter summarizes the results of the cultural resources survey conducted for the proposed Picacho Bridge over Yuma Main Canal Replacement Project.

Project Description

The County of Imperial, California (County) contracted NV5 to conduct a cultural resources survey and evaluation of the built environment for the proposed Picacho Bridge (CalTrans Bridge No. 58C-28) over Yuma Main Canal Replacement Project (project). The project is located along Picacho Rd. (S-24) 0.4-miles north of the Colorado River and California/Arizona border in Section 16 of Township 16 South, Range 22 East (Figure 1). The bridge spans the Yuma Main Canal and serves as a route into the Townsite of Winterhaven. The purpose of the proposed project is to replace the heavily deteriorated 7-span timber bridge with a new single span structure. Picacho Road Bridge was originally constructed in 1925 and was modified in 1935 and 1947. The original construction consisted of five (5) 19-foot spans supported by timber stringers with minor improvements over the years. The bridge is currently in poor condition and has safety concerns from age and outdated design standards. The proposed Project will replace the Picacho Road Bridge with a structure that reflects current bridge design standards. It is proposed to replace the existing bridge with a new Precast Prestressed Concrete Girder Bridge that spans over the canal with no intermediate supports, to minimize disturbance to canal operations during construction and to keep debris out of the canal as much as possible. Additionally, only the updated pile caps will be removed, but the original piles and pile caps will remain in place.

The Area of Potential Effect (APE) measures 4.38 acres and covers all areas of potential ground disturbing activities including those related to construction work for the bridge replacement, any repaving and/or improvement of existing roads, and staging areas. The APE has been updated since the original survey in October 2022. The changes from the original APE and the proposed staging areas can be seen in Figure 2. Construction of the bridge will involve excavation for and construction of concrete abutments situated on 48-inch diameter cast-in-steel-shell (CISS) concrete pile foundations. Excavation depths will reach a maximum of 10 feet from the existing roadway profile at the bridge abutments. Other temporary work

Legal Location:

T16S, R22E: Sect. 26 San Bernardino Meridian Yuma West, AZ, and Yuma

USGS Quads: Yuma V East, AZ

Project Type: Pedestrian survey

Project Acres:

4.38 3.07

Acres Surveyed: NV5 Project No.:

227521-00001136.00

includes removal of the existing abutments, falsework erection and removal, and installation of scour countermeasures at the abutments. New curb, gutter and sidewalk will be constructed on the north side of Picacho Road. Existing vegetation will need to be cleared and grubbed prior to grading operations. A temporary staging yard would be located within the existing Count right-of-way of Picacho Road between the bridge and Winterhaven Drive to accommodate the contractor's temporary facilities (see Figure 2 for the County right-of-way/staging area).

A cultural resources survey and evaluation of the built environment were conducted by NV5 Principal Archaeologist, Karry Blake, on October 12, 2022. No archaeological resources were identified during the survey. The built features including the bridge and Yuma Main Canal were examined and documented.

Regulatory Context

The County of Imperial anticipates receiving federal grant money from the Bridge Investment Program administered by the Federal Highway Administration (FHWA) for the Picacho Bridge project. In addition, the project is located in the County of Imperial on the Fort Yuma Indian Reservation and land withdrawn to the Bureau of Reclamation. Based on this combination of funding and jurisdictions, the project is subject to both State and Federal regulations. This includes the California Environmental Quality Act (CEQA). CEQA concerns two classes of cultural resources: "historical resources," which are defined in Public Resources Code Section 21084.1 and CEQA Guidelines Section 15064.5 and "unique archaeological resources," which are defined in Public Resources Code Section 21083. Through its federal nexus, the project must comply with Section 106 of the National Historic Preservation Act (as amended 54 USC 300101, formerly cited as 16 USC 470) and other applicable tribal state and federal regulations including the National Environmental Policy Act of 1969 (42 USC 4321; 42 USC 4331-4335)); the Archaeological Resources Protection Act (ARPA) of 1978 (16 USC 470aa-mm)); the American Indian Religious Freedom Act (AIRFA) of 1978 (42 USC 1996, 1996a); and the Native American Graves Protection and Repatriation Act (NAGPRA) (25 USC 3001-3013).

The Bureau of Reclamation will act as the lead federal agency for Section 106 compliance.

Tribal Consultation

The proposed project is fully within the Fort Yuma Indian Reservation thus tribal consultation was undertaken with the Fort Yuma Quechan Tribe. A meeting was facilitated between the Bureau of Reclamation, Fort Yuma Quechan Historic Preservation Office (Quechan HPO), and NV5 to discuss requirements for conducting cultural resource projects on Tribal land in Spring 2021. Quechan HPO was granted for the completion of the California Historic Resources Information System search in Summer 2021. Quechan THPO staff did not indicate any concern about Traditional Cultural Places within the proposed project area. In October 2022, prior to conducting fieldwork, a Plan of Work for the cultural resource survey was provided to the Quechan THPO to present to the Tribal Council for approval. After receipt of approval, fieldwork was completed on October 12, 2022. The lead federal agency (Bureau of Reclamation) will conduct government-to-government consultation with the Fort Yuma Quechan Indian Tribe on the report's findings.

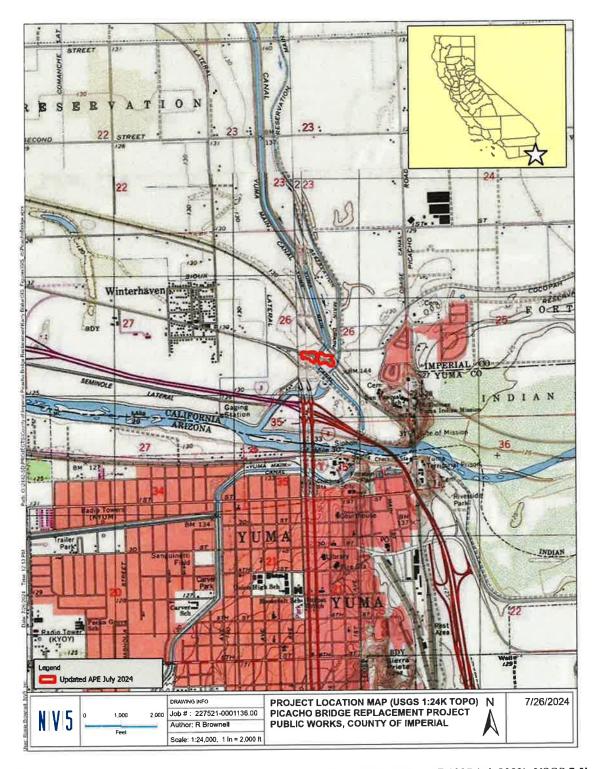


Figure 1: Project Location Map: Yuma East, AZ 1994 (ed. 1998) and Yuma West, AZ 1997 (ed. 2003), USGS 7.5' Series Quadrangles (1:24,000 Scale)

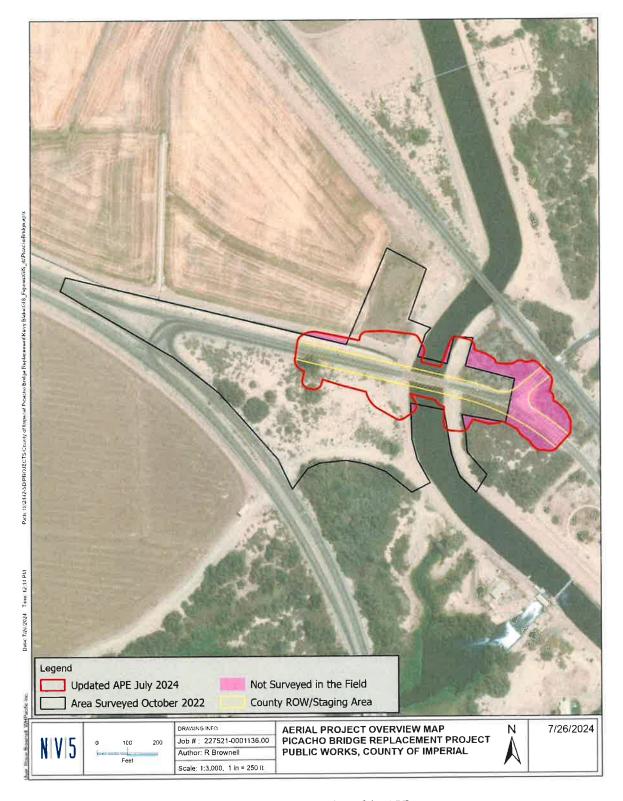


Figure 2: Aerial Overview of the APE

Environmental Setting

At 130 ft (40 m) above sea level, the project is located 0.4 miles north of the Colorado River. The Cargo Muchacho Mountains are 8.5 miles to the northwest, the Algodones Dunes are 13 miles to the west, and the Laguna and Gila Mountains are 11 miles to the east. The project is in the southeastern portion of the Colorado Desert Province and within the Lower Colorado/Gila River Valleys Ecoregion (Griffith et al. 2016; Norris and Web 1976).

The Colorado Desert Province is roughly bounded by the eastern Transverse Ranges to the north, the Colorado River to the east, the Peninsular Ranges to the west, and the Mexican border to the south. The province is characterized by low elevation ranging from approximately 130 ft (40 m) to 350 ft (107 m) above sea level distinguishing it from the higher elevation Mojave Desert Province to the north. The oldest exposed rocks are Precambrian crystalline gneisses, anorthosites, and schists found in the Chocolate, Cargo Muchacho, Palo Verde, Orocopia, Chuckwalla, and Little Chuckwalla mountains (Norris and Web 1976). One of the main features of the province is the Salton Basin dividing the Imperial Valley to the south and the Coachella Valley to the north. The center of the basin is the bed of historic Lake Cahuilla, a freshwater lake that went through many periods of filling and drying up over thousands of years finally drying up for the last time in the first half of the 18th century (Rockwell 2022). In 1905 the Colorado River jumped existing levees near the U.S./Mexico border and over the course of 18 months the entire volume of the river flowed into the Salton Basin forming the Salton Sea measuring 45 miles long, 17 miles wide, and 83 feet deep (National Audubon Society 2022).

The Lower Colorado/Gila River Valleys Ecoregion is located in low elevation corridors along the Colorado and lower Gila Rivers. Much of the landscape has been altered by invasive tamarisks now covering riverbanks which would normally have cottonwoods, willows, and mesquite. Upland areas are dominated by creosote bush and white bursage. A large amount of the land in this Ecoregion is under industrial-scale agricultural production including alfalfa, wheat, barley, lettuce, cotton, citrus, and melons (Griffith et al. 2016).

Soils in the project area are mapped by the National Resource Conservation Service (NRCS) as Holtville Clay in much of the western extent of the project area, Lagunita loamy sand in the north central portion, and Indio Silt Loam roughly encompassing the area between the canal and 100 ft to the west. Indio silt loam also covers the entire area on the east side of the canal. Holtville clay is mixed alluvium found on flood plains. It is more than 80 inches in depth to a restrictive feature and it is classified as prime farmland if irrigated and reclaimed of excess salts and sodium. Lagunita loamy sand is formed from recent mixed alluvium and is found on alluvial fans, flood plains, drainageways, and terraces. It is more than 80 inches in depth to a restrictive feature and it is classified as not prime farmland. Indio silt loam is mixed stream alluvium derived from igneous, metamorphic, and sedimentary rock. It is found on flood plains and is more than 80 inches in depth to a restrictive feature. It is classified as prime farmland if irrigated and reclaimed of excess salts and sodium (NRCS 2022).

Archaeological Overview

The precontact archaeological record of the Southern California can be divided into the following periods: the Terminal Pleistocene and Early Holocene (ca. 13,000 BC to 7000 BP), the Middle Holocene (ca. 7000 BP to 3500 BP), and the Late Holocene (ca. 3500 BP to Euro-American influence and contact in the mid-

18th to early-19th centuries) (Byrd and Raab 2007; Rick et al. 2005). As Sutton et al. (2010) note, the Colorado Desert itself is in an extreme environment and ecological conditions greatly affect its habitability. For example, trends in moisture levels likely influenced occupation strategies that may have left large pieces of desert abandoned or rarely visited during the drier periods. However, in relation to the project area, the Colorado River likely remained a vital point of water and food resources during both wet and dry periods and could have been occupied even during any period. Groups had large territories with shifting boundaries and often shared resources with other groups.

The region has a long history of known human occupation and the oldest evidence comes from the Channel Islands. Human remains found on Santa Rosa Island known as the "Arlington Springs Woman" date to 13,000 BP. The site at Daisy Cave (SMI-261) on San Miguel Island, one of the oldest known sites in California, has evidence of long-term occupation with archaeological material dating back to ca. 10,500 BP. (Erlandson et al. 1996; Glassow et al. 2010). Other sites on the Channel Islands have provided evidence of early human occupation and include intact shell midden deposits, basketry, and cordage. Clovis-style projectile points have also been found in the Mojave Desert, but due to limited finds, only sparse information has been gleaned about Paleo-Indian groups in the immediate area. It is inferred that they were highly mobile and lived in small groups in temporary camps near permanent water sources (Sutton 2010).

In the early Holocene, evidence emerges for the "Lake Mojave Period" between approximately 10,000 BP and 7,000 BP. This period is characterized by leaf-shaped knives, small leaf-shaped points, "Lake Mohave" and "Silver Lake" points, abundant scrapers, engraving tool, crescents, and a lack of groundstone implements (Warren 1967). The lack of groundstone could suggest a low-reliance on plant foods with groups relying more on a foraging-based strategy in relatively small social units. Sites do include a relatively high diversity of raw lithic materials and non-local material such as shell beads suggest that groups had wide spheres of interaction either through trade or travel (Sutton et al. 2010). However, the Late Pleistocene and Early Holocene offer scarce evidence for human presence in the Colorado Desert specifically, which is likely not due to a lack of human presence, but due to high mobility, small group size, instability of landforms such as the Colorado River Valley and simply, a lack of archaeological investigations in the area (Schaefer and Laylander 2010).

Archaeology of the Middle Holocene, ranging from approximately 7000 BP to 3500 BP, is characterized by a decrease in raw material diversity and an increase in groundstone use, possibly indicating an increase on plant food reliance. In addition, larger sites have been observed that correlate closely with water sources and contain substantial middens. This evidence could be related to larger groups using a collector-like settlement strategy based on centralized site locations in favorable locations used as bases for logistical forays into surrounding resource patches (Schaefer and Laylander 2010).

