

ZONE (existing)	4-2	ZONE (propo	sed) M-2
GENERAL PLAN FINDING			MAY BE/FINDINGS
PLANNING COMMISSION	DECISION:	HEARING DA	\TE:
	APPROVED	DENIED	OTHER
PLANNING DIRECTORS D	DECISION:	HEARING DA	\TE:
	APPROVED		OTHER
<u>ENVIROMENTAL EVALUA</u>	TION COMMITTEE DE		NTE: 02/14/19 DY: 18-0007
		TED NEG. DECLARATION	I EIR
DEPARTMENTAL REPOR	<u> TS / APPROVALS:</u>		
PUBLIC WORKS AG / APCD E.H.S. FIRE / OES OTHER	NONE NONE NONE NONE NONE NONE NONE NONE		ATTACHED ATTACHED ATTACHED ATTACHED ribes, Imperial Irrigation District

REQUESTED ACTION:

SEE ATTACHED

Initial Study #18-0007

□ NEGATIVE DECLARATION □ MITIGATED NEGATIVE DECLARATION

Initial Study & Environmental Analysis For:

All American Grain Company, LLC

IS#18-0007 GPA # 18-0001 & ZC 18-0002

Prepared By:

COUNTY OF IMPERIAL Planning & Development Services Department 801 Main Street El Centro, CA 92243 (442) 265-1736 www.icpds.com

February 2019

TABLE OF CONTENTS

3

SECTION 1

I,

INTRODUCTION			

SECTION 2

Н.	ENVIR	ONMENTAL CHECKLIST	8
	PROJE	CT SUMMARY	11
	ENVIR	ONMENTAL ANALYSIS	14
	Ι.	AESTHETICS	
	<i>II.</i>	AGRICULTURE AND FOREST RESOURCES	
	III.	AIR QUALITY	
	IV.	BIOLOGICAL RESOURCES	
	V.	CULTURAL RESOURCES	
	VII.	GEOLOGY AND SOILS.	
	VII.	GREENHOUSE GAS EMISSION	
	Х.	HAZARDS AND HAZARDOUS MATERIALS	
	XI.	HYDROLOGY AND WATER QUALITY	
	XII.	LAND USE AND PLANNING	
	XIII.	MINERAL RESOURCES	
	XIV.	NOISE	
	XV.	POPULATION AND HOUSING	
	XVI.	PUBLIC SERVICES	
	XVII.	RECREATION	
	XVIII.	TRANSPORTATION / TRAFFIC	
	XVIV.	TRIBAL CULTURAL RESOURCES	26
	XIX.	UTILITIES AND SERVICE SYSTEMS	

SECTION 3

111.	MANDATORY FINDINGS OF SIGNIFICANCE	28
IV.	PERSONS AND ORGANIZATIONS CONSULTED	29
۷.	REFERENCES	30
VI.	NEGATIVE DECLARATION - COUNTY OF IMPERIAL	31
VII.	FINDINGS	32
<u>SE</u>	CTION 4	
VIII.	RESPONSE TO COMMENTS (IF ANY)	33

SECTION 1 INTRODUCTION

A. PURPOSE

This document is a \Box policy-level, \boxtimes project level Initial Study for the evaluation of potential environmental impacts resulting with the proposed Zone Change #18-0002, General Plan Amendment # 18-0001 for Initial Study#18-0007. For purposes of this document, the abovementioned project will be called the "proposed application". as shown on Exhibit A & B.

B. CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA) REQUIREMENTS AND THE IMPERIAL COUNTY'S GUIDELINES FOR IMPLEMENTING CEQA

As defined by Section 15063 of the State California Environmental Quality Act (CEQA) Guidelines and Section 7 of the County's "CEQA Regulations Guidelines for the Implementation of CEQA, as amended", an **Initial Study** is prepared primarily to provide the Lead Agency with information to use as the basis for determining whether an Environmental Impact Report (EIR), Negative Declaration, or Mitigated Negative Declaration would be appropriate for providing the necessary environmental documentation and clearance for any proposed project.

According to Section 15065, an **EIR** is deemed appropriate for a particular proposal if the following conditions occur:

- The proposal has the potential to substantially degrade quality of the environment.
- The proposal has the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals.
- The proposal has possible environmental effects that are individually limited but cumulatively considerable.
- The proposal could cause direct or indirect adverse effects on human beings.

According to Section 15070(a), a **Negative Declaration** is deemed appropriate if the proposal would not result in any significant effect on the environment.

According to Section 15070(b), a Mitigated Negative Declaration is deemed appropriate if it is determined that though a proposal could result in a significant effect, mitigation measures are available to reduce these significant effects to insignificant levels.

This Initial Study has determined that the proposed applications will not result in any potentially significant environmental impacts and therefore, a Mitigated Negative Declaration is deemed as the appropriate document to provide necessary environmental evaluations and clearance as identified hereinafter.

This Initial Study and Mitigated Negative Declaration are prepared in conformance with the California Environmental Quality Act of 1970, as amended (Public Resources Code, Section 21000 et. seq.); Section 15070 of the State & County of Imperial's Guidelines for Implementation of the California Environmental Quality Act of 1970, as amended (California Code of Regulations, Title 14, Chapter 3, Section 15000, et. seq.); applicable requirements of the County of Imperial; and the regulations, requirements, and procedures of any other responsible public agency or an agency with jurisdiction by law.

Pursuant to the County of Imperial Guidelines for Implementing CEQA as amended, depending on the project

scope, the County of Imperial Board of Supervisors, Planning Commission and/or Planning Director is designated the Lead Agency, in accordance with Section 15050 of the CEQA Guidelines. The Lead Agency is the public agency which has the principal responsibility for approving the necessary environmental clearances and analyses for any project in the County.

C. INTENDED USES OF INITIAL STUDY AND NEGATIVE DECLARATION

This Initial Study and Negative Declaration are informational documents which are intended to inform County of Imperial decision makers, other responsible or interested agencies, and the general public of potential environmental effects of the proposed applications. The environmental review process has been established to enable public agencies to evaluate environmental consequences and to examine and implement methods of eliminating or reducing any potentially adverse impacts. While CEQA requires that consideration be given to avoiding environmental damage, the Lead Agency and other responsible public agencies must balance adverse environmental effects against other public objectives, including economic and social goals.

The Initial Study and Mitigated Negative Declaration, prepared for the project will be circulated for a period of 30 days (*30-days if submitted to the State Clearinghouse for a project of area-wide significance*) for public and agency review and comments. At the conclusion, if comments are received, the County Planning & Development Services Department will prepare a document entitled "Responses to Comments" which will be forwarded to any commenting entity and be made part of the record within 10-days of any project consideration.

D. CONTENTS OF INITIAL STUDY & NEGATIVE DECLARATION

This Initial Study is organized to facilitate a basic understanding of the existing setting and environmental implications of the proposed applications.

SECTION 1

I. INTRODUCTION presents an introduction to the entire report. This section discusses the environmental process, scope of environmental review, and incorporation by reference documents.

SECTION 2

II. ENVIRONMENTAL CHECKLIST FORM contains the County's Environmental Checklist Form. The checklist form presents results of the environmental evaluation for the proposed applications and those issue areas that would have either a significant impact, potentially significant impact, or no impact.

PROJECT SUMMARY, LOCATION AND EVIRONMENTAL SETTINGS describes the proposed project entitlements and required applications. A description of discretionary approvals and permits required for project implementation is also included. It also identifies the location of the project and a general description of the surrounding environmental settings.

ENVIRONMENTAL ANALYSIS evaluates each response provided in the environmental checklist form. Each response checked in the checklist form is discussed and supported with sufficient data and analysis as necessary. As appropriate, each response discussion describes and identifies specific impacts anticipated with project implementation.

SECTION 3

III. MANDATORY FINDINGS presents Mandatory Findings of Significance in accordance with Section 15065 of the CEQA Guidelines.

IV. PERSONS AND ORGANIZATIONS CONSULTED identifies those persons consulted and involved in

preparation of this Initial Study and Mitigated Negative Declaration.

V. REFERENCES lists bibliographical materials used in preparation of this document.

VI. MITIGATED NEGATIVE DECLARATION - COUNTY OF IMPERIAL

VII. FINDINGS

SECTION 4

VIII. RESPONSE TO COMMENTS (IF ANY)

IX. MITIGATION MONITORING & REPORTING PROGRAM (MMRP)

E. SCOPE OF ENVIRONMENTAL ANALYSIS

For evaluation of environmental impacts, each question from the Environmental Checklist Form is summarized and responses are provided according to the analysis undertaken as part of the Initial Study. Impacts and effects will be evaluated and quantified, when appropriate. To each question, there are four possible responses, including:

- 1. **No Impact:** A "No Impact" response is adequately supported if the impact simply does not apply to the proposed applications.
- 2. **Less Than Significant Impact:** The proposed applications will have the potential to impact the environment. These impacts, however, will be less than significant; no additional analysis is required.
- 3. Less Than Significant With Mitigation Incorporated: This applies where incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact".
- 4. **Potentially Significant Impact:** The proposed applications could have impacts that are considered significant. Additional analyses and possibly an EIR could be required to identify mitigation measures that could reduce these impacts to less than significant levels.

F. POLICY-LEVEL or PROJECT LEVEL ENVIRONMENTAL ANALYSIS

This Initial Study and Negative Declaration will be conducted under a policy-level, project level analysis. Regarding mitigation measures, it is not the intent of this document to "overlap" or restate conditions of approval that are commonly established for future known projects or the proposed applications. Additionally, those other standard requirements and regulations that any development must comply with, that are outside the County's jurisdiction, are also not considered mitigation measures and therefore, will not be identified in this document.

G. TIERED DOCUMENTS AND INCORPORATION BY REFERENCE

Information, findings, and conclusions contained in this document are based on incorporation by reference of tiered documentation, which are discussed in the following section.

1. Tiered Documents

As permitted in Section 15152(a) of the CEQA Guidelines, information and discussions from other documents can be included into this document. Tiering is defined as follows:

"Tiering refers to using the analysis of general matters contained in a broader EIR (such as the one prepared for a general plan or policy statement) with later EIRs and negative declarations on narrower projects;

incorporating by reference the general discussions from the broader EIR; and concentrating the later EIR or negative declaration solely on the issues specific to the later project."

Tiering also allows this document to comply with Section 15152(b) of the CEQA Guidelines, which discourages redundant analyses, as follows:

"Agencies are encouraged to tier the environmental analyses which they prepare for separate but related projects including the general plans, zoning changes, and development projects. This approach can eliminate repetitive discussion of the same issues and focus the later EIR or negative declaration on the actual issues ripe for decision at each level of environmental review. Tiering is appropriate when the sequence of analysis is from an EIR prepared for a general plan, policy or program to an EIR or negative declaration for another plan, policy, or program of lesser scope, or to a site-specific EIR or negative declaration."

Further, Section 15152(d) of the CEQA Guidelines states:

"Where an EIR has been prepared and certified for a program, plan, policy, or ordinance consistent with the requirements of this section, any lead agency for a later project pursuant to or consistent with the program, plan, policy, or ordinance should limit the EIR or negative declaration on the later project to effects which:

(1) Were not examined as significant effects on the environment in the prior EIR; or

(2) Are susceptible to substantial reduction or avoidance by the choice of specific revisions in the project, by the imposition of conditions, or other means."

2. Incorporation By Reference

Incorporation by reference is a procedure for reducing the size of EIRs/MND and is most appropriate for including long, descriptive, or technical materials that provide general background information, but do not contribute directly to the specific analysis of the project itself. This procedure is particularly useful when an EIR or Negative Declaration relies on a broadly-drafted EIR for its evaluation of cumulative impacts of related projects (*Las Virgenes Homeowners Federation v. County of Los Angeles* [1986, 177 Ca.3d 300]). If an EIR or Negative Declaration relies on information from a supporting study that is available to the public, the EIR or Negative Declaration cannot be deemed unsupported by evidence or analysis (*San Francisco Ecology Center v. City and County of San Francisco* [1975, 48 Ca.3d 584, 595]). This document incorporates by reference appropriate information from the "Final Environmental Impact Report and Environmental Assessment for the "County of Imperial General Plan EIR" prepared by Brian F. Mooney Associates in 1993 and updates.

When an EIR or Negative Declaration incorporates a document by reference, the incorporation must comply with Section 15150 of the CEQA Guidelines as follows:

- The incorporated document must be available to the public or be a matter of public record (CEQA Guidelines Section 15150[a]). The General Plan EIR and updates are available, along with this document, at the County of Imperial Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.
- This document must be available for inspection by the public at an office of the lead agency (CEQA Guidelines Section 15150[b]). These documents are available at the County of Imperial Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.
- These documents must summarize the portion of the document being incorporated by reference or briefly describe information that cannot be summarized. Furthermore, these documents must describe the relationship between the incorporated information and the analysis in the tiered documents (CEQA)

Guidelines Section 15150[c]). As discussed above, the tiered EIRs address the entire project site and provide background and inventory information and data which apply to the project site. Incorporated information and/or data will be cited in the appropriate sections.

- These documents must include the State identification number of the incorporated documents (CEQA Guidelines Section 15150[d]). The State Clearinghouse Number for the County of Imperial General Plan EIR is SCH #93011023.
- The material to be incorporated in this document will include general background information (CEQA Guidelines Section 15150[f]). This has been previously discussed in this document.

II. Environmental Checklist

- 1. **Project Title**: All American Grain General Plan Amendment #18-0001, Zone Change #18-0002, Initial Study # 18-0007
- 2. Lead Agency: Imperial County Planning & Development Services Department
- 3. Contact person and phone number: David Black, Planner IV, (442)265-1736, ext. 1746
- 4. Address: 801 Main Street, El Centro CA, 92243
- 5. E-mail: davidblack@co.imperial.ca.us
- 6. Project location: The project site is located south of the City of Calipatria, Imperial County, California at 204 East Albright Road and Yocum Road and is further identified as Assessor's Parcel Number 024-260-032-000. The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria See Exhibit A.
- 7. Project sponsor's name and address: All American Grain, at 1065 State Street, El Centro, CA 92243
- 8. General Plan designation: Urban
- 9. Current Zoning: A-2-(General Agricultural)
- 10. **Description of project**: Applicant proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a Container Yard and Rail Spur. The proposed Zone Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial) zone, while the General Plan Amendment will amend the Imperial County Land Use Element *Table 4: Compatibility Matrix1*, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in *Table 4: Compatibility Matrix*. This General Plan Amendment is meant to correct *Table 4: Compatibility Matrix* so that it is compatible with the Land Use Element's contents.
- 11. **Surrounding land uses and setting**: The land uses located east of project site are zoned for industrial type of uses, a rail spur surrounds the project situs used for uploading shipment of Agriculture products including com and grain. Highway 111 is directly west of project site and the Railroad is directly east of project site.
- 12. Other public agencies whose approval is required (e.g., permits, financing approval, or participation

agreement.): A) Planning Commission B) Regional Water Quality Control Board

13. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so has consultation begun?

Native American Tribes and members of the Native American Heritage Commission (NAHC) have been invited to participate in the "Request for Review and Comment" as part of the Initial Study review process. Also, a tribal list was delivered from NAHC for us to contact so we did, but no comments related to significant impacts were received SB 18 and AB 52 consultation request to comment letters have been sent out.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

	Aesthetics		Agriculture and Forestry Resources		Air Quality
\boxtimes	Biological Resources	\boxtimes	Cultural Resources	\boxtimes	Geology /Soils
\boxtimes	Greenhouse Gas Emissions		Hazards & Hazardous Materials	\boxtimes	Hydrology / Water Quality
	Land Use / Planning		Mineral Resources		Noise
	Population / Housing	\boxtimes	Public Services		Recreation
\boxtimes	Transportation/Traffic		Tribal Cultural Resources		Utilities/Service Systems
	Mandatory Findings of Significance				

ENVIRONMENTAL EVALUATION COMMITTEE (EEC) DETERMINATION

After Review of the Initial Study, the Environmental Evaluation Committee has:

Found that the proposed project COULD NOT have a significant effect on the environment, and a <u>NEGATIVE</u> <u>DECLARATION</u> will be prepared.

Found that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

Found that the proposed project MAY have a significant effect on the environment, and an <u>ENVIRONMENTAL</u> <u>IMPACT REPORT</u> is required.

Found that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

Found that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

CALIFORNIA DEPARTMENT OF FISH AND WIL	DLIFE [DE MINIMIS	IMPACT FINDING: 🗌 Ye	es 🗌 No
EEC VOTES PUBLIC WORKS ENVIRONMENTAL HEALTH SVCS OFFICE EMERGENCY SERVICES APCD AG SHERIFF DEPARTMENT ICPDS				
Jim Minnick, Director of Planning/EEC Chairman			Date:	

Imperial County Planning & Development Services Department Page 9 of 36

PROJECT SUMMARY

Project Location: The project site is located south of the City of Calipatria, Imperial County, California at 204 East Albright Road and Yocum Road and is further identified as Assessor's Parcel Number 024-260-032-000. The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria See Exhibit A.

Project Summary: Applicant proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a Container Yard and Rail Spur. The proposed Zone Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial) zone, while the General Plan Amendment will amend the Imperial County Land Use Element Table 4: Compatibility Matrix1, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in Table 4: Compatibility Matrix. This General Plan Amendment is meant to correct Table 4: Compatibility Matrix so that it is compatible with the Land Use Element's contents. All American Grain Company proposes the construction of a loading/distribution facility that will utilize train units for distribution purposes to the POLB, thus cutting down the amount of trucks needed for distribution. A second spur is proposed and a bridge or tunnel will be built to provide 24 hour access to the parcel inside of spur(s). The current operations of the facility act as a grain transfer and storage station for locally grown container agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown refuge in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

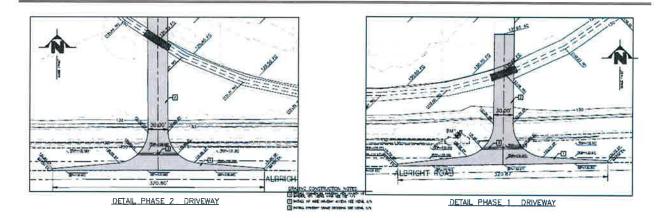
The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the *primary method* of distribution to the POLB. Ultimately, the applicant's goal is to become more efficient with the delivery of out-going hay products that leave the valley and reduce the amount of trip miles made by trucks. This addition of one-unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks.