The Late Holocene, beginning in approximately 3500 BP and ending at European contact, is comprised of several distinct periods (called complexes) characterized by diagnostic projectile points and different site characteristics. The first of these complexes, the Gypsum Complex (2000 BC to AD 200), has few sites in the area and does not differ substantially from the previous periods. But the following complex, the Rose Spring Complex (AD 200 to 1100), is marked by a dramatic change in cultural systems with the arrival of bow and arrow technology. New technology brought an increase in population at least partially due to improved resource acquisition strategies including evidence of agricultural practices beginning around 700 AD. Archaeological evidence for the complex includes wikiups and pit houses suggestive of more intensive occupation. In addition, artifact assemblages diversify with the addition of knives, drills, pipes, bone awls, groundstone, marine shell ornaments and large quantities of obsidian. During the Rose Spring Complex, Patayans, ancestors of the Yavapai and Yuman peoples, made the first known ceramics known in the Colorado Desert (Sutton et al. 2010).

Ethnographic Background and Post Contact History

The projected is in the traditional territory of the Quechan (also known as Yuma) people. The Quechan people lived in a series of settlements or rancherias north and south of the Colorado River and Gila River confluence. People moved settlements through the year in response to river conditions and seasonal flooding. Traditional lodging included ramadas, dome-shaped arrowweed shelters during the farming season, and rancheria leaders and their families typically lived in three sided earthen shelters framed with posts and horizontal slats between which arrowweed was stuffed (Bee 1983).

Foraged and cultivated plant foods provided much of the Quechan diet. Foraged drought-resistant mesquite and screw bean seeds and pods were always important staples and particularly essential during drought or harvest failures. Crops planted in a seasonal rotation in post-flood silt deposits along the rivers included teparies, maize, watermelons, black-eyed beans, pumpkins, muskmelons, winter wheat, and wild grasses. Important material culture included mortars and pestles for processing plant foods, digging sticks, and bows and arrows (Bee 1983).

Estimates put the Quechan population at 4,000 on the eve of Euro-American contact. Hernando de Alarcón's Spanish company was recorded in Quechan territory as early as 1540 and may have been the first direct European contact with the tribe (Bee 1983). A Jesuit priest, Father Eusebio Francisco Kino visited in 1698 and in 1780 a Franciscan, Padre Fransico Garcé established two missions in Quechan territory. Within a year of the missions' establishment, the Quechan reclaimed control of their territory and maintained control until the mid-1850s (Waldman 1999). This contrasted with the establishment of 21 other missions between San Diego and San Francisco that succeeded in enforcing mass conversions of other tribes many of whom became laborers forced to work for missions or landowners. Although Spanish priests persisted in attempting to convert the Quechan, the Quechan did not suffer the same degree of cultural erasure as those peoples subjected to life under the missions (Bee 1983). However, diseases brought in by the Spanish and other Euro-Americans still decimated regional populations (Bean and Smith 1978).

The position of Quechan territory at the confluence of two major rivers made it a strategic and active area for soldiers and settlers moving through the area in the eighteenth and nineteenth centuries. In the midnineteenth century large numbers of Euro-American settlers began to pass through the area on their way into California. In 1852 Fort Yuma was built on a bluff near the confluence with the purpose of protecting settlers and other traffic through the area. By the late nineteenth century, the number of Euro-American settlers in the area continued to increase and settlers began to take the fertile river bottomlands traditionally farmed by the Quechan. The Fort Yuma Reservation was created by the federal government in 1883 and the tribe formally signed away most of its land under pressure in 1886 with the agreement only allowing for five acres per person living at the time. The rest of the land was sold at auction (the legality of this whole process was challenged for years by the tribe). Finally, after lengthy negotiations with the Department of the Interior, 25,000 acres of the original 1884 reservation were restored to the tribe in 1978 based on the government not meeting the original conditions (Bee 1983 and Waldman 1999). The tribe has been able to acquire additional land over the years and the Fort Yuma Quechan Indian Tribe reservation covers 45,000 acres and has over 3,200 enrolled members. Agriculture is the primary land use on the reservation (Fort Yuma Quechan Tribe 2022).

Records Research and Literature Review

NV5 archaeologist, Karry L. Blake, requested a records search of the APE and adjacent area from the California Historical Resources Information System (CHRIS). The search results were received from the South-Central Coastal Information center June 2021. This kind of search allows for predictions to be made regarding the occurrence and frequency of archaeological sites in areas that have not been previously identified. Results include an inventory of 20 surveys previously conducted within ¼-mile of the APE including nine surveys that cross the current APE. The surveys were conducted for a variety of projects including fiber optic and other utility lines, home sites, railroad work, bridge work, road construction, and water/sewer line projects. CHRIS provided copies of shapefiles showing survey and resource locations and copies of seven of the twenty survey reports cited in the results (Table 1). Two of those were surveys previously conducted in the APE (Maxon 1984 and von Werlhof 1996); no copies of site records were received.

In addition, historic maps including a General Land Office plat dating to 1854, 1857, and 1889, and USGS Topographic maps dating to 1952 and 1965 were examined for any pertinent cultural information. The 1857 plat shows a road with a northeast-southwest path in the vicinity of the project area, but no other development is clear in the General Land Office plats. By the 1952 topographic map, the Yuma Main Canal and Picacho Road are visible. The Yuma Main Canal is a historic linear resource constructed in 1912 and evaluated as eligible to the NRHP. Bridge 58C-28 on Picacho Road over the Yuma Main Canal was constructed in 1925 and rehabilitated in 1947. It was determined not eligible to the NRHP. The canal and bridge will be discussed further in the results section below.

Table 1: Previous Cultural Resource Investigations within 1/4-mile of the Project Area

CHRIS ID	Report Title and Reference
00447	Archaeological Resources of the Fort Yuma Indian Reservation Portion of Yuma Crossing National Historic Landmark in Imperial County, California and Yuma County, Arizona
	Stone, Lyle M. 1990
00598	Proposed Yuma Division Dredge Spoil
	Maxon 1984 .
00609	Archaeological Survey of the Yuma Division Colorado River Front Work and Levee System
	Prescott College Archaeological Survey 1973
00667	Archaeological Survey, Yuma County, Arizona, Colorado River International Salinity Control Project
	Gumerman and Weed 1973
00686	Archaeological Survey of Two Segments of the Interstate 8 Right-of-Way, Imperial County, California
	McDonald and Victorino 1997
00813	From Yuma Lift Station to Quechan Community Center, An Engineering Project Funded by An Environmental Protection Agency Borders 21 Program
	von Werlhof 2002
00851	Archaeological Investigations of Picacho Road and Yuma Main Canal Bridge, No. 58C0028
	von Werlhof 1996

Expected Resource Types

Although the location of the APE is likely in an area that saw significant levels of precontact and historic activity, its position in and adjacent to a road and bisected by a large canal means the that likely the entire APE has undergone significant ground disturbing activities related to construction activities (excavation, fill placement, dredging, etc.). For these reasons, the potential for the discovery of intact cultural resources was anticipated to be low. However, there is always a possibility of archaeological discovery, and it was anticipated that if found, cultural resources would most likely be pre-contact artifact scatters or isolates related to resource acquisition areas, historic artifacts related to canal construction and/or general household refuse related to historic-period dumps near the roadway.

Field Methods

Fieldwork was performed by NV5 Principal archaeologist, Karry L. Blake, on October 12, 2022. The archaeologist was provided with USGS topographic quadrangle maps and high-resolution aerial photographs depicting the APE. In addition, GIS shapefiles of the APE were uploaded to handheld FieldMaps application supported by a Juniper Geode device with sub-meter accuracy used to record the locations of survey transects, roads, and other features encountered during the field investigations. The project area was walked in parallel north-south transects spaced no more than 10 meters apart. Surface visibility averaged roughly 95 percent with areas of up to 100 percent visibility and some as low as 50 percent. No artifacts or cultural features were encountered during the pedestrian survey.

Results

Archaeological Pedestrian Survey

The project APE is heavily disturbed and filled with materials resulting from dredging the Yuma Main Canal (Figures 3 to 6). Southwest of the bridge the APE is primarily dredge materials with associated aquatic snails mixed in the sandy silt. Dredge materials deposited in this area have been periodically leveled to allow for the placement of additional materials around the margins of this space. These dredge spoils are located primarily in the southwest portion of the APE, but older spoils are in the northeast and southeast. Intact surfaces include areas in the northern half of the project area. Modern trash was frequently encountered throughout the APE. No cultural resources were encountered during this survey.

Update Regarding 2024 APE Change

The final APE has shifted from the original area surveyed in 2022. Although the original APE includes most of the revised version, there are a few areas along the eastern and northern portions of the APE that were not subject to pedestrian survey (please review Figure 2 for the details). Approximately 3.07 acres of the total 4.38 acres APE were surveyed. When Ms. Blake was onsite in October 2022, she noted that the eastern portion of the APE (including the adjacent unsurveyed portions) had been built up with dredged materials and therefore showed little likelihood of intact cultural deposits. As the new additions to the APE are capped with dredge materials, NV5 does not recommend additional an archaeological survey of the APE.

Figure 3: Overview of the southwest portion of the APE, view to the northwest

Figure 4: Overview of the northwest area of APE, view to the north

Figure 5: Overview of the northeast area of the APE, view to the southeast

Figure 6: Eroding dredge deposits found around the margins of the southwest portion of the APE

Historic Architectural Survey

Yuma Main Canal

The Yuma Main Canal is a historic property as it is part of the Yuma Project or Yuma Irrigation Project (YIP) which has been determined eligible for inclusion on the NRHP. The YIP was recommended National Register of Historic Places (NRHP) by Pfaff et al.'s (1999) report under Criteria A and C. The YIP was created by the United States Reclamation Service as a way of transferring water from the Colorado River to communities on both sides of the river: in Imperial County, California and Yuma County, Arizona (Pfaff et al. 1999). The YIP was originally divided into three administrative units, one of which, the Reservation Division, encompassed lands lying north and west of the Colorado River in California within the boundaries of the Quechan Indian Reservation which includes the current APE. The YIP originally included one diversion dam, ten primary canals measuring approximately 60 miles in length and approximately 218 miles of laterals. Surveys for the project began in 1903 and construction began in 1905. Project components included a dam to control and divert river water into adjoining canals. The Yuma Main Canal (sometimes referred to as the California Main Canal), is the largest canal of the YIP. It travels over 10 miles from the end of Laguna Dam southwest and south to the northern bank of the Colorado River where it crosses under

the river through an inverted siphon then travels west through Yuma before bifurcating into the East and West Main canals. The Yuma Main Canal was constructed in three sections starting in 1909 and completed in 1912 (Pfaff et al. 1999; Stene 1996).

Figure 7: Overview of Yuma Main Canal and Picacho Bridge access road, view to the south-southeast

Picacho Road Bridge over Yuma Main Canal (CalTrans Bridge No. 58C-28)

Picacho Road Bridge over Yuma Main Canal was constructed in 1925 and rehabilitated in 1947 (California Historic Bridge Inventory). It was previously determined not eligible for the NRHP (CalTrans 2019). An inspection of the bridge indicated that the bridge remains unchanged. It is a timber structure with an asphalt deck.

Figure 8: South side of the Picacho Bridge taken from the eastern end of the bridge, view to the west

Conclusions and Recommendations

Imperial County proposes to replace the failing bridge over the Yuma Main Canal along Picacho Road with a new structure. A cultural resources survey was conducted in compliance with CEQA and Section 106 requirements. No archaeological resources were encountered. Two historic resources were observed: the Picacho Road Bridge over Yuman Main Canal and the Yuma Main Canal.

Picacho Road Bridge over Yuma Main Canal (CalTrans Bridge No. 58C-28)

The existing bridge was put in place in 1947 and meets the age criteria to be considered as an above ground historic resource. Previous evaluation has recommended this structure as *not eligible* for the NRHP. NV5 concurs with this recommendation. It is the recommendation of NV5 that the construction of the proposed facilities will have **No Adverse Effect** upon any cultural resources. NV5 recommends that no further archaeological work is needed, and project development should proceed as planned.

Yuma Main Canal

The Yuma Main Canal is a historic property and will continue to convey its significance and maintain its integrity, therefore NV5 recommends a finding of No Adverse Effect on this historic property. Work on the bridge has been planned to minimize disturbance to canal operations during construction and to keep debris out of the canal as much as possible. Additionally, the original piles and pile caps will remain in place.

Development always presents the potential to expose previously undetected subsurface cultural resources during construction. If this should occur, all construction should cease, and a qualified archaeologist should be consulted. The protocols of an Inadvertent Discovery Plan (Appendix A) should be implemented. If human remains are encountered during excavation or other ground disturbing activities, work in and around the remains must halt and the Imperial County coroner notified and provisions of NAGPRA followed.

References Cited

Bean, Lowell John, and Charles R. Smith

1990 Gabrielino. In *California*, edited by Robert F. Heizer, pp. 538-549. Handbook of North American Indians, vol. 8, W.C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Bee, Robert L.

1983 Quechan. In *Southwest*, edited by Alfonso Ortiz, pp. 86-98. Handbook of North American Indians, vol. 10, W.C. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

Byrd, Brian F. and L. Mark Raab

Prehistory of the Southern Bight: Models for a New Millennium. In *Colonization, Culture, and Complexity: California's Chaotic Prehistory*, edited by Terry L. Jones and Katherine A. Klar, pp. 215-227. Altamira Press, Lanham, MD.

CalTrans

2019 Structure Maintenance & Investigations: Historical Significance- Local Agency Bridges. CalTrans.

Erlandson, Jon M., Douglas J. Kennett, B. Lynn Ingram, Daniel A. Guthrie, Don P. Morris, Mark A. Tveskov, G. James West, and Phillip L. Walker

1996 An Archaeological and Paleontological Chronology for Daisy Cave (CA-SMI-261), San Miguel Island, California. *Radiocarbon* 38(2): 169-228.

Fort Yuma Ouechan Tribe

2022 About Us. Fort Yuma Quechan tribe. Electronic document, https://www.quechantribe.com/about-us.html, accessed November 1, 2022.

Glassow, Michael

2010 Channel Islands National Park, Archaeological Overview and Assessment. Channel Islands National Park. (coauthor, compiler, and editor)

Griffith, G.E., Omernik, J.M., Smith, D.W., Cook, T.D., Tallyn, E., Moseley, K., and Johnson, C.B.

2016 Ecoregions of California (color poster with map, descriptive text, and photographs): Menlo Park, California.

Gumerman, George J. and Carol S. Weed

1973 Archaeological Survey, Yuma County, Arizona, Colorado River International Salinity Control Project. Prescott College Archaeological Survey. Submitted to the Bureau of Reclamation, Department of the Interior and the National Park Service (Contract No. CX80C040004).

Maxon, James

1984 Proposed Yuma Division Dredge Spoil. Submitted to the "regional environmental officer".

McDonald, Meg and Ken Victorino

1997 Archaeological Survey of Two Segments of the Interstate 8 Right-of-Way, Imperial County, California. ASM Affiliates. Submitted to the CalTrans.