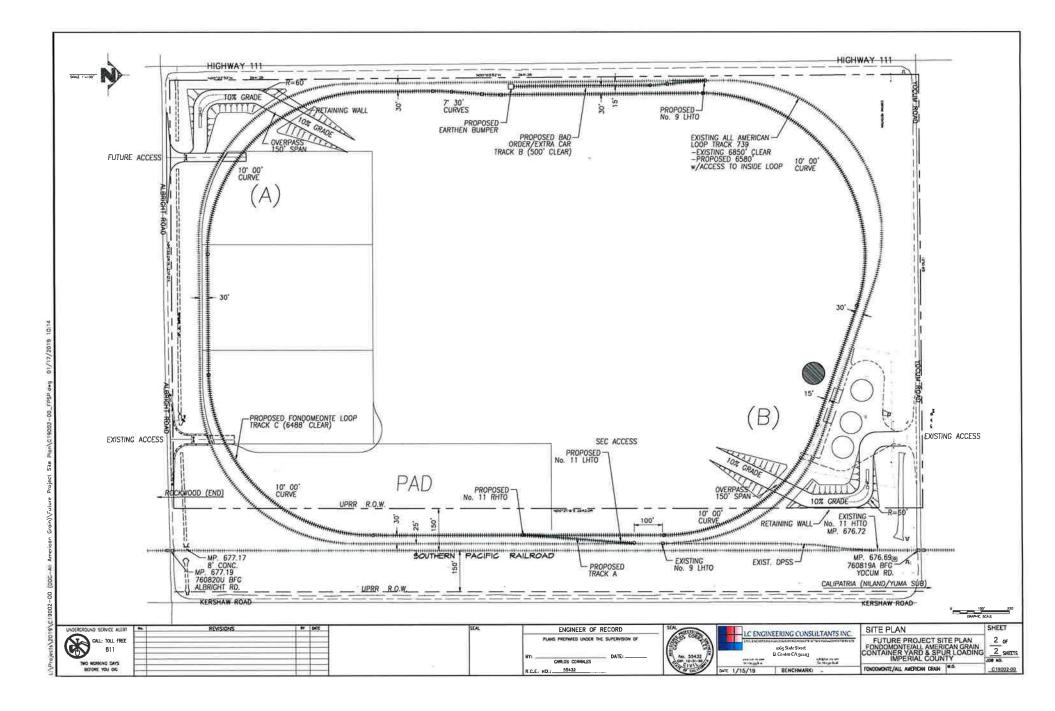
Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of offloading containers from the train and then reloading the containers that were loaded at the source. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the POLB utilizing the Union Pacific Rail Road.

It is the intent of the applicant to construct this Container Yard in phases (see **Figure 5**). On the furthest east portion of the project, contains Phase 1, which is permitted by right to allow for a container yard. Phase 1 is unrelated to this Zone Change and General Plan Amendment for the reason stated previously. As of 8/06/2018 and 8/07/2018, the applicant has submitted with County of Imperial Building Department and Public Works Department for a grading permit for Phase 1. Once the Zone Change and General Plan Amendment is submitted for Phases 2 & 3.

- **C. Environmental Setting**: The land uses located east of project site are zoned for industrial type of uses, a rail spur surrounds the project situs used for uploading shipment of Agriculture products including corn and grain. Highway 111 is directly west of project site and the Railroad is directly east of project site.
- D. Analysis: The project site is zoned A-2- (General Agricultural) per Zoning Map #06 (Title 9, Section 92506.04). The approval of the proposed Zone Change to M-2 (Medium Industrial) would allow for the proposed use with the submittal and approval of a building permit since it is listed as a permitted use per Title 9, Division 5, Chapter 9, Section 90509.01. The proposed application is consistent with the Imperial County General Plan's designation, and the Imperial County's Land Use Ordinance. In addition, the adoption of the CEQA Initial Study for this project would be consistent with applicable County and State ordinances and regulations.
- E. General Plan Consistency: The project site is designated as "Agriculture", according to the County's General Plan Land Use Map. The proposed project zone change and general plan amendment is not expected to conflict with the County's General Plan. The rezoning to M-2 Medium Industrial will be consistent with the eastern portion of parcel which is currently zone M-2.

Exhibit "A" Vicinity Map




Exhibit "B"

EVALUATION OF ENVIRONMENTAL IMPACTS:

1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should

be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).

- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3) Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from "Earlier Analyses," as described in (5) below, may be cross-referenced).
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue should identify:
 - a) The significance criteria or threshold, if any, used to evaluate each question; and
 - b) The mitigation measure identified, if any, to reduce the impact to less than significance

			Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
.	AE	STHETICS Would the project:				
	a)	Have a substantial adverse effect on a scenic vista or scenic highway? a) The project is not located near a designated scenic highway as per the Imperial County Circulation & Scenic				
	b)	Substantially damage scenic resources, including, but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?				\boxtimes
		 b) There are no historic buildings near or around this p little to no vegetation. No impact is projected. 	roject site. Th	e project site is mos	tly clear oper	ı field with
	c)	Substantially degrade the existing visual character or quality of the site and its surrounding? c) The project site is not within a designated scenic ro <i>Element.</i> There will be lighting on-site for the office a standards within the operation and parking area the Highway 111 from these new light sources, but the ligi adjacent properties as well as to reduce nighttime gla adverse aesthetic impact. The construction and oper building materials placed on-site and trucks enter landscaping and industrial development standards significant	and shall inclu at may have hting shall be re. Project lig ration could f ng and leavi	ide the installation of an aesthetic impact pointed downward hting is not conside temporarily alter th ng the site. With	of power poles on those tra- to avoid glar ered to be a s e local view- the implement	s and light aveling on e onto the significant, shed with ntation of
	d)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area? d) The project site is not within a designated scenic ro <i>Element.</i> There will be lighting on-site for the office a standards within the operation and parking area that ma 111 from these new light sources, but the lighting sha properties as well as to reduce nighttime glare. Projec aesthetic impact. The construction and operation co materials placed on-site and trucks entering and leavin industrial development standards is expected to decrea	nd shall inclu y have an aes Il be pointed t lighting is r uld temporari ng the site. W	ide the installation of thetic impact on those downward to avoid not considered to be ily alter the local v lith the implementat	of power poles se traveling of glare onto the e a significan iew-shed with ion of landsc	s and light n Highway e adjacent t, adverse h building
11.		AGRICULTURE AND FOREST RESOURCES				
A L E	Agricul use in enviror	ermining whether impacts to agricultural resources are significan Itural Land Evaluation and Site Assessment Model (1997) prepared assessing impacts on agriculture and farmland. In determining whe nmental effects, lead agencies may refer to information compiled by ate's inventory of forest land, including the Forest and Range Asses	by the California other impacts to y the California I	a Department of Consen forest resources, includ Department of Forestry	vation as an opti ing timberland, and Fire Protec	ional model to are significan tion regarding

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use?

a) The project area has not been farmed in over 10+ years and the current land use includes a rail spur surrounding a majority of the project site. This potential use for an industrial purpose and the de minimus amount of agriculture land being converted is not expected to be significant and would be anticipated due to the availability of the existing railroad spur on-site and the Union Pacific Railroad adjacent to the project site.

carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. --Would the project:

		Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
b)	Conflict with existing zoning for agricultural use, or a Williamson Act Contract? b) The current grain trucking and storage operation on proposed storage yard. The grain operation is along Y The proposed project does not conflict with existing zon Act contract, according to the Williamson Act map cree Supervisors Order #10a; therefore, no impacts are expertent	ocum road an oning for agric ated in 2012 b	d has its own separ cultural use and is r	rate entrance not under a W	to parcel. /illiamson
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))? c) The project site is mostly surrounded by open and cause for any forest land to be converted into non-forest				⊠ would not
d)	Result in the loss of forest land or conversion of forest land to non-forest use? d) There is no forest land in the area of the project loca a consequence of the approval of the proposed project				⊠ I occur as
e)	 Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use? e) The portion of this property is currently Medium Ind which would discourage any type of farming operation the nearby railroad boarding property on the east sig property would be limited to any type of Agricultural use 	and limit any te and Highw	type of irrigation ne	eded for farm	ning. With
	QUALITY				
	available, the significance criteria established by the applicable air on the following determinations. Would the Project:	quality managem	ent or air pollution conti	rol district may b	e relied
a)	Conflict with or obstruct implementation of the applicable air quality plan? An Air Quality Study was prepared by Ultra-Systems d air quality effects on the environmental that could res long term (i.e. implementation and operation) impacts of	ult from the s			
	The proposed project is proposing to construct two pa pads to the site. The driveways will have two composition inches of Caltrans Type B asphalt concrete over 12 inch inside the property line, the driveway will consist of for inches of Class 2 aggregate base. Alternate option wo enable the trucks to ingress and egress over the any blo a second spur is being proposed on the project site w	ons, in the Cou les of Class 2 a our inches of uld include a ockage of trair	nty right-of-way, wi aggregate base, and Caltrans Type B as bridge over one of a cars on the three e	II be comprise I a minimum o phalt concret the three driv entrances. Add	ed of hour of 100 feet e over 14 veways to ditionally,

commodities In addition to complying with the ICAPCD's standard mitigation measures for construction, and with applicable District rules, the proponent shall implement mitigation measure

Construction phase Mitigation to include:

• MM AQ-1 The operator shall limit vehicle speed to less than 15 miles per hour on any and all unpaved surfaces on the project site.

	Potentially		
Potentially	Significant	Less Than	
Significant	Unless Mitigation	Significant	
Impact	Incorporated	Impact	No Impact
(PSI)	(PSUMI)	(LTSI)	(NI)

Operational Phase Mitigation to include:

- MM AQ-2 the proponent shall pay an in-lieu mitigation fee to be determined and administered by the ICAPCD. ¹ In accordance with the ICAPCD *CEQA Air Quality Handbook*, the long-term operational impacts would be less than significant upon implementation of mitigation measure
- b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?
 b) The USEPA issued a final ruling determining that the Imperial County "moderate" 8 hour ozone nonattainment area attained the 1997 8 hour NAAQS for ozone. This determination effectively suspended the requirement for the state to submit an attainment demonstration, an RFP plan, contingency measures and other planning requirements for so long as Imperial County remain as a "moderate" non-attainment area of the 1997 8-hour ozone NAAQS.
- c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?

c) Major stationary sources are required to implement Best Available Control Technology (BACT) to control PM10 emission (Rule 207) and they are required to comply with the 20% opacity (Rule 403). In addition stationary sources will be required to mitigate fugitive dust emissions from access roads, construction activities, handling and transferring of bulk materials, and track-out/carry out according to the requirements of Regulation VIII.

П

- d) Expose sensitive receptors to substantial pollutants concentrations?
 d) Major stationary sources are required to implement Best Available Control Technology (BACT) to control PM10 emission (Rule 207) and they are required to comply with the 20% opacity (Rule 403). In addition stationary sources will be required to mitigate fugitive dust emissions from access roads, construction activities, handling and transferring of bulk materials, and track-out/carry out according to the requirements of Regulation VIII
- e) Create objectionable odors affecting a substantial number of people?
 e) Rule 800, 801 (Construction and Earthmoving Activities, 802(Bulk Material), 803 (Carry out and Tract out) 804 (open areas) and 805 (Paced and Uppaved Roads) are intended to reduce the amount of PM10 entrained in the

(open areas) and 805 (Paced and Unpaved Roads) are intended to reduce the amount of PM10 entrained in the ambient air as a result of emission generated by fugitive dust sources by requiring actions to prevent reduce or mitigate emission.

- IV. BIOLOGICAL RESOURCES Would the project:
 - a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?

\boxtimes	

 \boxtimes

 \square

a) On 17 July, 2018 a biological habitat assessment was conducted by Maria Barrett and Jacob Calanno biologists, on the Project site. A 500 foot buffer area was also surveyed. Surveys were conducted to determine the presence absence nesting birds and of Western Burrowing Owl. No vegetation was found that would be considered endangered, threatened or species of concern. No vegetation onsite. No fauna was found that would be considered endangered or threatened. Three burrowing owls, CDFW species of concern, one occupied burrow, and one active burrow were found offsite on Imperial Irrigation District Right of Way Nectarine Lateral A.

¹ #4Ultra-Systems Air Quality Study dated November 13, 2018 Barrett Biological surveys dates July 2018

		Potentially Significant	Potentially Significant Unless Mitigation	Less Than Significant	
		Impact (PSI)	Incorporated (PSUMI)	Impact (LTSI)	No Impact (NI)
	Mitigation Measures: a. BUOW shelter in place using hay bales and remove qualified biologist. b. Worker BOUW training sessions c. Monitoring when construction is within 250 feet (determined necessary by qualified biologist. d. If construction stared during Migratory Bird Nesting be completed 3 days prior to start of construction.	February – Au	ugust); 160 feet (Se	eptember – J	anuary) if
b)	 Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service? b) The project site is surrounded by flat agricultural fiel or near any riparian habitat or sensitive natural community is a sensitiv				
c)	 Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means? c) The proposed project site is mostly surrounded by a be used for its operations (i.e. dust suppression), bu substantial and would be subject to APCD's rules and 	t the amount of			
d)	Interfere substantially with the movement of any resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites? d) The proposed project is not expected to impact the site is not located near a body of water nor near a wild within the burrowing owl distribution				
e)	Conflict with any local policies or ordinance protecting biological resource, such as a tree preservation policy or ordinance? e) There are no policies protecting biological resource therefore, less than significant impacts are expected.	S that apply to	L the scope of work o	⊠ f the propose	d project;
f)	Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan? f) There are no Conservation Plans within the project a	area; therefore	, no impacts are exp	Dected.	
V. CU	ILTURAL RESOURCES Would the project:				
a)	Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5? a) Mitigation Measure: The Imperial County Planning resources (e.g., prehistoric or historic artifacts) or pale construction. All construction must stop in vicinity of the Interior's Professional Qualifications Standards in evaluate the finds and recommend appropriate action	ontological res the find and ar	ources (e.g., fossils archaeologist that) are uncover meets the Se	ed during cretary of
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?		\boxtimes		

Poter	Potential Notential		
	ficant Unless Mitig		
Imp	act Incorporat	ed Impact	No Impact
(P:	SI) (PSUMI)) (LTSI)	(NI)

Mitigation Measure for Culture:

 The Imperial County Planning Department shall be notified immediately if any cultural resources (e.g., prehistoric or historic artifacts) or paleontological resources (e.g., fossils) are uncovered during construction. All construction must stop in vicinity of the find and an archaeologist that meets the Secretary of the Interior's Professional Qualifications Standards in prehistoric or historical archaeology shall be retained to evaluate the finds and recommend appropriate action.

C)	Directly or indirectly destroy a unique paleontological resource		
'	or site or unique geologic feature?	\boxtimes	

c) Mitigation Measures:

- The Imperial County Planning Department shall be notified immediately if any cultural resources (e.g., prehistoric or historic artifacts) or paleontological resources (e.g., fossils) are uncovered during construction. All construction must stop in vicinity of the find and an archaeologist that meets the Secretary of the Interior's Professional Qualifications Standards in prehistoric or historical archaeology shall be retained to evaluate the finds and recommend appropriate action.
- If any paleontological resources (fossils) are discovered during ground disturbing project activity, all work in the immediate vicinity must stop and the Imperial County Planning Department shall be immediately notified. A qualified paleontologist shall be retained to evaluate the finds and recommend appropriate mitigation measures for the inadvertently discovered paleontological resources.
- If avoidance is not feasible, a qualified professional archaeologist shall be on site during any excavations in excess of 4 feet who shall have the authority to stop construction if necessary and determine the appropriate protective measures if any. If subsurface deposits are found, an area equal to 200 feet around the area shall be halted from construction until appropriate removal or alternative solution of collective of artifacts is concluded. In the event that human remains are found, construction activities within 200 feet radius shall cease, the Imperial County Coroner notified and work not resume until the recommendations of an MLD (Most Likely Descendant) are implemented.

d)	Disturb any human remains, including those interred outside of dedicated cemeteries?		\boxtimes	
	(b) 101	 and a surfate the state	the sector I have been	and Onderson

d) There are no cemeteries within the vicinity of the project site. Compliance with the California Health and Safety Code §7050.5, CEQA §15064.5, and California Public Resources Code §5097.98 would bring any potential project impacts to less than significant levels.

VI. GEOLOGY AND SOILS Would the project:

- a) Expose people or structures to potential substantial adverse effects, including risk of loss, injury, or death involving:
 - a) The project site lies at an elevation of approximately 175 feet below sea level in the Imperial Valley region. The site is located in the Imperial Valley portion of the Salton Trough. The Salton Trough represents the northward extension of he Gulf of California.
 - Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42?

	\boxtimes	

 \boxtimes

1) The project site is located in the seismically active Imperial Valley of southern California and is considered likely to be subjected to moderate to strong ground motion from earthquake in the region.