National Audubon Society

2022 California: Short History of the Salton Sea. National Audubon Society, Audubon California. Electronic document, https://ca.audubon.org/short-history-salton-sea, accessed November 1, 2022.

Natural Resources Conservation Service (NRCS), USDA

2022 National Cooperative Soil Survey, Web Soil Survey. Electronic document, http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx, accessed November 8, 2022.

Norris, Robert M. and Robert W. Webb

1976 Geology of California. John Wiley & Sons Inc, Santa Barbara.

Pfaff, Christine, Rolla L. Queen, and David Clark

1999 The Historic Yuma Project: History, Resources Overview, and Assessment. Bureau of Reclamation, Denver.

Prescott College Archaeological Survey

1973 Archaeological Survey of the Yuma Division Colorado River Front Work and Levee System. Prescott College Archaeological Survey. Submitted to the Bureau of Reclamation, Department of the Interior.

Rick, Torben C., Jon M. Erlandson, Rene L. Vellanoweth, and Todd J. Braje

From Pleistocene Mariners to Complex Hunter-Gatherers: The Archaeology of the California Channel Islands. *Journal of World prehistory* 19: 169-228.

Rockwell, Thomas K., Aron J. Meltzner, Erik C. Haaker, and Danielle Madugo

The late Holocene history of Lake Cahuilla: Two thousand years of repeated fillings within the Salton Trough, Imperial Valley, California. *Quaternary Science Reviews* 282.

Schaefer, Jerry and Don Laylander

The Colorado Desert: Ancient Adaptations to Wetlands and Wastelands. In *California Prehistory: Colonization Culture and Complexity*, edited by Terry L. Jones and Kathryn A. Klar, pp. 247-258. Altamira Press, Lanham, MD.

Stene, Eric A.

1996 Yuma Project and Yuma Auxiliary Project. Historic Reclamation Projects. Bureau of Reclamation.

Stone, Lyle M.

Archaeological Resources of the Fort Yuma Indian Reservation Portion of Yuma Crossing National Historic Landmark in Imperial County, California and Yuma County, Arizona. Archaeological Research Services, Inc. Submitted to the Quechan Indian Tribe Fort Yuma Indian Reservation.

Sutton, Mark Q. Mark E Basgall, Jill K. Gardner, and Mark W. Allen

2010 Advances in Understanding Mojave Desert Prehistory. In *California Prehistory: Colonization Culture and Complexity*, edited by Terry L. Jones and Kathryn A. Klar, pp. 229-246. Altamira Press, Lanham, MD.

von Werlhof, Jay

1996 Archaeological Investigations of Picacho Road and Yuma Main Canal Bridge, No. 58C0028. Imperial Valley College Desert Museum. Submitted to County of Imperial, Department of Public Works.

2002 From Yuma Lift Station to Quechan Community Center, An Engineering Project Funded by An Environmental Protection Agency Borders 21 Program. ASM Affiliates. Submitted to the Environmental Protection Agency.

Waldman, Carl

1999 Encyclopedia of Native American Tribes. Checkmark Books, New York, NY.

Warren, Claude N.

1967 The San Dieguito Complex: A Review and Hypothesis. American Antiquity 32(2): 168-185.

Appendix A: Archaeological Inadvertent Discovery Plan (IDP)

Picacho Bridge Replacement over Yuma Main Canal Replacement Project, Bridge No. 58C-28, County Project No. 6811

How to use this document

Archaeology consists of the physical remains of the activities of people in the past. This IDP should be followed should any suspected archaeological sites, objects, or human remains are found. These are protected under Federal and State laws and their disturbance can result in criminal penalties.

This document pertains to the work of the Contractor, including any and all individuals, organizations, or companies associated with Picacho Bridge Replacement over Yuma Main Canal Replacement Project.

What may be encountered

Archaeology can be found during any ground-disturbing activity. If encountered all excavation and work in the area MUST STOP. Archaeological objects vary and can include evidence or remnants of historic-era and precontact activities by humans. Archaeological objects can include but are not limited to:

- Stone flakes, arrowheads, stone tools, bone or wooden tools, baskets, beads.
- Historic building materials such as nails, glass, metal such as cans, barrel rings, farm implements, ceramics, bottles, marbles, beads.
- o Layers of discolored earth resulting from hearth fire
- Structural remains such as foundations
- Shell Middens
- o Carved or engraved stone and/or metal coffin fittings, coffin wood
- Human skeletal remains and/or bone fragments which may be whole or fragmented.

For photographic examples of artifacts, please see the attached images (Human remains not included).

If there is an inadvertent discovery of any archaeological objects, see procedures below.

If in doubt call it in.

Discovery Procedures: What to do if you find something

- 1. Stop ALL work in the vicinity of the find
- 2. Secure and protect area of inadvertent discovery with 30 meter/100 foot buffer—work may continue outside of this buffer
- 3. Notify Project Manager and Agency Official
- 4. Project Manager will need to contact a professional archaeologist to assess the find.
- 5. If an archaeologist determines the find is an archaeological site or object, the stipulations of 36 CFR 800.13(b) for Post-review discoveries without prior planning, will apply.
- 6. For post-review discoveries, contact the California SHPO and the Bureau of Reclamation, Yuma Area Office, Environmental Planning Group (928) 343-8100.

Human Remains Procedures

- 1. If it is believed the find may be human remains, stop ALL work.
- 2. Secure and protect area of inadvertent discovery with 30 meter/100 foot buffer, then work may continue outside of this buffer with caution.
- 3. Cover remains from view and protect them from damage or exposure, restrict access, and leave in place until directed otherwise. **Do not take photographs. Do not speak to the media**.
- 4. If human remains are encountered, immediately notify the Bureau of Reclamation, Yuma Area Office, Environmental Planning Group (928) 343-8100. Also notify:
 - Project Manager
 - County of Imperial
 - Imperial County Coroner DO NOT CALL 911
 - Office of Historic Preservation (OHP)
 - Native American Heritage Commission (NAHC)
 - Appropriate Native American Tribes
- 5. If human remains are encountered and determined not to be a crime scene by the local Police Department and Imperial County Coroner, the procedures in 43 CFR 10.5 for Discovery of human remains or cultural items on Federal or Tribal lands, will be followed.
- Do not resume any work in the buffered area until a plan is developed and carried out between the Coroner, OHP, NAHC, and appropriate Native American Tribes or descendent groups and you are directed that work may proceed.
- 7. If human remains are encountered, immediately notify the Bureau of Reclamation, Yuma Area Office, Environmental Planning Group (928) 343-8100.

Contact Information

- Project Manager, Katherine Morrison: 562-787-3877
- County of Imperial, John Gay, Director of Public Works: 442-265-1818
- Archaeologist: to be identified at project implementation
- Imperial County Coroner: 760-339-6302
- California Office of Historic Preservation (OHP)

- o State Historic Preservation Officer (SHPO), Julianne Polanco: 916-445-7000
- o Deputy SHPO, Tribal Liaison, Jody L. Brown, 916-445-7000
- NAHC, Andrew Green: 916-573-1072/916-373-3710
- Appropriate Tribes and Descendent Groups (to be determined after OHP and NAHC consultation)

Confidentiality

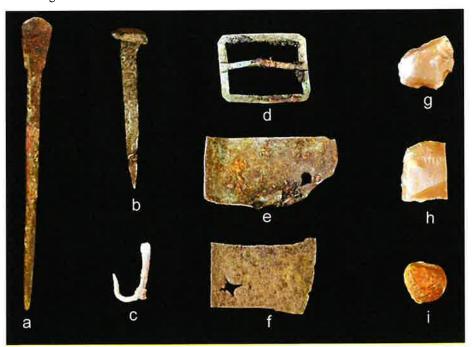
The Picacho Bridge Replacement over Yuma Main Canal Replacement Project employees shall make their best efforts, in accordance with federal and state law, to ensure that its personnel and contractors keep the discovery confidential. The media, or any third-party member or members of the public are **not** to be contacted or have information regarding the discovery. Prior to any release, the responsible agencies and Tribes/Descendent Groups shall concur on the amount of information, if any, to be released to the public.

To protect fragile, vulnerable, or threatened sites, the National Historic Preservation Act, as amended (Section 304 [16 U.S.C. 470s-3]), and California State Health and Safety Code, Section 7050.5, and PRC Section 5097.98 establishes that the location of archaeological sites, both on land and underwater, shall be confidential.