The proposed site structures should be designed in accordance with the California Building Code (CBC) for near source factors derived from a "design basis earthquake" (DBE).. This site identifies the predominant native subgrade soils to be clays that yield an R-Value strength of 5 when tested in accordance with test method CAL 301. Based on the Container Reach Lift/Stacker service loads an estimated R-value of 5 for the subgrade soil and assumed traffic index of 11.0. The report suggested Portland Cement Concrete (PCC)

Potentially	Potentially Significant	Less Than	
Significant	Unless Mitigation	Significant	
Impact	Incorporated	Impact	No Impact
(PSI)	(PSUMI)	(LTSI)	(NI)

 \square

 \boxtimes

 \boxtimes

 \boxtimes

 \bowtie

 \square

 \square

 \square

pavement structural section for the Hay Loading Pad. Twelve (12) inches of moisture conditioned (minimum 4% above optimum) native clay soil compacted to a minimum of 90% of the maximum dry density determined by ASTM D 1557 shall support the pavement structural section. <u>Unpaved Structural Section</u> <u>Maintenance Required</u>: Requirement The container storage and loading areas may consist of 18 inches of aggregate base. The bottom 12 inches may consist of crushed concrete aggregate base and the top 6 inches should consist of crushed natural rock aggregate base. Please refer to the Landmark letter dated August 3, 2018 regarding Rail Loop Loading Pad Structural Section SEC of State Hwy 111 and Yocum Road LCI Report No. LE18146 for additional recommendations.

2) Strong Seismic ground shaking?

2) Strong ground shaking during earthquakes along the Brawley Seismic Zone and the Imperial, Brawley, and Superstition Hill Faults. Guide lines shown on previous a)1 recommendation and recommendation outlined in Landmark letter dated August 3, 2018 regarding Rail Loop Loading Pad Structural Section SEC of State Hwy 111 and Yocum Road LCI Report No. LE18146 for impacts recommendations will keep impacts at a less than significant level. Developer will follow all recommendations in report.

3) Seismic-related ground failure, including liquefaction and seiche/tsunami?

3) According to the Department of Conservation Regulatory Maps, the project site is not within the designated Tsunami areas; therefore, no impacts are expected. Based on the Geotechnical Report dated July 2006 from Landmark Consultants, Inc. on page 13 of report "based on research from Ishihara (1985) and Youd and Garris (1995) ground rupture or sand boil formation is unlikely because of the thickness of the overlaying un-liquefiable soil.

- 4) Landslides?
 4) Also using the Department of Conservation Regulatory Maps, it was found that the site is not located within a landslide hazard zone; therefore, no impacts are expected. Based on the Geotechnical Report dated July 2006 from Landmark Consultants, Inc. on page 13 of report "based on research from Ishihara (1985) and Youd and Garris (1995) ground rupture or sand boil formation is unlikely because of the thickness of the overlaying un-liquefiable soil.
- b) Result in substantial soil erosion or the loss of topsoil?
 b) Land has not been farmed in a number of years and is surrounded by rail spur and highways and railroad tracks. Loss of any top soil is projected to be minimal.
- c) Be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction or collapse?

c), it was found that the site is not located within a landslide hazard zone; therefore, no impacts are expected. Based on the Geotechnical Report dated July 2006 from Landmark Consultants, Inc. on page 13 of report "based on research from Ishihara (1985) and Youd and Garris (1995) ground rupture or sand boil formation is unlikely because of the thickness of the overlaying un-liquefiable soil.

 \square

- d) Be located on expansive soil, as defined in the latest Uniform Building Code, creating substantial risk to life or property?
 d), it was found that the site is not located within a landslide hazard zone; therefore, no impacts are expected. Based on the Geotechnical Report dated July 2006 from Landmark Consultants, Inc. on page 13 of report "based on research from Ishihara (1985) and Youd and Garris (1995) ground rupture or sand boil formation is unlikely because of the thickness of the overlaying un-liquefiable soil
- e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

e) The applicant will follow all Above ground and permitted septic systems requirements and will follow all Environmental Health Services permitting and compliance requirements.

			Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)	
VII.	GR	EENHOUSE GAS EMISSION Would the project:					
	a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment? a) According to the Ultra Systems report regarding cord					
		train transport of agricultural products from All America the project will cause emissions of GHG from mobile se than significant level.					
	b)	Conflict with an applicable plan or policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?			\boxtimes		
		b) There are no regional or local climate action plar emissions in the study area, other than the regulatio emissions to 1990 levels by 2020 ² . The California Air updated but it does not include an applicable thro characteristics and duration Compliance with APCD a measures listed in the Ultra Systems Air Quality report than significant.	ns under AB r Resources E eshold for G nd all applical	32, which has a ta Board (CARB)'s AB HG emissions for ble County's require	arget of reduce 32 Scoping a project we ements and m	cing GHG Plan was ith these itigations	
		Mitigation Measures for Construction Phase:					
	MM AQ-1 The operator shall limit vehicle speed to less than 15 miles per hour on any and all unpaved surfaces on the project site.						
	<u>c</u>	Operational Phase Mitigation to include:					
	¢	MM AQ-2: The proponent shall pay an in-lieu mitigat ICAPCD. ³ In accordance with the ICAPCD CEQA Air would be less than significant upon implementation of	Quality Handb	ook, the long-term			
VIII.	HA	ZARDS AND HAZARDOUS MATERIALS Would the project	:				

a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				\boxtimes
	 a) The proposed project does not have the potential to through the transportation, use or disposal of hazardou therefore, no impacts are expected to occur. 				
b)	Create a significant hazard to the public or the environment through reasonable foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				
	 b) As stated above, no hazardous materials are inclu expected. 	ded in the pr	oposed project; the	erefore, no im	pacts are
C)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school? c) No impacts are expected. No schools are nearby.				
-					

		Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
d)	Be located on a site, which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? d) Government Code Section 65962.5 requires the Dep and update a list of hazardous waste and substances s				
	EnvironStor Database ⁴ for the project site, it was foun impacts are expected to occur.	id that it was r	not included in the	database; the	refore, no
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area? e) According to Figure 1A of the 1996 Imperial Count project is not located within two miles of an airport, no airport is the Calipatria Airport, and project area is la impacts are expected to occur.	r is it located v	vithin an airport lan	d use plan. Ti	he nearest
f)	For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? f) In addition to the statement above, the proposed projimpacts are expected to occur.	iect is not with	in any known priva	te airstrip; the	⊠ erefore, no
g)	 Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? g) The proposed project shall comply with all County reavoid impairing its implementation. The access poi emergencies will be provided by a proposed bridge or compliance with County requirements regarding design would bring potential impacts to less than significant letters. 	nts are from tunnel on eith of emergency	Yocum and Albrig ner the Yocum or A	ht Roads. A Ibright Roads	ccess for Showing
h)	 Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? h) The project site is located within a Local Responsib according to the Fire Hazard Severity Zone Map.⁵ Zone behave and the probability of flames and embers throburning. Since no wildlands are surrounding the project 	es are classifie eatening build	d based on a combi ings, as well of the	ination of hov e likelihood o	/ a fire will f the area
	An Emergency Response Plan shall be prepared in coo Imperial. The Emergency Response Plan shall be updat Department and the Imperial County Office of Emergen significant.	ordination with ted annually in	local fire agencies coordination with	and the Coun the Imperial C	ty of county Fire
HY	DROLOGY AND WATER QUALITY Would the project:				
	Violate any water quality standards or waste discharge		F-1	\boxtimes	

ALUC Compatibility Map Figure 3C

		Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
	of the property, since there is a field gate The applicant an and federal laws. Compliance with all laws regarding water w water and access will be thru IID and any permits required.				
b)	Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre- existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)? b) Groundwater use is not a part of the scope of work of this near the project site area. All water needs will be thru permit		re are no known grout	Dadwater or dom	⊠ nestic wells
c)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site? c) According to the Imperial County Public Works required patterns are designed to avoid alterations of streams or to ne all County Building (ICPDS) and Public Works (PW) Departme impacts to be less than significant.	gatively affect th	he surrounding water	sources. Comp	liance with
)	Substantially alter the existing drainage patterns of the site or area, including through the of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?				
	 d) Mitigation Measure: d) The project applicant is required to prepar to be administered through all phases of incorporate Best Management Practices (Construction permit to ensure that potentia erosion) during construction phases are min not occur. The SWPPP must address spill p measures to ensure proper collection and di during construction including sanitary waste 	grading and (BMPs) meeting al water quality imized and that revention and sposal of all p	project construction ng technical stand ty impacts (includinat violations of wate include a countermo ollutants handled o	n. The SWF lards of the ng on-site an er quality star easure plan d r produced o	PP must General d off-site dards do escribing n the site

during construction, including sanitary wastes, cement, and petroleum products. BMPs included in the SWPPP must be consistent with the California Storm-water Best Management Practices Handbook for Construction. The SWPPP must be submitted to the Region 7 Regional Water Quality Control Board and to the County for review prior to the issuance of grading permits.

e) Create or contribute runoff water, which would exceed the capacity of existing or planned storm-water drainage systems or provide substantial additional sources of polluted runoff?