Supplementary Information: Visual Reference Guide to Encountering Archaeology

Stone flakes

Stone tool fragments

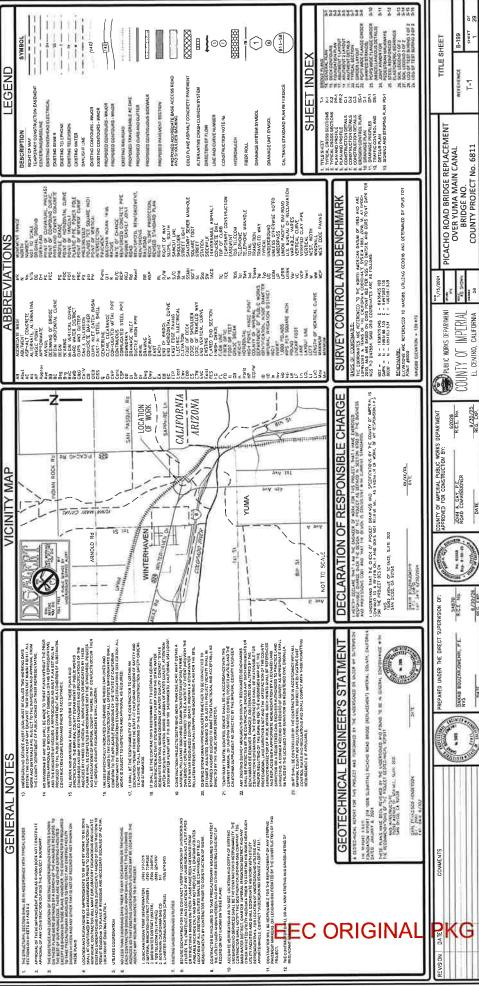

Cordage

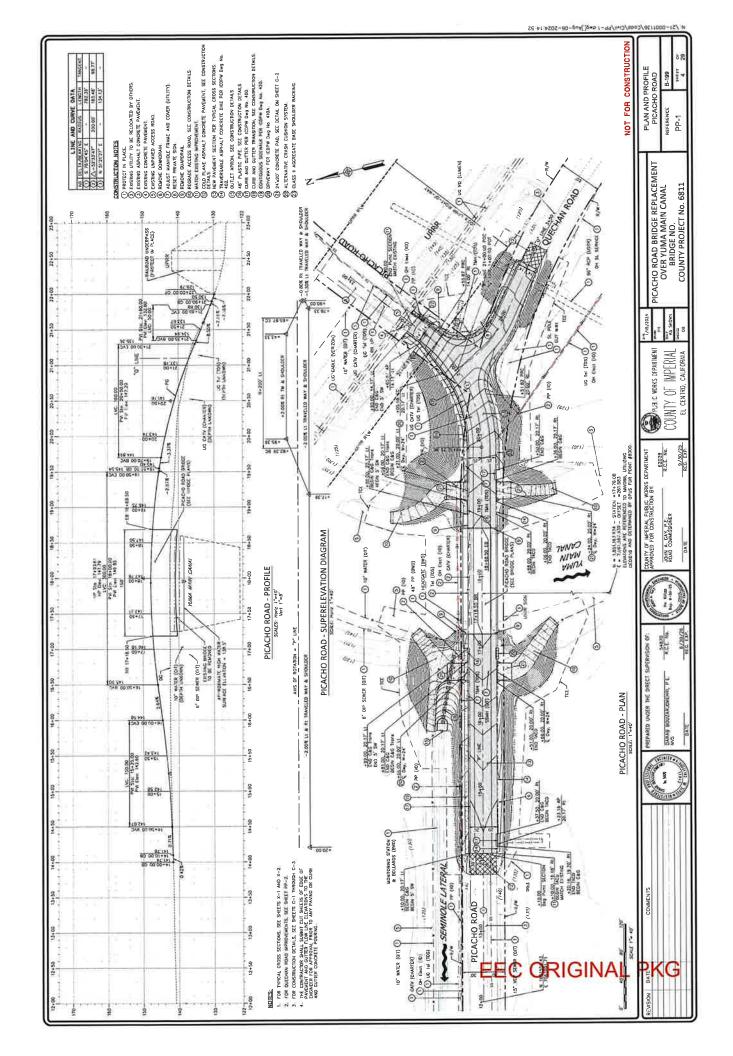

Shell midden

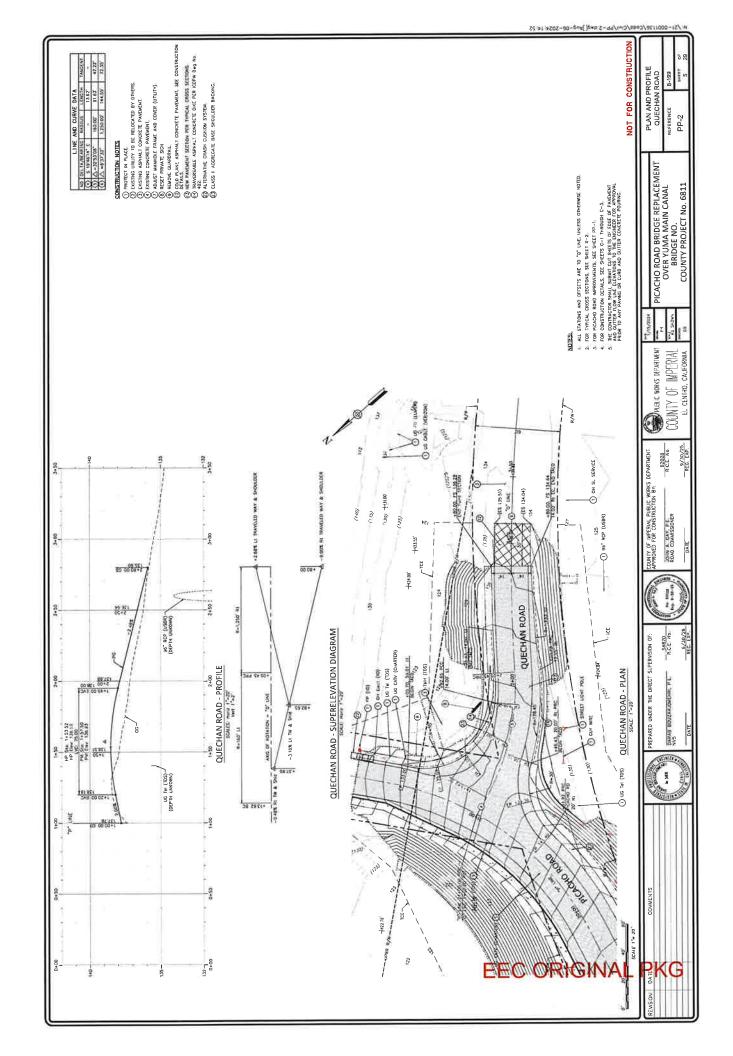
Historic glass artifacts

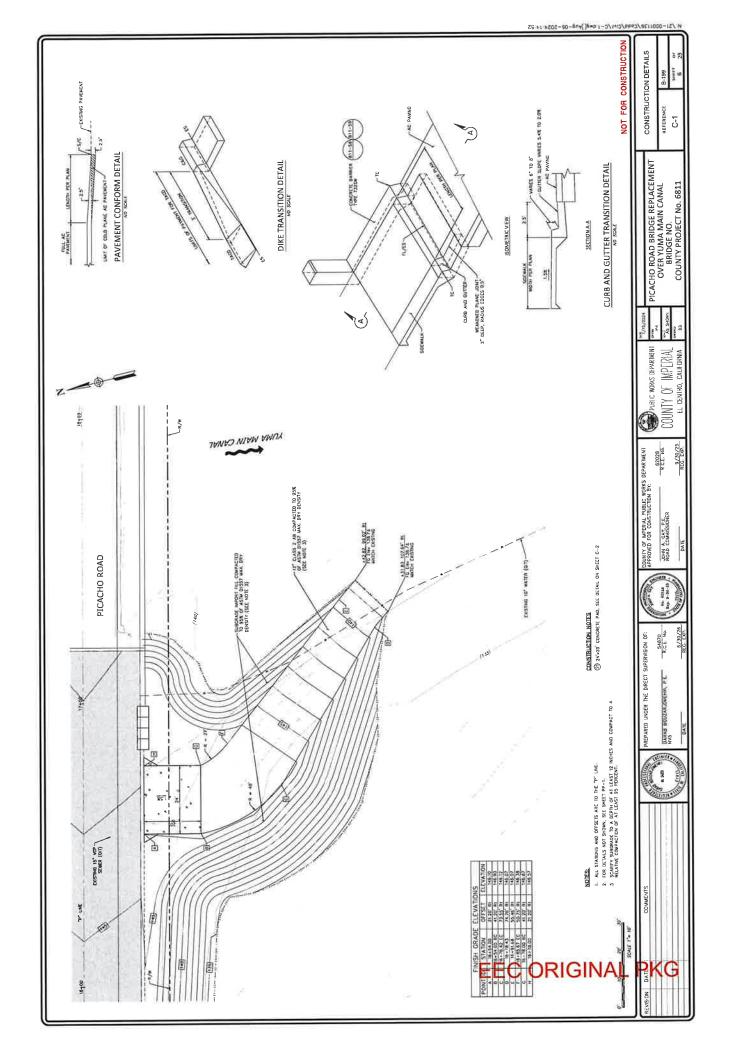
Historic metal artifacts

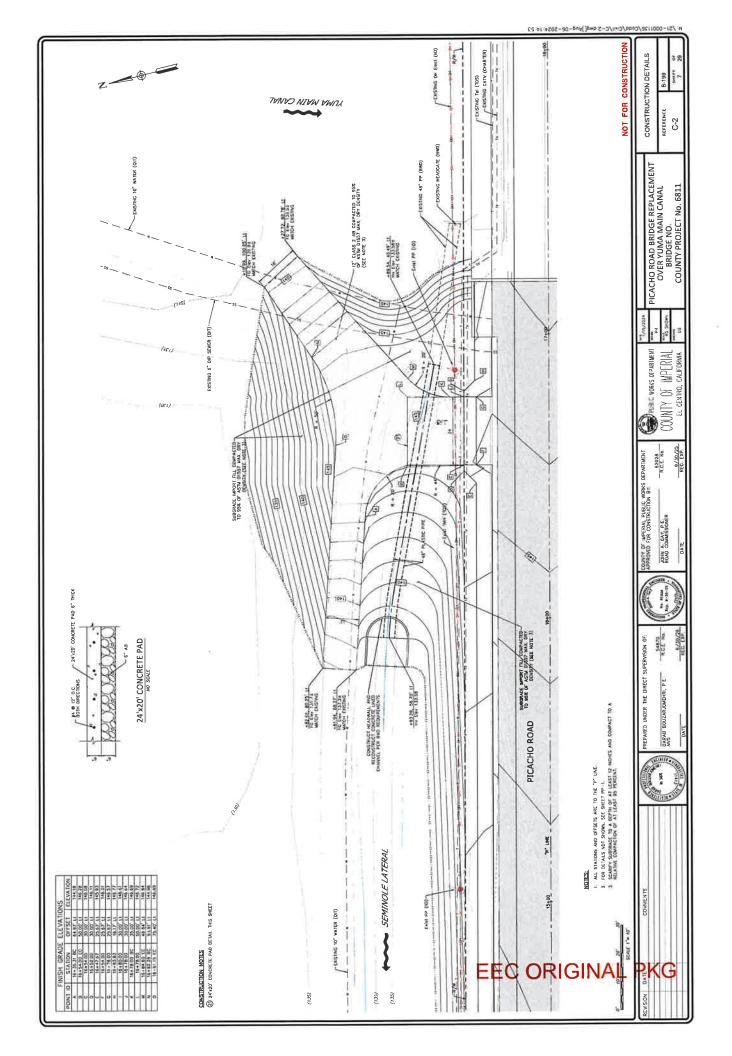
PICACHO RD BRIDGE REPLACEMENT IS #24-0037

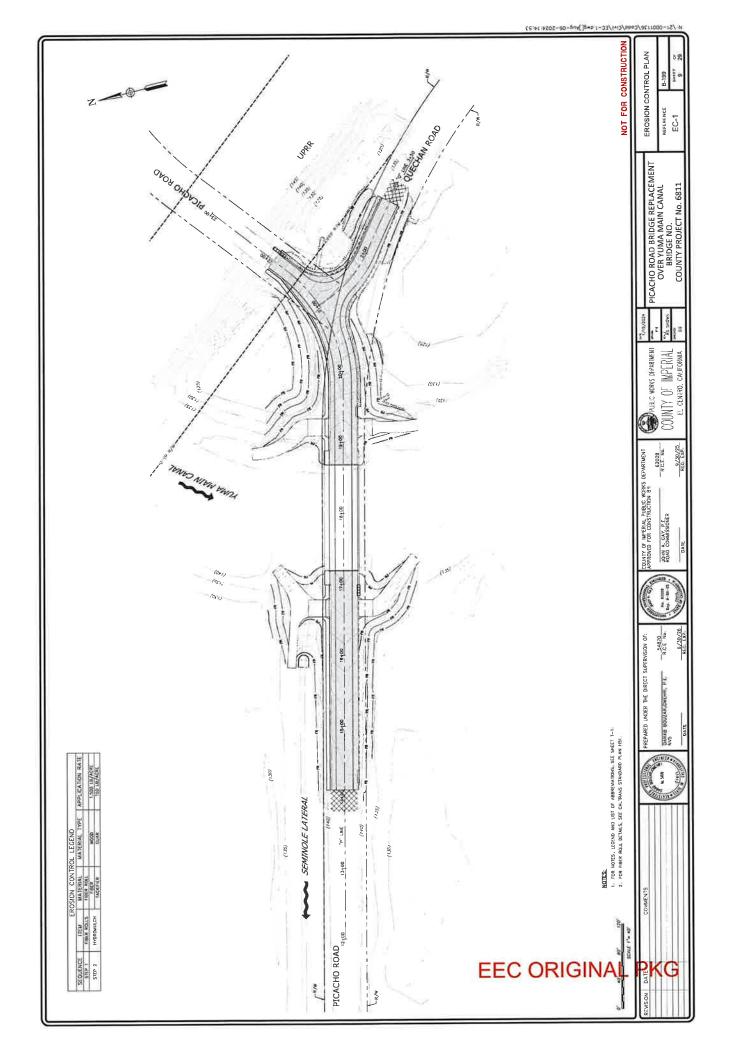


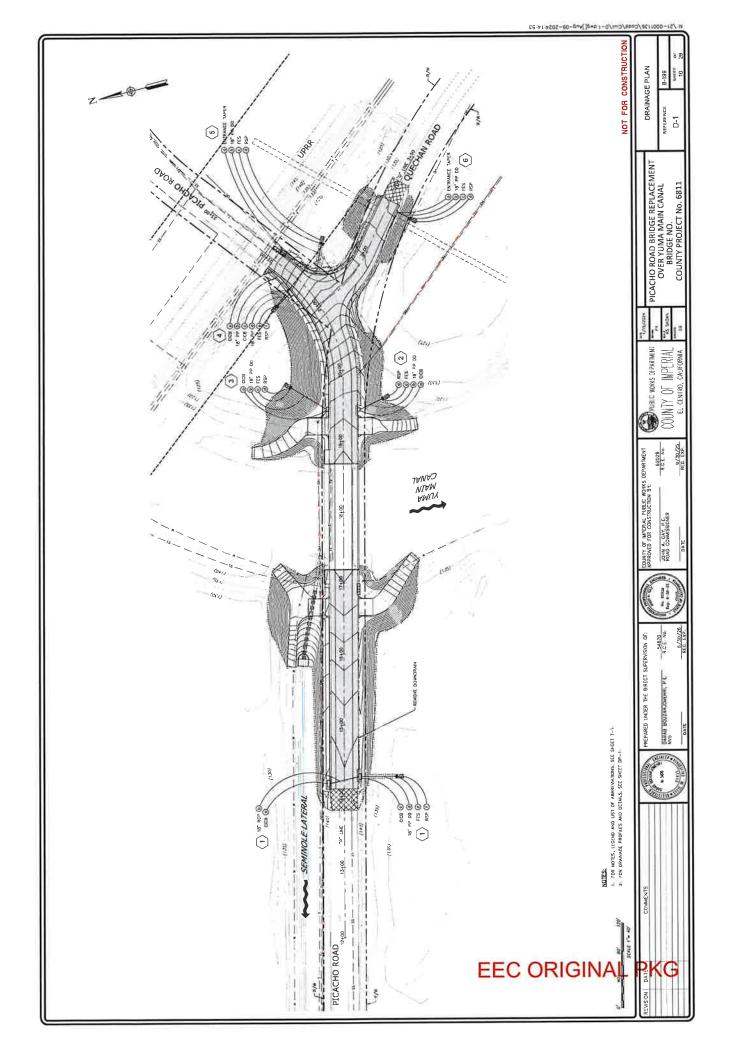


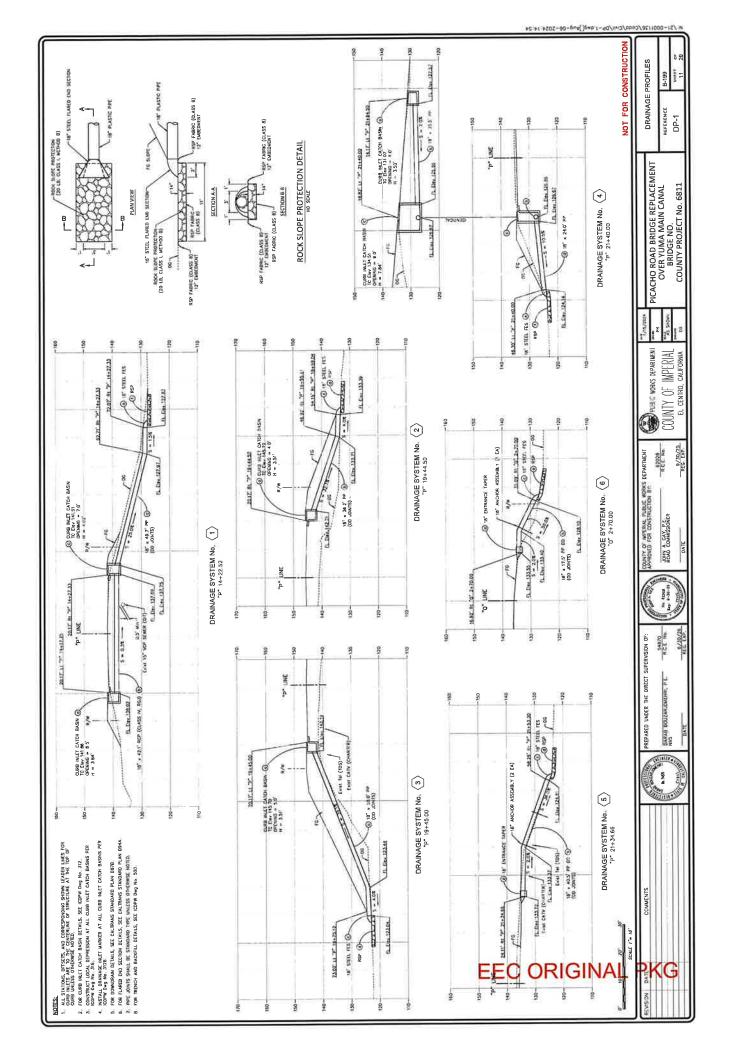

COUNTY OF IMPERIAL

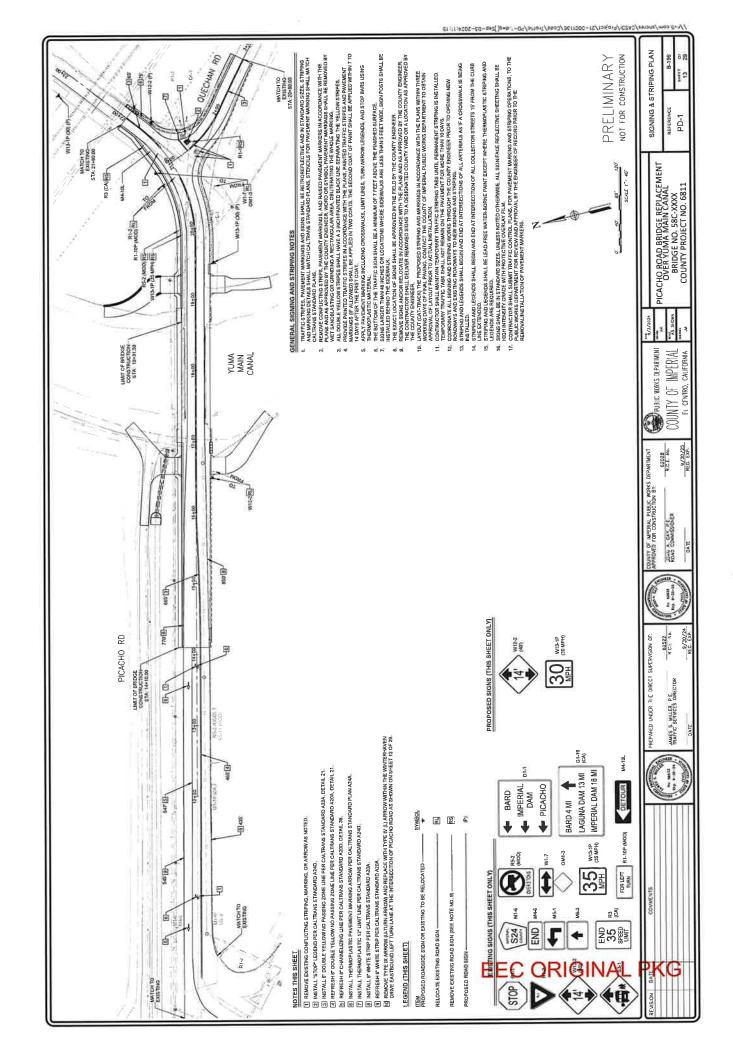

PICACHO ROAD BRIDGE REPLACEMENT OVER YUMA MAIN CANAL, BR. NO.

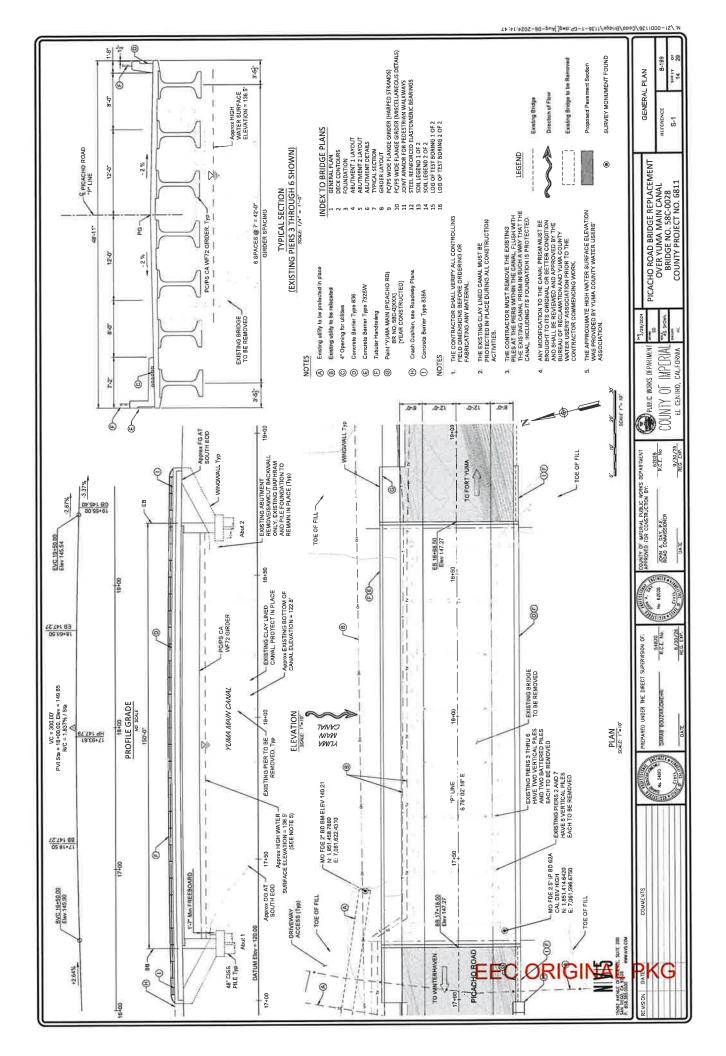

COUNTY PROJECT NO. 6811 FEDERAL PROJECT NO.

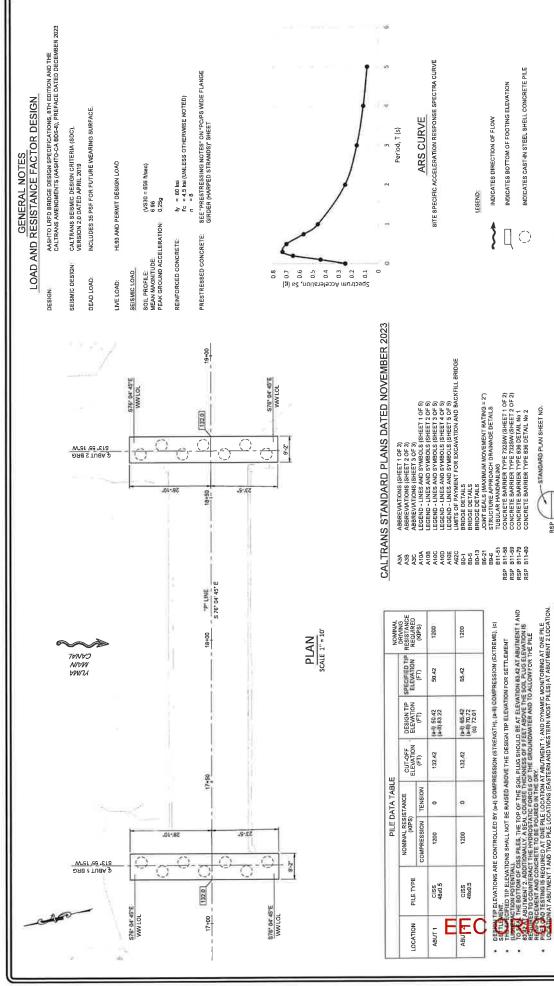












NOTES

FOR SURVEY CONTROL AND BENCHMARK, SEE "TITLE SHEET" SHEET T-1

	A3B	ABBREVIATIONS (SHEET 2 OF 3)
	A3C	ABBREVIATIONS (SHEET 3 OF 3)
	A10A	LEGEND - LINES AND SYMBOLS (SHEET 1 OF 5)
	A10B	LEGEND - LINES AND SYMBOLS (SHEET 2 OF 5)
	A10C	LEGEND - LINES AND SYMBOLS (SHEET 3 OF 5)
	A10D	LEGEND - LINES AND SYMBOLS (SHEET 4 OF 5)
	A10E	LEGEND - LINES AND SYMBOLS (SHEET 5 OF 5)
	A62C	LIMITS OF PAYMENT FOR EXCAVATION AND BACKFIL
	B0-1	BRIDGE DETAILS
	80-5	BRIDGE DETAILS
	B0-13	BRIDGE DETAILS
	B6-21	JOINT SEALS (MAXIMUM MOVEMENT RATING = 2")
	9-68	STRUCTURE APPROACH DRAINAGE DETAILS
	B11-51	TUBULAR HANDRAILING
RSP	B11-58	CONCRETE BARRIER TYPE 732SW (SHEET 1 OF 2)
RSP	B11-59	CONCRETE BARRIER TYPE 7325W (SHEET 2 OF 2)
RSP	B11-79	CONCRETE BARRIER TYPE 836 DETAIL No 1
RSP	B11-80	CONCRETE BARRIER TYPE 836 DETAIL No 2

STANDARD PLAN SHEET NO.

REVISED STANDARD PLAN

-DETAIL NO.

COUNTY OF IMPERIAL EL CENTRO, CALIFORNIA PUBLIC WORKS DEPARTMENT

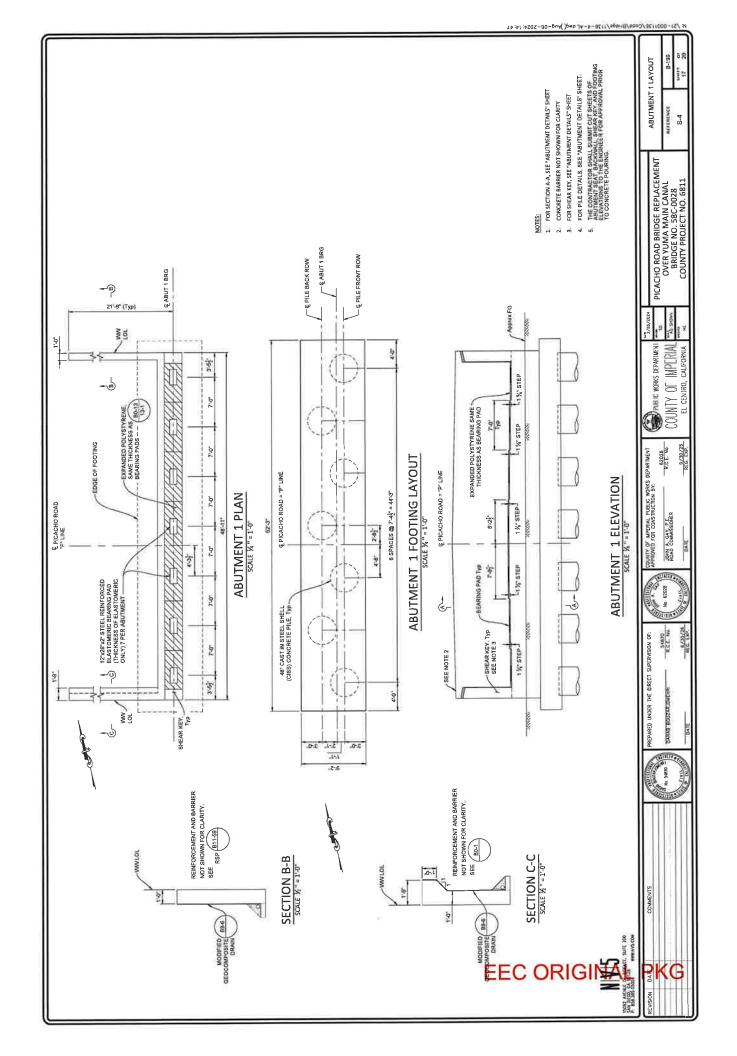
9/30/25 REG EXP 62028 R.C.E. No. COMMITY OF IMPERIAL PUBLIC WORKS DEPARTMENT APPROVED FOR CONSTRUCTION BY:

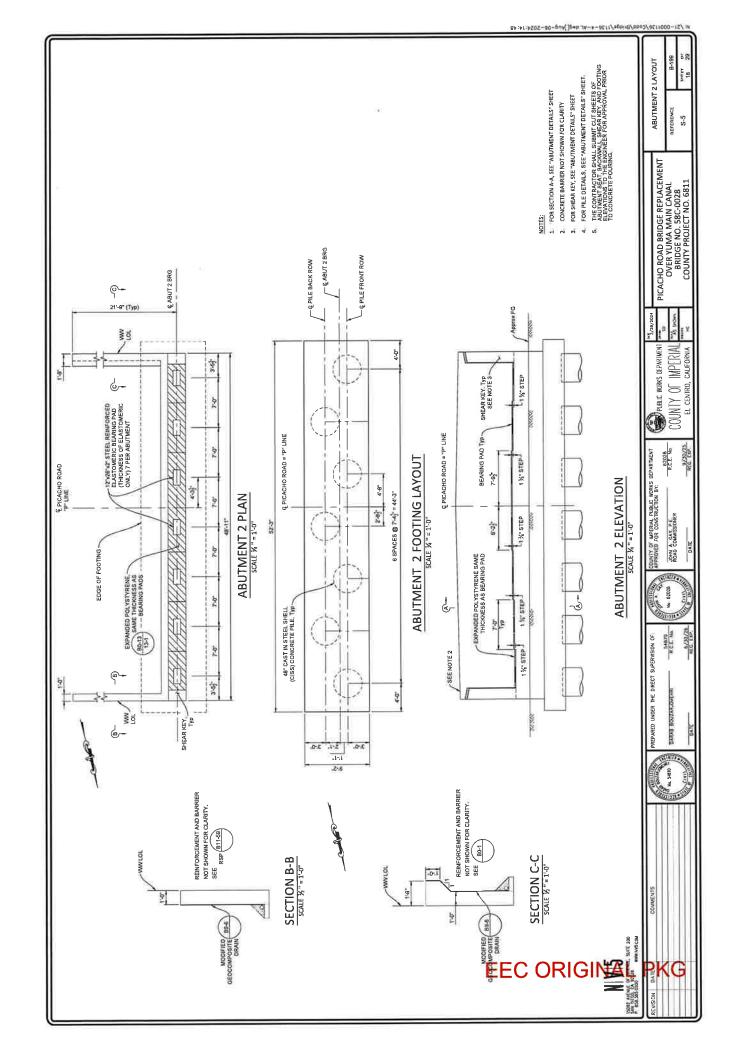
JOHN A. CAV III. ROAD COMMISSIONER

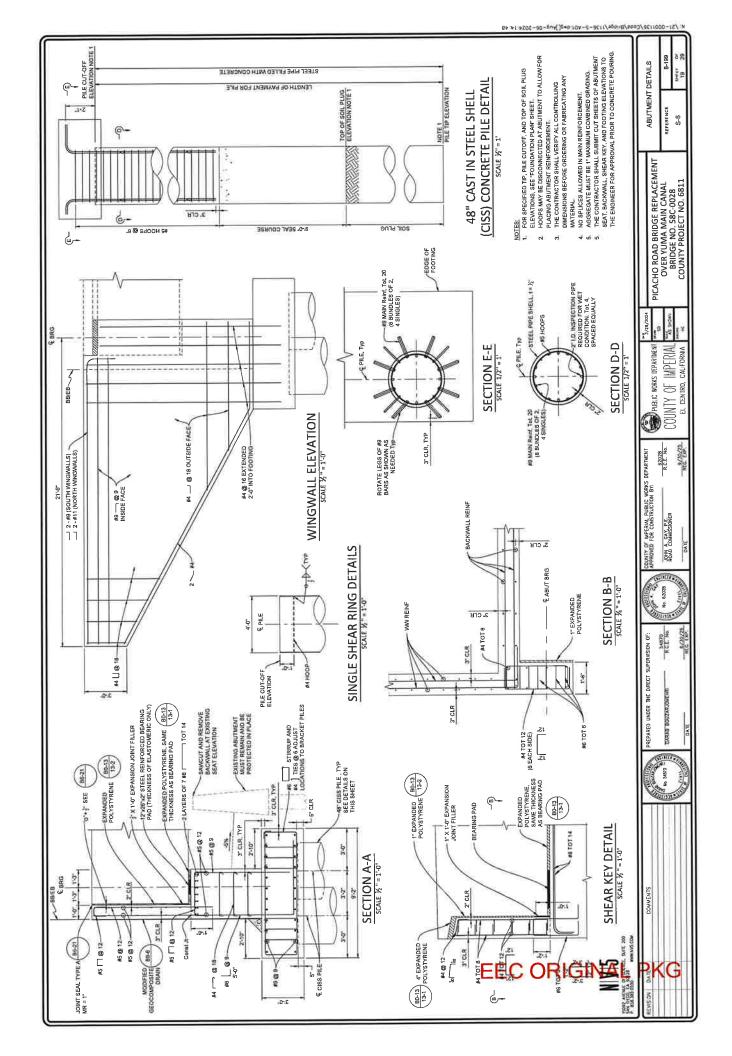
No 62028

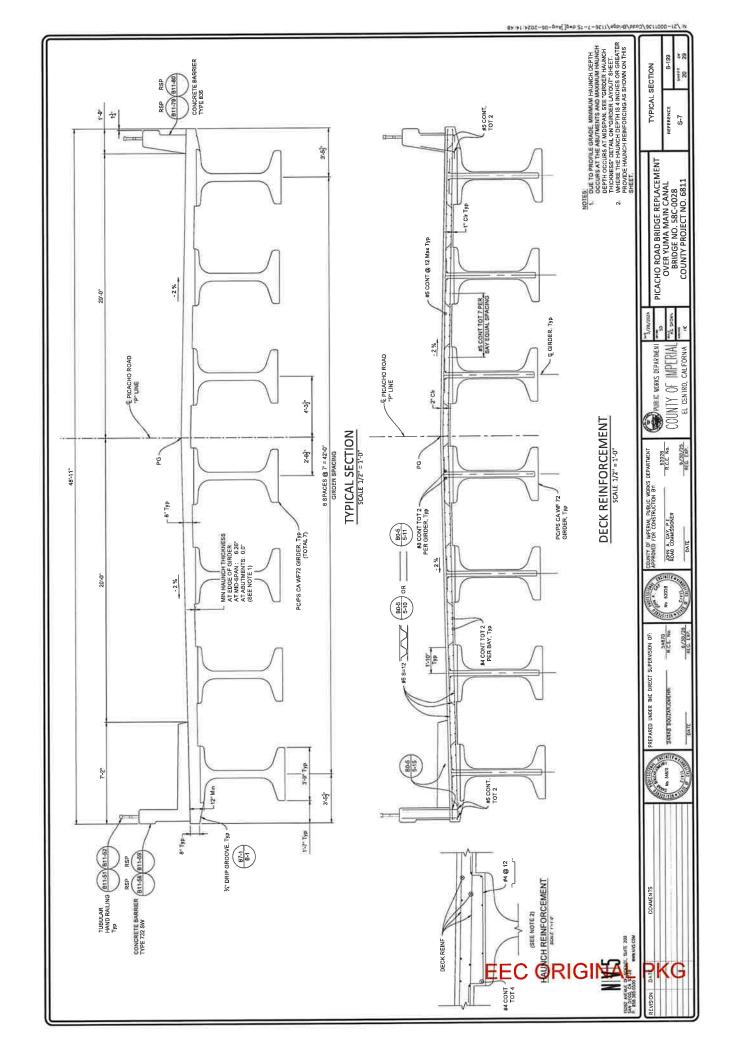
P.C.E. No. 6/30/26 HCC 19/26

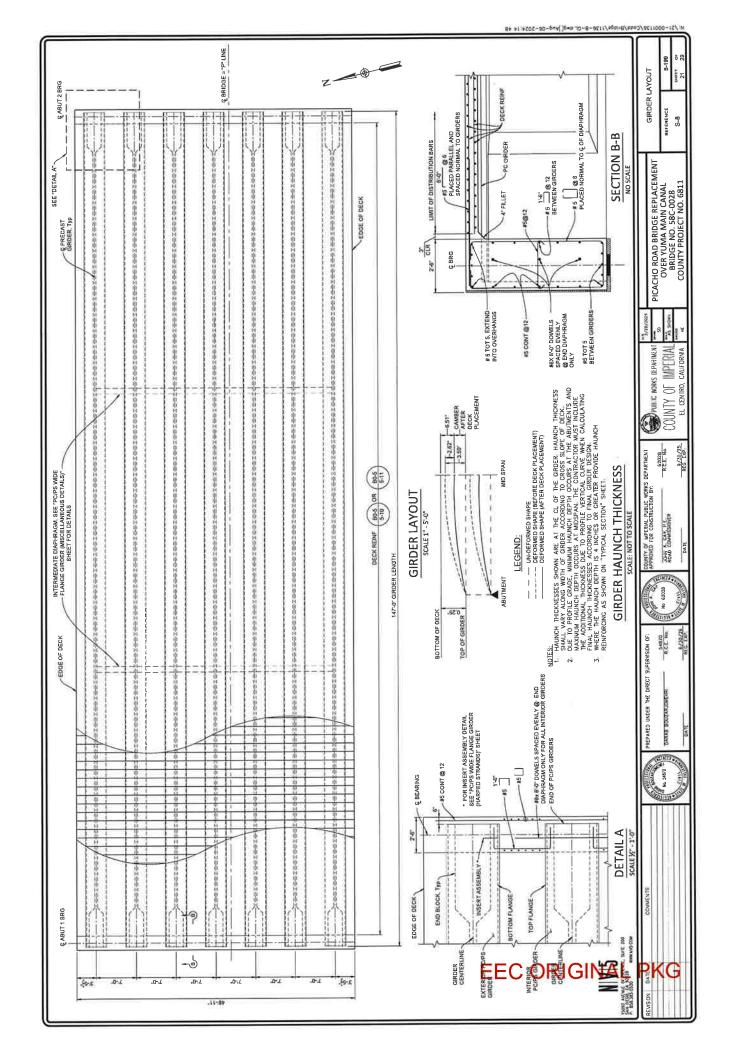
SARAB BOUZARDOUGHS

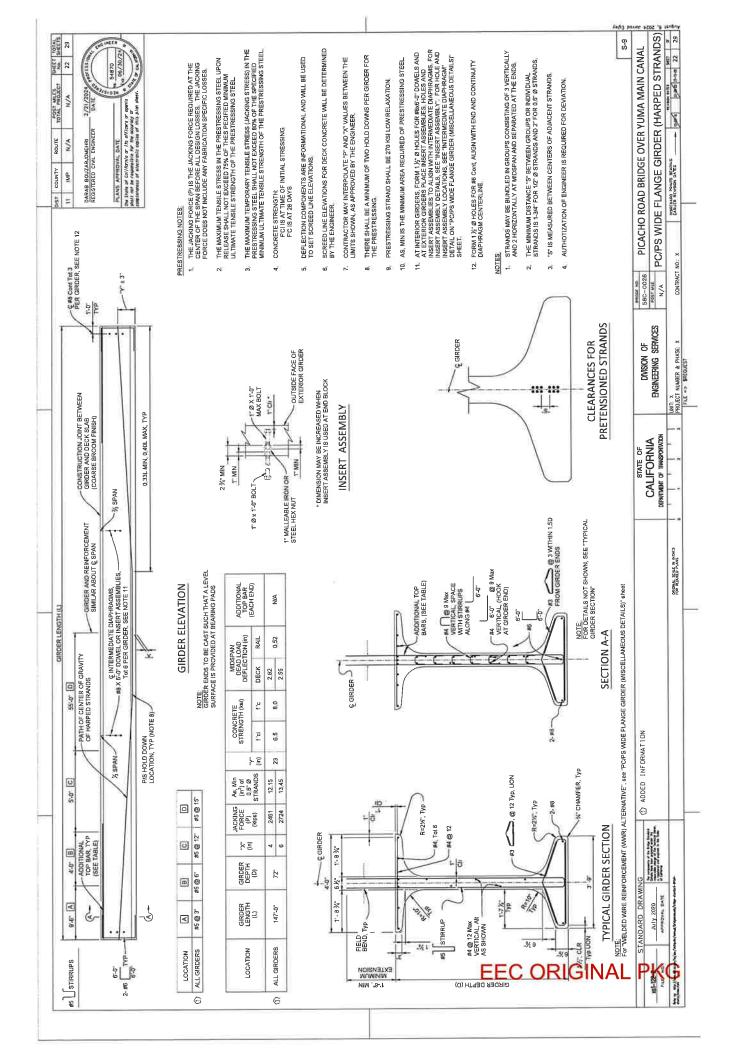

N. 5600

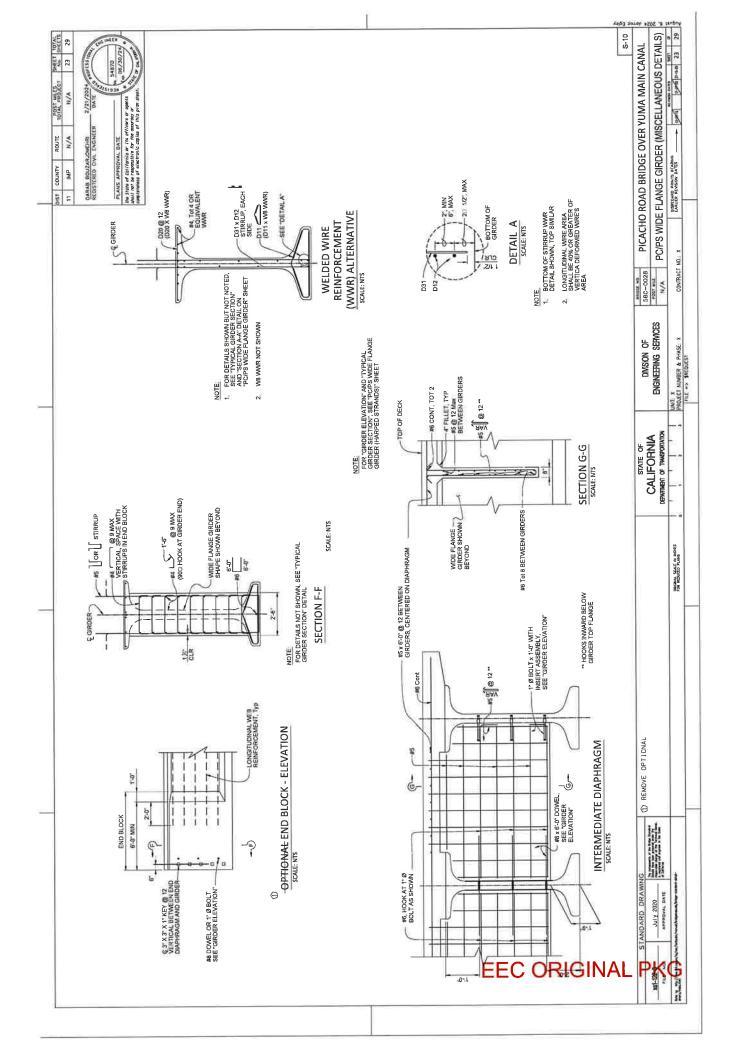

PREPARED UNDER THE DIRECT SUPERVISION OF:

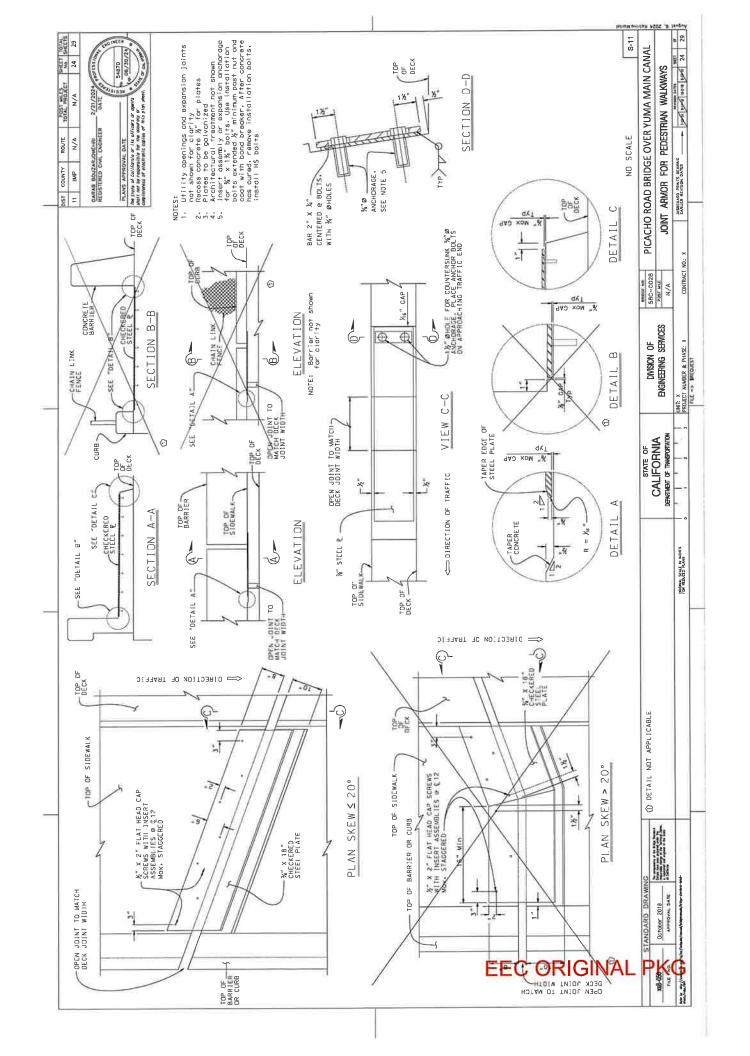

SAN DIEGO CA 92

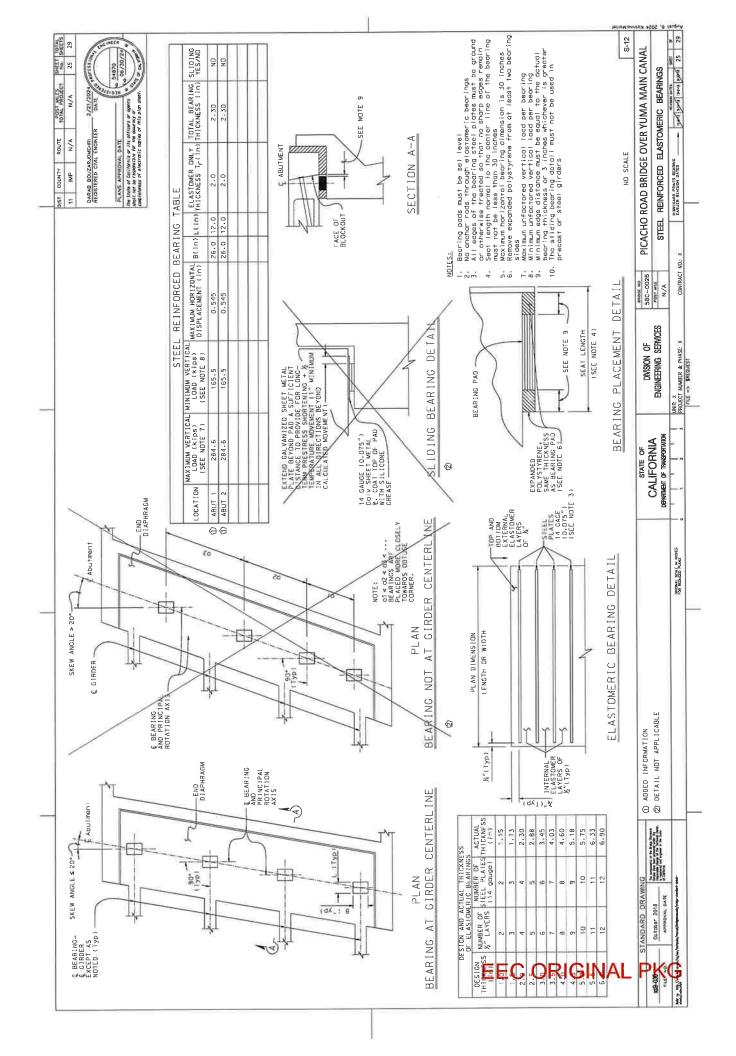

PICACHO ROAD BRIDGE REPLACEMENT OVER YUMA MAIN CANAL BRIDGE NO. 58C-0028 COUNTY PROJECT NO. 6811


FOUNDATION PLAN REFERENCE S-3

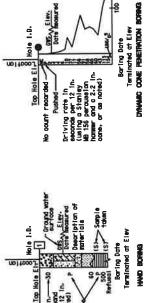








CONE PEDETRATION TEST (CPT) BOTHNO


REFERENCE: CALTRANS SDIL & ROCK LDGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2022)

	Description	ileok	Moderate C	Strong
CEMENTATION	Criteria	Crumbies or breaks with handling or little finger pressure.	Crumbies or breaks with considerable finger pressure.	Will not orumble or break with finger preseure.