Mitigation Measure:

• e) The project applicant is required to prepare a Storm Water Pollution and Prevention Plan (SWPPP) governing industrial operations to be administered so long as industrial activities are ongoing. The Industrial SWPPP must incorporate Best Management Practices (BMPs) meeting the technical standards of the General Industrial Permit to ensure that potential water quality impacts during the operational phase are minimized and that violations of water quality standards do not occur. The Industrial SWPPP will include permanent post-construction BMPs meeting the County's requirements under its program implementing the Small MS4 Permit. These post-construction BMPs will be included in the Industrial SWPPP and must be consistent with the California Stormwater Best Management Practices Handbook for Commercial and Industrial operations. The BMPs will include the implementation of three [3] detention basins, collectively sized to retain a 100-year frequency storm event from the project site. These detention basins will meet design standards imposed by the County and the Imperial Irrigation District, including draining within 72 hours following a storm event and having outlet structures no larger than 12 inches in diameter and containing a backflow prevention

			Potentially	Potentially Significant	Less Than	
			Significant Impact	Unless Mitigation Incorporated	Significant Impact	No Impact
()e			(PSI)	(PSUMI)	(LTSI)	(NI)
		device. The Industrial SWPPP must be submit to the issuance of certificates of occupancy. A				
	f)	Otherwise substantially degrade water quality? f) The property owner shall show compliance with all local, sta during the life of project Compliance with all laws against w less than significant levels.				
	g)	Place housing within a 100-year flood hazard area as mapped on a Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map? g) No housing is being proposed for this project and the proj- impacts are expected.	ect site is not w	vithin a Flood Hazard B	Coundary; there	⊠ efore, no
	h)	Place within a 100-year flood hazard area structures which would impede or redirect the flood flows?			() A) of the El	
		h) The project site is approximately 3 miles east of the near Insurance Rate Map Panel 625 of 1175 ⁶ , and is located on Zon are expected regarding redirection or impediment of flood floor	e C, which mea			
	i)	Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam?				\boxtimes
		 i) In addition to the statement above, there are no dams of the proposed project is not expected to cause impact 			therefore, the	approval
	j)	Inundation by seiche, tsunami, or mudflow? j) According to the California Emergency Management a site is not within a Tsunami Inundation Area for Emer occur.				
Х.	LAN	ID USE AND PLANNING Would the project:				
	a)	Physically divide an established community? a) The project would not physically divide any establishe established community in Calipatria; therefore, no impacts ca			ely 3 miles s	⊠ outh of an
	b)	Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (include, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? b) The proposed project does not conflict with any applicable avoiding or mitigating an environmental effect. The proposed intent of the Imperial County General Plan's Land Use Element approved, the applicant would need to submit a building pr Division 5, Chapter 9 Section 90516.01 list of permitted uses;	General Plan A It and its goals ermit applicatio	Amendment, Zone Char and objectives. If the p on per the County Lan	nge is consiste proposed Zone	nt with the Change is
	c)	Conflict with any applicable habitat conservation plan or natural community conservation plan? c) The project would not conflict with any habitat conservation none that apply to the area; for that reason, no impacts are ex-			ation plan sinc	E there are
XI.	MIN	ERAL RESOURCES Would the project:				

⁶ Federal Emergency Management Area (FEMA) http://www.icpds.com/CMS Imperial County Planning & Development Services Department Page 23 of 36

			Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
	a)	Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state? a) The project site area is not located in or near any existi	ng mineral reso	Durce areas as show	n on the Imper	rial County
		Conservation and Open Space Element, Figure 8 "Existing Mi				
	b)	Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				\boxtimes
		b) As previously stated, the proposed project would not resul in the Imperial County General Plan Conservation and Ope impacts are expected to occur.	t in the loss of k n Space Eleme	ocally-important mine nt, Figure 8 "Existing	ral resources a Mineral Reso	s identified urces". No
XII.	NO	ISE Would the project result in:				
	a)	Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?			\boxtimes	
		 a) The project site is within a "noise impact zone," as defined by all the following criteria: Within 1,100 feet of a state highway Within 750 feet of the centerline of any railroad Within 1,320 feet of existing farmland which is The applicant owner per the Noise Study dated Septem the following improvements: Two paved driveways Three paved container storage pads County road right of way will be comprised of inches of Class 2 aggregate base. For a 100 feet inside property line, driveways 	d; and in an agricult nber 2018 has four inches of s will consist o	ural zone. indicated that the p f Caltrans Type B as	project site w sphalt concre	ill include te over 12
		 concrete over 14 inches of Class 2 aggregate Container yard pavement will consist of six in of crushed recycled concrete, over mesh, and 	ches of Caltra			12 inches
		Noise modeling done with Ultra-Systems report dated significant impacts. Operational phase shows no signif				e with no
	b)	 Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels? b) The closest sensitive receivers in the project vicinity are rethe nearest residence and the project site boundary is 271 fe significant impacts from ground vibration. 				
	C)	A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project? c) According to the Transportation Impact Analysis prepare impacts, and no permanent increase in noise levels are expense occur.				
	d)	 A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project? d) As previously stated, compliance with the Imperial C and standard construction practices would ensure 				

[#] Noise Study by UltraSytems dated September 2018

			Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
		preparation and trucks remain less than significant.				_
	e)	For a project located within an airport land use plan or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				
		e) The project site is not located within 2 miles of an a	irport; therefor	e, no impacts are ex	(pected.	
	f)	For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?		therefore as image		
		f) No known private airstrip is located near the vicinity	or the project,	therefore, no impa	ci is expected	Lan
XIII.	PO	PULATION AND HOUSING Would the project:				
	a)	Induce substantial population growth in an area, either directly (for example, by proposing new homes and business) or indirectly (for example, through extension of roads or other infrastructure)?			\boxtimes	
		a) The proposed project is consistent with the Imp application received November 21, 2018, only five (5) er cattle pen expansion project. Per the Transportation I workers will be from the proximate local population significant impacts are expected since no substantial	mployees are ex Impact Analysis centers of Cali	<pre>cpected to be hired t s, it is anticipated tl ipatria, Brawley and</pre>	to operate the hat the major d El Centro.	proposed ity of new
	b)	Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				\boxtimes
		b) Since no housing is being proposed as part of the projec	t; no impacts are	expected to occur.		
	c)	Displace substantial numbers of people necessitating the construction of replacement housing elsewhere? c) The proposed project does not involve any housing a therefore, no impacts are expected.	nd is not expect	ted to displace subst	antial number	of people;
XIV.	PU	BLIC SERVICES				
	a)	 Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: a) The project would not cause for the need of any facilities. It would not substantially affect any type of the service of the service for the need of any facilities. 				
		preparation phase, and during operations, if this G approved. Less than significant impacts are to be e	Seneral Plan & 2			
		 Fire Protection? a1) The applicant and operator of the proposed contai a fire suppression system on site. The applicant is p existing rail spur on property Continual compliance w the proposed project's impacts to less than significant 	roposing a brid vith the Fire Dep	dge or tunnel for 24 partment's rules and	4 hour access	s across the

			Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
		 Mitigation An Emergency Response Plan shall be prepare of Imperial. The Emergency Response Plan se County Fire Department and the Imperial Compacts to a less than significant level. A Hazardous Materials Business Plan shall be and Article 4 of California Code of Regulate annually to the Imperial County Fire Department 	shall be updat unty Office of prepared in a ions. The Haz	ed annually in coor f Emergency Servic ccordance with Title ardous Material Inv	dination with es would app e 19, Division a ventory shall	the Imperial bear to bring 2, Chapter 4, be updated
		 Police Protection? a2) the property will be fenced and access will be monitored 	to and from sit	e, no significant impac	t are expected	to occur.
		 Schools? The project site and proposed Industrial uses would n impacts are expected. 	ot increase hou	using and allow for re	sidential uses;	⊠ therefore, no
		4) Parks? a4) The proposed project is not within a park or would cause	for the need to	alter one; therefore, r	no impacts are	expected.
		 Other Public Facilities? a5) No other public facilities would be affected by the proposition 	sed project; the	refore, no impacts are	expected.	\boxtimes
XV.	RI	ECREATION				
	a)	Would the project increase the use of the existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? a) Since the proposed site is not within any residential areas	, parks or recre	ational facilities, no in	npacts are expe	⊠ ected.
	b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse effect on the environment?				\boxtimes
		 b) No recreational facilities are being included in the scope existing recreational facilities; therefore, no impacts are expension 		ould cause for the nee	d to construct	or expand
XVI.	TR	ANSPORTATION / TRAFFIC Would the project:				
	a)	Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?				
		Mitigation Manuros will reduce imposts for continuo a		wing bod o and f	Enantiana ta a	loop than

Mitigation Measures will reduce impacts for sections a, and the following b, c, d ,e, and f sections to a less than significant with the following mitigations:

- Yocum Road is classified as 4-Lane Major Collector requiring eighty four feet (84) of right of way, being forty two (42) feet from existing centerline. Forty feet (40') of right of way has been provided per Grant Deed Doc # Book 2249 pg. 1381, 2003. As directed by Imperial County Board of Supervisors per Minute Order #6 dated 11/22/1994 per the Imperial County Circulation Element Plan of the General Plan).
- Albright Road is classified as 2-Lane Minor Collector requiring seventy feet (70) of right of way, being thirty five (35) feet from existing centerline. Seventeen feet and Six inches (17'-6') of right of way has been provided per Grant Deed Doc # Book 2249 pg. 1378, 2003. Sufficient right of way must be provided to meet this road classification. As directed by Imperial County Board of Supervisors per Minute Order #6 dated 11/22/1994 per the Imperial County Circulation Element Plan of the General Plan).