BORBOLE DENITICATION Auger Borling (hollow or solid stem R Reforty drilled boring (somewhithout) RR Reforty drilled boring (somewhithout) RR Reforty drilled with self-cosing wire-line R Reforty drilled diamond core R Reforty drilled diamond core HD Hand driven (1-inch soli tube) A Dynamic Core Penetration Boring CPT Core Penetration Test (ASTM D STT8) D Dynamic Core Penetration Test (ASTM D STT8) D Dither (note on LOTB)	Criteria	Crumbies or breaks with he little finger pressure.	Crumbies or breaks with or finger pressure.	Will not orumble or break pressure.	z)		Descript	3 7 7 7 7	Soft #30S	1		\$#!#	Very S+1	<u> </u>		
	Description								g wire-i ine							
TADES TADES					I	BORBHOLE DENTRICATION	Description	Auger Boring (hollow or solid stem bucket)	Rotary drilled baring (conventional) Rotary drilled with self-cosing wire-line Rotary core with continuously-campled, self-cosi	Rotary percussion boring (air)	Rotary arilled diamond core	Hand driven (1-inch soil tube) Hand Auger	Dynamic Care Penetration Baring	Cone Penetration Test (ASTM D 5778)	Other (note on LOTB)	Note: Size in Inches.
							Type	<	~ # C	a	œ	全	۵	CPT	0	

Symbol

	8	CONSISTENCY OF COMERNE BOLLS	SIO.	
Desaription	Shear Strength (1sf)	Pooket Penetromater Measurement, PP, (†af)	Torvane Measurement, TV. (tef)	Person Pe
Very Soft	Less than 0.12	Less than 0.25	Less than 0.12	Less than 0.12
Soft	0.12 - 0.25	0.25 - 0.5	0.12 - 0.25	0.12 - 0.25
Medium Stiff	0.25 - 0.5	0.5 – 1	0.25 - 0.5	0.25 - 0.5
SHIFF	0.5 - 1	1 - 2	0.5 – 1	0.5 - 1
Very Stiff	1 - 2	2 – 4	1 – 2	1 – 2
Hard	Greater than 2	Greater than 4	Greater than 2	Greater than 2
Top Hole No count recorded — Pushed — Driving order 12. In.	Top Hole E. Loodtion Laboration L	papapapapapapapa.	Top Hole El Pressure modured along aleave fritchion along aleave fritchion or along allowed fritchion or tip a meaured on tip aleament.	For the state of t

Pulled Pipe

C SPTAIC N-Value

ROTARY BORBIG

ORIGIN

	PICACHO ROAD B	RRIDGE	COUNTY PR
2/21/2024	92	NOS SYN	3H
	BLIC WORKS DEPARTMENT	V OF WOFRIAL	CENTRO, CALIFORNIA

DEPAR MEN	62028	R.C.E. No.	9/30/73	250 DD
APPROVED FOR CONSTRUCTION BY:		JOHN A. GAY, P.E. ROAD COMMISSIONER		DATE
	E V	97070 00	Seno Se	The contract of

PREPARED UNDER THE DIRECT SUPERVISION OF:

CAR, FRANCISCO BENDERSON

No 2866

PKG

	PUBLIC WORKS DEPARTMENT	COUNTY OF MPFRIAL	COOM IN LINE	EL CENTRO, CALIFORNIA	
MENT	028	No.	0.0000000000000000000000000000000000000	0,00	١

_	<u>-</u>	_	_
2/21/2024	04	WOS SYN	3H HE
5	PUBLIC WORKS DEPARTMENT	INTV OF MPFRIAL	EL CENTRO, CALIFORNIA

	L		
HO ROAD BRIDGE REPLACEMENT	OVER YUMA MAIN CANAL	BRIDGE NO. 58C-0028	101INT DROIECT NO 6811

a 로	
--------	--

SOIL LEGEND 1 OF 2

REFERENCE: CALTRANS SOIL & ROCK LOGGING, CLASSIFICATION, AND PRESENTATION MANUAL (2022)

88	Graphia/Symbol Group Names	Leon CLAY WITH SAND Leon CLAY WITH SAND CLAY WITH GRAVEL CANNY IONN CLAY	- 01	SILTY CLAY SILTY CLAY WITH SAND SILTY CLAY WITH GRAVEL SAUNY CLAY WITH GRAVEL			SANUY SILT WITH GRAVEL SANUY SILT WITH GRAVEL GRAVELLY SILT WITH SAND		SANDY DRGANIC IOON CLAY SANDY DRGANIC IOON CLAY WITH DRAVEL GRAVELLY ORGANIC IOON CLAY GRAVELLY ORGANIC IOON CLAY GRAVELLY ORGANIC IOON CLAY WITH SAND	l	SANDY DEGALIS SILT WITH GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT WITH SAND		SANDY FOT CLAY WITH GRAVEL GRAVELLY FOT CLAY WITH SAND		SANDY BIGGETO SILT WITH GRAVEL GRAVELLY BIGGETO SILT GRAVELLY BIGGETO SILT GRAVELLY BIGGETO SILT	ORGANIC FOT CLAY WITH SAND ORGANIC FOT CLAY WITH SAND ORGANIC FOT CLAY WITH DRAVEL SANDY ORGANIC FOT CLAY			SANDY DANAIL GIGGIO SILT WITH GRAVEL SANDY DEGANIC GIGGIO SILT GRAVELLY ORGANIC GIGGIO SILT GRAVELLY ORGANIC GIGGIOS SILT WITH SAND	Ş	SANDT DROWNES SOLL WITH GRAVEL GRAVELLY ORGANIC SOLL GRAVELLY ORGANIC SOLL WITH SAND	
GROUP SYMBOLS AND NAMES	Group Notes Gro	Well-graded GRAVEL	Poor Iy-graded GRAVEL Poor Iy-graded GRAVEL with SAND	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND	POLIST SAND	Poorly-graded GRAVEL with SILT Poorly-graded GRAVEL with SILT and SAND	Poor Liter of Bayer with CLAY Eggs 12 or Street Bayer and Eggs 12 or Street Bayer and	SILTY GRAVEL SILTY GRAVEL	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL WITH SAND	Well-Graded SAND Well-Graded SAND with GRAVEL	Poorly-graded SAND Poorly-graded SAND with GRAVEL	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL	YOU STEPPOOL SAND WITH CLAY	Poorly-graded SAND with SILT Poorly-graded SAND with SILT and GRAVEL	POST LYTHY OPRY, SAND WITH CLAY BROYLY POSSYL SANDL XV TO STARRE,	SILTY SAND SILTY SAND WITH GRAVEL	CLAYEY SAND CLAYEY SAND WITH GRAVEL	SILTY, CLAYEY SAND SILTY, CLAYEY SAND WITH GRAVEL		END BOULDERS	
	Graphto/Symbol	≥	9	G-CM Well-or	10 30-40 30-40	COCH CP-CM Poorly	7, 985 30-00 5863 11, 1885	SILTY GRAVEL	OC CLAYEY GRAVEL	OC-GM SILTY.	O-II-OM MS	SP Poorly	G-11-0W MS-WS	PS 109 32-W2	SP-SM Poorly	ATAMBB DS-ds	75	8	NG-08	DR	S318803	

Description	Criteria
Dry	No discernable moleture
Molet	Moisture present, but no free water
Wet	Visibie free water

PERCENT OR PROPORTION OF BOILS	Criteria	Particles are present but estimated to be less than 5%	5½ - 10%	15% - 25%	30% - 45%	50% - 100%
PERCENT	Description	Trace	Few	111110	Some	Mostly

	THINK DEC	2770
P. P.	Description	Size (in.)
Boulder		Greater than 12
Cobbie		3 - 12
1	Codrae	3/4 - 3
G-GV61	Fine	1/5 - 3/4
	Codrae	1/16 - 1/5
Sond	Medium	1/64 - 1/16
	Fine	1/300 - 1/64
Silt and Clay	761	Less than 1/300

¥	
LABORATO	
ş	12
1	

- © Consolidation (ASTM D 2435)
- CL Collapse Potential (ASTA D 5333)
- (F) Compaction Curve (ASTM D 1557)
- (R) Corrosivity Teating (CTN 643, CTM 417)
- Consolidated Undrained Triaxial (ASTN D 4767)
- (05) Direct Shear (ASTM D 3080)
- Expansion Index (ASTM D 4829)
- Ѿ 3
- (C) Dreamle Content-% (ASTM D 2974) Moleture Content (ASTM D 2216)
- Permedility (CTM 220)
- (PA) Porticle Size Analysis (ASTM D 422)
 - (P) Plosticity Index (AASHTO T 90) Liquid Limit (AASHTO T 89) (P.) Point Load Index (ASTM D 5731)
 (PM) Preseure Meter
- R-Value (CTM 301)
- (SE) Sand Equivalent (CTM 217)
- (SG) Specific Gravity (AASHTD T 100)
 - (SL) Shrinkoge Limit (ASTM D 427)
- (SII) Swell Potential (ASTM D 4546)
 - Unconfined Compression-Soli (ASTM D 2166) Unconfined Compression-Rook (ASTM D 2938) (3)
- (U) Uncansolidated Undrained Trioxial (ASTM D 2850)
- Unit Weight (ASTM D 4767) 3

_	_	_	_
2/21/2024	04	AS SHOWN	Process HE
	PRINCE WORKS DEPARTMENT	COUNTY OF IMPERIAL	EL CENTRO, CALIFORNIA
CS DEPARTMENT	62026	C.C. No.	9/30/25 REG. EXP.

COUNTY OF APPERAL PUBLIC WORKS DEPARTMENT APPROVED FOR CONSTRUCTION BY

JOHN A. GAY, P.E. ROAD COMMISSIONER

2886 R.C.E No. 6/30/25 RFG FXP

No. 2000

REVISION DATEC

PREPARED UNDER THE DIRECT SUPERVISION OF: CARL FRANCISCO HENDERSON

	PICACHO ROAD BRIDGE REPLACEMENT	OVER YUMA MAIN CANAL BRIDGE NO. 58C-0028	COUNTY PROJECT NO. 6811
2/21/2024	9	AS SHOWN	HE HE
	ARIMENT	ERIAL	ORNIA

DZOFZ	B-199	27 29
SOIL LEGEND 2 OF 2	REFERENCE	S-14

৯ প্র
27 TZ

COMMENT LETTERS

Luis Bejarano

From: Jill Mccormick < historic preservation@quechantribe.com>

Sent: Thursday, October 17, 2024 4:26 PM

To: Kamika Mitchell; Antonio Venegas; Ashley Jauregui; Jolene Dessert; Margo Sanchez;

Belen Leon-Lopez; Monica Soucier; Jesus Ramirez; John Hawk; Miguel Figueroa; Rebecca Terrazas-Baxter; Rosa Lopez; Bari Bean; Jeff Lamoure; Jorge Perez; Alphonso Andrade; Marco Topete; Sheila Vasquez-Bazua; Andrew Loper; David Lantzer; Carlos Yee; Veronica

Atondo; John Gay; rkelly@icso.org; Fred Miramontes; Robert Benavidez;

dvargas@iid.com; Planning@yumaaz.gov; kimberly.dodson@dot.ca.gov; roger.sanchezrangel@dot.ca.gov; heather.brashear@wildlife.ca.gov; marcuscuero@campo-nsn.gov;

jmesa@campo-nsn.gov; Tribal Secretary

Cc: Michael Abraham; Diana Robinson; Jim Minnick; Diana Robinson; Rocio Yee; Luis

Bejarano; Aimee Trujillo; Jenyssa Gutierrez; Kayla Henderson; Marsha Torres; Olivia

Lopez; Valerie Grijalva

Subject: RE: [EXTERNAL]:Initial Study (IS) #24-0037- REQUEST FOR COMMENTS

CAUTION: This email originated outside our organization; please use caution.

Good afternoon,

Pursuant to AB52 and PRC 21080.3.1 (b), the Historic Preservation Office of the Fort Yuma-Quechan Indian Tribe is requesting consultation for the Picacho Road Bridge Project. Feel free to reach out with any questions regarding this request.

Thank you, H. Jill McCormick, M.A.

Historic Preservation Office Ft. Yuma Quechan Indian Tribe P.O. Box 1899 Yuma, AZ 85366-1899

Office: 760-919-3631 Cell: 928-920-6521

From: Kamika Mitchell < kamikamitchell@co.imperial.ca.us>

Sent: Wednesday, October 16, 2024 2:02 PM

Luis Bejarano

From:

Robert Urena

Sent:

Thursday, October 31, 2024 10:53 AM

To:

Rocio Yee; Luis Bejarano; John Gay; historicpreservation@quechantribe.com

Cc:

Michael Abraham; Diana Robinson

Subject:

RE: IS 24-0037 - IID COMMENT LETTER

Good Morning Rocio,

Thank you for the update!

Robert "Bobby" Ureña III, PE

Principal Engineer

Imperial County Department of Public Works

155 S. 11th St, El Centro, CA 92243 Phone: (442) 265-1818 Ext. 1814 Email: roberturena@co.imperial.ca.us

From: Rocio Yee <rocioyee@co.imperial.ca.us> Sent: Thursday, October 31, 2024 10:50 AM

To: Robert Urena < Robert Urena@co.imperial.ca.us>; Luis Bejarano < luisbejarano@co.imperial.ca.us>; John Gay

<JohnGay@co.imperial.ca.us>; historicpreservation@quechantribe.com

Cc: Michael Abraham < Michael Abraham@co.imperial.ca.us>; Diana Robinson < DianaRobinson@co.imperial.ca.us>

Subject: RE: IS 24-0037 - IID COMMENT LETTER

Good morning,

I hope this message finds you well.

I wanted to provide you with an update regarding our outreach for the **Picacho Road Bridge Replacement project**, (IS#24-0037). As of now, we have not received any comment letters apart from IID.

Additionally, I reached out to Jill McCormick from the Quechan Indian Tribes concerning the AB52 Consultation. During our initial phone conversation, He indicated that they are not ready to meet at this time; however, they expressed a strong interest in staying informed as the project progresses.

Please note that the comment period officially closed on **October 30**, and the **AB52** tribal consultation period will conclude on **November 15**.

Following these timelines, we will be able to schedule a meeting with the Environmental Evaluation Committee (EEC). I will keep you updated on the meeting date once it is confirmed.

Thank you for your attention to these matters, and please let me know if you have any questions or need further information.

Best regards,

Imperial County Planning & Development Services Planning / Building

Jim Minnick

RECEIVED

By Imperial County Planning & Development Services at 11:19 am, Nov 01, 2024

October 16,2024
REQUEST FOR REVIEW
AND COMMENTS

The attached project and materials are being sent to you for your review and as an early notification that the following project is being requested and being processed by the County's Planning & Development Services Department. Please review the proposed project based on your agency/department area of interest, expertise, and/or jurisdiction.

To: County Age	ncies	State Agencies/Other	Cities/Other
	Office – Miguel Figueroa/		
Rosa Lopez/Rebecca	Terrazas- Baxter/ Bari	Fred Miramontes/ Robert Benavidez	
Smith Bean ☑ Public Works – Car /eronica Atondo ☑ Fort Yuma- Quecha D. Joaquin/ Frank L. Ro ☑ City Of Yuma Dept. Alyssa Linville	los Yee/John Gay/ an Indian Tribe – Jordan	Board of Supervisors – John Hawk-District 5 Ag. Commissioner – /Margo Sanchez/Antonio Venegas/ Ashley Jauregui/ Jolene Jauregui Campo Band Of Mission Indians - Marcus Cuero/Jonathon Mesa Dept. Of Fish & Wildlife / Habitat Conservation / Cannabis Program-	 ☑ IC Fire/OES Office – Andrew Loper/ David Lantzer ☑ EHS – Jeff Lamoure/Jorge Perez/Sheila Vasquez/Alphonso Andrade/Marco Topete ☑ APCD – Monica Soucier/Belen Leon/Jesus Ramirez
Sanchez		Heater Brashear	
Project ID: Project Location: Project Description:	rocioyee@co.imperial.ca. Initial Study (IS) #24-0037 Picacho Rd, Winterhaven The applicant intends to reto cracking and outliving i continue access to the Qu Yuma Main Canal. There be prepared to environment	7 , CA 92283 eplace the existing Picacho bridge which le ts useful life. The existing timber bridge mu uechan Reservation and the Bard commun fore, Imperial County Department of Public entally assess potential impacts.	eads into the Townsite of Winterhaven, due
Applicants:	Imperial County Departme	ent of Public Works	
	October 30th 2024 at 5:00		
COMMENTS: (attach a No Comment	separate sheet if necessary) (if	f no comments, please state below and mail, fax,	
Name: Antonio Vene	gas Signature:	Al: Uge Title: A	g. Biologist/Standards Spec. IV
Date: 10/30/2024	Telephone No.:442-	265-1486 E-mail: antoniovenegaso	@co.imperial.ca.us
LB/RY/KM\S:\Clerical\Clerica	al Forms\Request for Comments Tem	plates\Request for Comments .docx	

Since 1911

October 21, 2024

RECEIVED

By Imperial County Planning & Development Services at 4:07 pm, Oct 21, 2024

Mr. Luis Bejarano
Planner I
Planning & Development Services Department
County of Imperial
801 Main Street
El Centro, CA 92243

SUBJECT: Picacho Road Bridge at Yuma Main Canal Replacement Project; IS #24-

0037

Dear Mr. Bejarano:

On October 16, 2024, the Imperial Irrigation District received from the Imperial County Planning and Development Services Department, a request for agency comments on the Picacho Road Bridge at Yuma Main Canal replacement project; Initial Study No. 23-0037. The Imperial County Public Works Dept. proposes to replace the existing bridge at Picacho Road over the Yuma Main Canal, leading into the townsite of Winterhaven, California; with a new precast prestressed concrete girder bridge that spans over the canal with no intermediate supports, to minimize disturbance to canal operations during construction and to keep debris out of the canal as much as possible. The project includes the demolition, removal and disposal of the existing bridge.

The IID has reviewed the application and has the following comments:

- 1. The project will be impacting an existing overhead distribution line (A-66 Circuit 7.2/12.5kV) in the immediate project area. Please note the line currently is serving various customers in the area. An IID Encroachment Permit (see Comment No. 7) will be required for the project with all approved pertinent plans, profiles, construction plans with existing and proposed construction easements for IID to review and approve.
- 2. For any modification to the existing overhead distribution lines, the applicant should be advised to contact Joel Lopez, IID project development planner, at 760-482-3444 or e-mail Mr. Lopez at JFLopez@IID.com. to initiate the customer service application process. In addition to submitting a formal application (available at http://www.iid.com/home/showdocument?id=12923), the applicant will be required to submit an AutoCAD file of site plan, approved electrical plans, electrical panel size and panel location, operating voltage, electrical loads, project schedule, and the applicable fees, permits, easements and environmental compliance

documentation pertaining to the provision of electrical service to a project. The applicant shall be responsible for all costs and mitigation measures related to providing electrical service to a project.

- Electrical capacity is limited in the project area. A circuit study may be required.
 Any system improvements or mitigation identified in the circuit study to enable the provision of electrical service to the project shall be the financial responsibility of the applicant.
- 4. Applicant shall provide a surveyed legal description and an associated exhibit certified by a licensed surveyor for all rights of way deemed by IID as necessary to accommodate the project electrical infrastructure. Rights-of-Way and easements shall be in a form acceptable to and at no cost to IID for installation, operation, and maintenance of all electrical facilities.
- 5. The applicant will be required to provide rights of ways and easements for any proposed power line extensions and/or any other infrastructure needed to serve the project as well as the necessary access to allow for continued operation and maintenance of any IID facilities located on adjoining properties.
- 6. The applicant will be required to bear all costs associated with acquisition of land, rights of way, easements, and the relocation and/or realignment of IID infrastructure deemed necessary to accommodate the project. Any street or road improvements imposed by the local governing authority shall also be at the project proponent cost.
- 7. Public utility easements over all private public roads and additional ten (10) feet in width on both side of the private and public roads shall be dedicated to IID for the construction, operation, and maintenance of its electrical infrastructure.
- 8. Any construction or operation on IID property or within its existing and proposed right of way or easements including but not limited to: surface improvements such as proposed new streets, driveways, parking lots, landscape; and all water, sewer, storm water, or any other above ground or underground utilities; will require an encroachment permit, or encroachment agreement (depending on the circumstances). A copy of the IID encroachment permit application and instructions for its completion are available at the IID website https://www.iid.com/about-iid/department-directory/real-estate. No foundations or buildings will be allowed within IID's right of way. The IID Real Estate Section should be contacted at (760) 339-9239 for additional information regarding encroachment permits or agreements.
- 9. Any new, relocated, modified or reconstructed IID facilities required for and by the project (which can include but is not limited to electrical utility substations, electrical

transmission and distribution lines, water deliveries, canals, drains, etc.) need to be included as part of the project's California Environmental Quality Act (CEQA) and/or National Environmental Policy Act (NEPA) documentation, environmental impact analysis and mitigation. Failure to do so will result in postponement of any construction and/or modification of IID facilities until such time as the environmental documentation is amended and environmental impacts are fully analyzed. Any and all mitigation necessary as a result of the construction, relocation and/or upgrade of IID facilities is the responsibility of the project proponent.

10. When a project goes through the CEQA compliance process, it is important to bear in mind that to address the project impacts to the electrical utility (i.e., the IID electrical grid), considered under the environmental factor "Utilities and Services" of the Environmental Checklist/Initial Study, and determine if the project would require or result in the relocation or construction of new or expanded electric power facilities, the construction or relocation of which could cause significant environmental effects; a circuit study/distribution impact study, facility study, and/or system impact study must be performed.

Should you have any questions, please do not hesitate to contact me at 760-482-3609 or at dvargas@iid.com. Thank you for the opportunity to comment on this matter.

Respectfully,

Donald Vargás

Compliance Administrator II

150 SOUTH NINTH STREET EL CENTRO, CA 92243-2850

TELEPHONE: (442) 265-1800 FAX: (442) 265-1799

October 25, 2024

Mr. Jim Minnick Planning Director 801 Main Street El Centro, CA 92243 RECEIVED

By Imperial County Planning & Development Services at 2:44 pm, Oct 31, 2024

SUBJECT:

Initial Study 24-0037 Picacho Bridge – Imperial County Department of Public Works

Dear Mr. Minnick,

The Imperial County Air Pollution Control District (Air District) thanks you for the opportunity to review and comment on Initial Study (IS) 24-0037 proposing the replacement of the existing Picacho Bridge (Project). The proposed project would be along Picacho Rd. in Winterhaven, spanning over the Yuma Main Canal and also identified with Assessor's Parcel Number 056-600-011.

The Initial Study determined the Air Quality impacts would remain below significant levels and included a summary CalEEMod report in Appendix A. While CalEEMod is the Air District's approved modeling software, the Air District is unable to comment on the CalEEMod results as the summary report does not lend itself to review of the modeling inputs, a detailed report would be more suited to an in-depth review. However, the Air District can concur with the Less Than Significant impact determination as the type and size of the project is consistent with projects that remain below significant impact levels. The concurrence is also further reinforced as the IS also explicitly acknowledges project compliance with the Air District's Regulation VIII, a collection of rules designed to maintain fugitive dust emissions below 20% visual opacity. The Air District reminds the applicant the project must comply with all Air District rules and regulations including Reg VIII.

The Air District also reminds the applicant that combustion equipment such as generators must either be registered with the California Air Resources Board's (CARB) Portable Equipment Registration Program (PERP) or it may require an Air District permit. Should combustion equipment not be PERP registered the applicant should submit an application for engineering review of the equipment to determine permitting requirements.

The Air District would like note that the IS states "will not exceed ICAPACD construction thresholds as summarized below in Table 3", however, Table 3 uses the heading "SCAQMD Significance Thresholds," however, the thresholds in the table are consistent with Air District

For your convenience, the Air District's Rules and Regulations can be found online for review at https://apcd.imperialcounty.org/rules-and-regulations/. Please contact our office at (442) 265-1800 if you have any additional questions or concerns.

Sincerely,

smael Garcia

Environmental Coordinator II

Monica N. Soucier

APC Division Manager

COUNTY EXECUTIVE OFFICE

Miguel Figueroa

County Executive Officer miguelfigueroa@co.imperial.ca.us www.co.imperial.ca.us

November 5, 2024

County Administration Center 940 Main Street, Suite 208 El Centro, CA 92243 Tel: 442-265-1001

Fax: 442-265-1010

RECEIVED

By Imperial County Planning & Development Services at 7:14 am, Nov 06, 2024

TO:

Luis Bejarano, Planning and Development Services Department

FROM:

Rosa Lopez, Executive Office

SUBJECT:

Request for Comments - Picacho Road Bridge Project, IS #24-0037

The County of Imperial Executive Office is responding to a request for comments: Picacho Road Bridge Project, IS #24-0037. The Executive Office would like to inform of conditions and responsibilities of the applicant request a building permit for the project. The following conditions will be written into the CUP, but not limited to:

Sales Tax Guarantee. The permittee is required to have a Construction Site Permit reflecting the project site address, allowing all eligible sales tax payments are allocated to the County of Imperial, Jurisdictional Code 13998. The permittee will provide the County of Imperial a copy of the California Department of Taxation and Fee Administration (CDTFA) account number and sub-permit for its contractor and subcontractors (if any) related to the jobsite. Permittee shall provide in written verification to the County Executive Office that the necessary sales and use tax permits have been obtained, prior to the issuance of any grading permits and subsequently continue throughout the permitting process.

Should there be any concerns and/or questions, do not hesitate to contact me.

Luis Bejarano

From: Luis Bejarano

Sent: Tuesday, January 14, 2025 8:19 AM **To:** Robert Urena; Scott.Molloy@nv5.com

Cc: Rocio Yee; Diana Robinson; Michael Abraham; Darab.Bouzarjomehri@nv5.com;

Mehrnoush.Yavary@nv5.com; eric.fuss@nv5.com;

historicpreservation@quechantribe.com

Subject: IS 24-0037- CALTRANS COMMENTS

Good morning Robert,

Please see the below email from Caltrans with comments on the Picacho Bridge replacement project.

Feel free to share any questions you may have. Thank you!

Luis Bejarano Planner I

Imperial County Planning and Development Services 801 Main Street
El Centro, CA 92243
luisbejarano@co.imperial.ca.us
Phone (442) 265-1736

From: Sanchez Rangel, Rogelio@DOT < roger.sanchez-rangel@dot.ca.gov>

Sent: Monday, January 13, 2025 11:46 AM

To: Kamika Mitchell < kamikamitchell@co.imperial.ca.us>; Luis Bejarano < luisbejarano@co.imperial.ca.us>

Subject: RE: Initial Study (IS) #24-0037- REQUEST FOR COMMENTS

CAUTION: This email originated outside our organization; please use caution.

Hi Kamika and Luis,

Caltrans has general comments regarding the Picacho Bridge Replacement.

The California Department of Transportation (Caltrans) has discretionary authority with respect to highways under its jurisdiction and may, upon application and if good cause appears, issue a special permit to operate or move a vehicle or combination of vehicles or special mobile equipment of a size or weight of vehicle or load exceeding the maximum limitations specified in the California Vehicle Code. The Caltrans Transportation Permits Issuance Branch is responsible for the issuance of these special transportation permits for oversize/overweight vehicles on the State Highway network. Additional information is provided online at: http://www.dot.ca.gov/trafficops/permits/index.html

Any work performed within Caltrans' R/W will require discretionary review and approval by Caltrans and an encroachment permit will be required for any work within the Caltrans' R/W prior to construction.

Thank you,