	Potentially		
Potential	ly Significant	Less Than	
Significa	nt Unless Mitigation	Significant	
Impact	Incorporated	Impact	No Impact
(PSI)	(PSUMI)	(LTSI)	(NI)

- The applicant shall furnish a Drainage and Grading Plan/Study to provide for property grading and drainage control, which shall also include prevention of sedimentation of damage to off-site properties. The Plan/Study shall be prepared per the Engineering Design Guidelines Manual for the Preparation and checking of Street Improvement, Drainage, and Grading Plans within Imperial County and submitted to the Department of Public Works for review and approval. The applicant shall implement the approved plan. Employment of the appropriate Best Management Practices (BMPs) shall be included on the plan.
- The applicant for encroachment permits, grading plans, and/or improvement plans is responsible for researching, protecting and preserving survey monuments per the Professional Land Surveyor's Act (8771 (b)). This shall include a copy of the referenced survey map and tie card(s) (if applicable) for all monuments that may be impacted by the project whether it be on-site of off-site.
- At time of development, if required, by Section 8762(b) of the Professional Land Surveyors Act, a record
 of survey shall be filed with the County Recorder of Imperial County.
- Street improvements shall be required in conjunction with, but not limited to, any construction, grading, or related work, including the construction of structures, buildings, or major additions thereto, on property located adjacent to any county street or on property utilizing any county street for ingress and egress, except that such improvements may be deferred as described in <u>Section 12.10.040</u> of this chapter for residential property (Per Imperial County Code of Ordinances, Chapter 12.10.020). The street improvements required shall be a commercial type driveway per Imperial County Standards and a secondary emergency access driveway as approved by this Department. The secondary emergency access driveway shall be constructed of asphalt concrete or as approved by this Department.
- No building permit for any structure or building or major addition to a building or structure shall be issued until the improvements required by <u>Section 12.10.010</u> of this chapter have been installed and/or bonded. In addition, no building permit shall be issued until there has been compliance with <u>Chapter</u> <u>12.12</u> of this title and the requirement that an encroachment permit be obtained (Per Imperial County Code of Ordinances, Chapter 12.10.030).
- Any activity and/or work within Imperial County right-of-way shall be completed under an encroachment
 permit issued by this Department (Per Imperial County Code of Ordinances, Chapter 12.12). Any activity
 and/or work may include, but not be limited to, the installation of temporary traffic control devices,
 construction of access driveways, etc.
- The applicant/owner of facility shall fund needed future construction and improvements for said turn lanes installations for right and/or left turn lanes into the facility.
- b) Conflict with an applicable congestion management program, including but not limited to level of service standard and travel demand measures, or other standards established by the county congestions/management agency for designated roads or highways?

\boxtimes	

Mitigation:

b) Figure 7-1 of the transportation impact analysis indicates that 15% of the truck traffic will be using Yocum Road east of Kershaw Road (Brown Avenue). This section of Yocum Road is unpaved.- Unpaved Haul/Access Roads Requirements of Rule 805 of the Imperial County Air Pollution Control District limits any traffic on unpaved roads to generate visible dust emissions (VDE) to less than 20% opacity. If the applicant is unable to maintain the opacity level as required by Rule 805, the applicant shall mitigate the generation of dust due to project traffic along Yocum Road between Kershaw Road (Brown Avenue) and Blair Road and along Blair Road between Yocum Road and State Route 115 by one of the methods below:

Asphalt Concrete Road Improvements: The road section shall be improved by installing two (2) 12-foot travel lanes consisting of 4 inches of asphalt concrete over 18 inches of Class 2 Base, including Class 2 base shoulder backing, as approved by the Director of Public Works. Any activities related to these road improvements shall be completed under an encroachment permit from this Department.

	Potentially		
Potentially	Significant	Less Than	
Significant	Unless Mitigation	Significant	
Impact	Incorporated	Impact	No Impact
(PSI)	(PSUMI)	(LTSI)	(NI)

- Road Surface Chemical Stabilization: The road surface shall be stabilized by applying chemical stabilization products as recommended by the product manufacturer to accommodate for two (2) 12-foot travel lanes and as approved by the Director of Public Works. Any activities related to this road stabilization shall be completed under an encroachment permit from this Department.
- Aggregate Base Road Improvements: The road section shall be improved by installing two (2) 12-foot travel lanes consisting of a minimum of 3" of Class 2 Base material, as recommended by a California Geotechnical Engineer, and as approved by the Director of Public Works. Any activities related to these road improvements shall be completed under an encroachment permit from this Department.
- <u>Road Dust Mitigation Plan</u>: The applicant shall prepare a Road Dust Mitigation Plan and submit it to this Department for review and approval. Any activities related to the implementation of the road dust mitigation plan shall be completed under an encroachment permit from this Department.
- Traffic Restriction: Any existing and/or proposed project traffic, truck or passenger vehicles, associated with the project site shall be restricted from using the road section. The transportation impact analysis shall be revised to indicate the revised traffic distribution and resubmitted to this Department for review and approval prior to the Zone Change Approval.
- All solid and hazardous waste shall be disposed of in approved solid waste disposal sites in accordance with existing County, State and Federal regulations (Per Imperial County Code of Ordinances, Chapter 8.72).
- All on-site traffic area shall be hard surfaced to provide all weather access for fire protection vehicles. The surfacing shall meet the Department of Public Works and Fire/OES Standards as well as those of the Air Pollution Control District (APCD) (Per Imperial County Code of ordinances, Chapter 12.10.020 A).
- The project shall submit a National Pollutant Discharge Elimination System (NPDES) permit and Notice of Intent (NOI) from the Regional Water Quality Control Board (RWQCB) prior county approval of onsite grading plan (40 CFR 122.28).
- A Transportation Permit shall be submitted to the local road agency(s) having jurisdiction over the haul route(s) for any hauls of heavy equipment and large vehicles which impose greater then legal loads on riding surfaces, including bridges. (Per Imperial County Code of Ordinances, Chapter 10.12.020).

c)	Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks? c) The proposed project would not affect air traffic pattern	erns; therefor	e, no impacts are ex	C kpected to oc	Cur.
d)	Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?				\boxtimes
	 d) MITIGATION MEASURE: As a part of the project's compliance with the n be re-evaluated to conform to the traffic cor 				

- be re-evaluated to conform to the traffic control devices, systems, and practices described in the Manual on Uniform Traffic Control Devices (MUTCD), Federal, State, and local laws and regulations. The applicant shall also consult with Commission's Rail Crossings Engineering Section and Union Pacific Railroad (UPRR) and comply with the mandatory requirements established from the consultations for the inclusion of the trains required for the proposed project.
- f) Conflicts with adopted policies, plans, programs, regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?
 f) Conformance with applicable agencies such as Imperial County Public Works and Caltrans would prevent any

	Potentially		
Potentially	Significant	Less Than	
Significant	Unless Mitigation	Significant	
Impact	Incorporated	Impact	No Impact
(PSI)	(PSUMI)	(LTSI)	(NI)

conflict with adopted policies, plans or programs regarding public transit. Compliance with the above agencies' requirements regarding traffic and transportation would appear to cause a less than significant impact.

XVII. TRIBAL CULTURAL RESOURCES

a) Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place or object with cultural value to a California Native American tribe, and that is:

	\boxtimes	

a) The project site is not within the vicinity of any area that has been geographically defined as sacred or object of value to California Native American Tribe, according to the Imperial County General Plan Conservation and Open Space Element, Figure 6 "Known Areas of Native American Cultural Sensitivity".

Efforts of consultation with tribes and with Native American Heritage Commission were performed. An AB 52 & SB 18 consultation letters were mailed out to tribes. A letter received and dated January 8, 2019 from the Colorado River Indian Tribes indicated they had no specific comments on project. A letter from Augustine Band of Cahuilla Indians dated December 27, 2018 encouraging the County to contract with a monitor who is qualified in Native American culture resource identification and who is able to be present onsite full time during per construction and construction phase of the project. A Sacred Lands Search was requested and came back with negative results; Compliance with the above requirements would appear to reduce impacts to less than significant.

 Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as define in Public Resources Code Section 5020.1(k), or

1) The proposed site does not appear to be eligible under Public Resources Code Section 21074 or 5020.1 (k). The Native American Heritage Commission was contacted regarding this project. Communication was sent out to tribes. The comments received during construction would appear to reduce impacts to a less than significant level.

 \square

2) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth is subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American Tribe.

 \boxtimes

 \square

 \boxtimes

2) The proposed site does not appear to be eligible under Public Resources Code Section 21074 or 5020.1 (k). The Native American Heritage Commission was contacted regarding this project. Communication was sent out to tribes. The comments received during construction would appear to reduce impacts to a less than significant level.

XVIII. UTILITIES AND SERVICE SYSTEMS Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board a) The applicant shall provide a Grading/Drainage letter to Public Works Department and shall comply with all applicable agencies to ensure that wastewater and storm water are properly handled to avoid a negative environmental effect. Compliance with all applicable agencies would bring the project's impacts to less than significant levels

 \square

Require or result in the construction of new water or water treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental

Imperial County Planning & Development Services Department Page 29 of 36

		Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
	effects? b) No new or expansion of water treatment facilities a provide potable drinking water. According to the applic existing feedlot and composting facility, is not metered cattle pen expansion project. No impacts to water treat	cant, water is c I, and is to be u	urrently being taken ised for the dust mit	from the can igation of the	als for the
c)	Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?	to Public W		🖂	Lu with all
	c) The applicant shall provide a Grading/Drainage letter applicable agencies to ensure that wastewater and environmental effect. Compliance with all applicable significant levels.	storm water a	are properly handle	d to avoid a	negative
d)	 Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? d) Water will be supplied with Colorado water via IID significant. Compliance will all agencies will bring imp 				☐ less than
e)	Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? An approved septic system will be designed for wastew Works. Impacts appear to be less than significant. Co significant levels.				
f)	Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?			\boxtimes	
	f) The proposed General Plan & Zone Change would not will all agencies will bring impacts to less than signific		nificant amount of so	olid waste, Co	ompliance
g)	Comply with federal, state, and local statutes and regulations related to solid waste? g) The proposed project shall comply with all federal, said codes shall cause for impacts to be less than sigr		Statues and regula	⊠ tions. Compl	iance with

Note: Authority cited: Sections 21083 and 21083.05, Public Resources Code. Reference: Section 65088.4, Gov. Code; Sections 21080(c), 21080.1, 21080.3, 21083, 21083.05, 21083.05, 21083.05, 21083.05, 21083.3, 21093, 21094, 21095, and 21151, Public Resources Code; Sundstrom v. County of Mendocino, (1988) 202 Cal.App.3d 296; Leonoff v. Monterey Board of Supervisors, (1990) 222 Cal.App.3d 1337; Eureka Citizens for Responsible Govt. v. City of Eureka (2007) 147 Cal.App.4th 357; Protect the Historic Arnador Waterways v. Amador Water Agency (2004) 116 Cal.App.4th at 1109; San Franciscans Upholding the Downtown Plan v. City and County of San Francisco (2002) 102 Cal.App.4th 656.

Revised 2009- CEQA Revised 2011- ICPDS Revised 2016 – ICPDS Revised 2017 - ICPDS

Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
--	--	---	-------------------

SECTION 3 III. MANDATORY FINDINGS OF SIGNIFICANCE

The following are Mandatory Findings of Significance in accordance with Section 15065 of the CEQA Guidelines.

- a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, eliminate tribal cultural resources or eliminate important examples of the major periods of California history or prehistory?
- b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)
- c) Does the project have environmental effects, which will cause substantial adverse effects on human beings, either directly or indirectly?

IV. PERSONS AND ORGANIZATIONS CONSULTED

This section identifies those persons who prepared or contributed to preparation of this document. This section is prepared in accordance with Section 15129 of the CEQA Guidelines.

A. COUNTY OF IMPERIAL

- Jim Minnick, Director of Planning & Development Services
- Michael Abraham, AICP, Assistant Director of Planning & Development Services
- David Black, Planner IV
- Imperial County Air Pollution Control District
- Department of Public Works
- Fire Department
- Agriculture Commissioner
- Environmental Health Services
- Sheriff's Office

B. OTHER AGENCIES/ORGANIZATIONS

- Imperial Irrigation District (ID)
- Native American Heritage Commission
- California Highway Patrol (CHP)
- Regional Water Quality Control Board (RWQCB)

I.1.XVIII.1.1.1.1.1.1 Imperial Irrigation District

• California Department of Transportation, District 11

(Written or oral comments received on the checklist prior to circulation)

V. REFERENCES

- 1. See Applicant's Site Plan on Exhibit A & B of this Initial Study
- Land Use Element Table 4 exhibit 2.
- Ultra-Systems Air Quality Study dated November 13, 2018
- 4. Barrett's Survey's July 2018
- 5. Conservation Element Open Space Element Figure 6
- California Health & Safety Code 7050.5, CEQA 15064.5, California Resources Code 5097.98 6.

- California Health & Safety Code 7050.5, CEQA 15064.5, California Resources Code 5097.98
 Linscott Law & Greenspan Engineers Transportation Impact Analysis dated July, 2018
 IC General Plan Conservation and Open Space Element Figure 1 http://www.icpds.com/CMS/Media/Conservation-&-Open-Space-Element-2016.pd
 Imperial County General Plan Conservation and Open Space Element Fig 8 http://www.icpds.com/CMS/Media/Conservation-&-Open-Space-Element-2016.pdf
 Geotechnical report Landmark dated August 2018
 Geotechnical Report LandMark dated July 2006 for Pacific Ethanol EIR
 ALUC Compatibility May 3C
 Fault Activity Map of California (2010) http://maps.conservation.ca.gov/cgs/fam
 EnviroStor Database http://www.envirostor.dtsc.ca.gov/public/map/?myaddress=Sacramento&tour=True
 Federal Emergency Management Area (FEMA) http://www.icpds.com/CMS/Media/45-FEMA-1100.pdf
 Imperial County Conservation and Open Space Element Figure 8 http://www.icpds.com/CMS/Media/Conservation-&-Open-Space-Element-2016.pdf
 Imperial County Conservation and Open Space Element Figure 8 http://www.icpds.com/CMS/Media/Conservation-&-Open-Space-Element-2016.pdf
 I.C. Public Works Comment Letter dated 1-25-19
 Augustine Band of Cahuilla Indians

- 18. Augustine Band of Cahuilla Indians
- 19. Colorado River Indians Tribes
- 20. IID comment letter dated 5-14-2018
- 21. APCD comment letter dated 12-26-18
- 22. Pacific Ethanol Mitigation Monitoring and Reporting Program

VI. NEGATIVE DECLARATION – County of Imperial

The following Negative Declaration is being circulated for public review in accordance with the California Environmental Quality Act Section 21091 and 21092 of the Public Resources Code.

- Project Name: GPA # 18-0001 & ZC 18-0002 Initial Study #18-0007
- Project Applicant: All American Grain Company LLC
- **Project Location:** The project site is located south of the City of Calipatria, Imperial County, California at 204 East Albright Road and Yocum Road and is further identified as Assessor's Parcel Number 024-260-032-000. The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria See Exhibit A.
- **Description of Project:** Applicant proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a Container Yard and Rail Spur. The proposed Zone Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial) zone, while the General Plan Amendment will amend the Imperial County Land Use Element *Table 4: Compatibility Matrix1*, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in *Table 4: Compatibility Matrix*. This General Plan Amendment is meant to correct *Table 4: Compatibility Matrix* so that it is compatible with the Land Use Element's contents

VII. FINDINGS

This is to advise that the County of Imperial, acting as the lead agency, has conducted an Initial Study to determine if the project may have a significant effect on the environmental and is proposing this Negative Declaration based upon the following findings:

The Initial Study shows that there is no substantial evidence that the project may have a significant effect on the environment and a NEGATIVE DECLARATION will be prepared.

- The Initial Study identifies potentially significant effects but:
- (1) Proposals made or agreed to by the applicant before this proposed Mitigated Negative Declaration was released for public review would avoid the effects or mitigate the effects to a point where clearly no significant effects would occur.
- (2) There is no substantial evidence before the agency that the project may have a significant effect on the environment.
- (3) Mitigation measures are required to ensure all potentially significant impacts are reduced to levels of insignificance.

A NEGATIVE DECLARATION will be prepared.

If adopted, the Negative Declaration means that an Environmental Impact Report will not be required. Reasons to support this finding are included in the attached Initial Study. The project file and all related documents are available for review at the County of Imperial, Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 (442) 265-1736.

NOTICE

The public is invited to comment on the proposed Negative Declaration during the review period.

Date of Determination

Jim Minnick, Director of Planning & Development Services

The Applicant hereby acknowledges and accepts the results of the Environmental Evaluation Committee (EEC) and hereby agrees to implement all Mitigation Measures, if applicable, as outlined in the MMRP.

Applicant Signature

Date

SECTION 4

VIII. **RESPONSE TO COMMENTS**

(

S:\APN\024\260\032\eec\IS.docx

Attachment A.

Mitigation Monitoring & Reporting Program

MITIGATION, MONTORING AND REPORTING PROGRAM

MITIGATION MEASURES PURSUANT TO THE ENVIRONMENTAL EVALUATION COMMITTEE February 14, 2019 All American Grain [GPA #18-0001 ZC #18-0002 TR #00991]

(APN 024-260-032-000)

(CEQA – Mitigated Negative Declaration)

Pursuant to the review and recommendations of the Imperial County Environmental Evaluation Committee (EEC) on February 14, 2019, the following Mitigation Measures are hereby proposed for the project:

MITIGATION MEASURE 1 AIR QUALITY (a)

Construction Phase:

• MM AQ-1 The operator shall limit vehicle speed to less than 15 miles per hour on any and all unpaved surfaces on the project site.

Operational Phase Mitigation to include:

MM AQ-2 the proponent shall pay an in-lieu mitigation fee to be determined and administered by the ICAPCD. ¹ In accordance with the ICAPCD *CEQA Air Quality Handbook*, the long-term operational impacts would be less than significant upon implementation of mitigation measure

(Monitoring Agency: Imperial County Planning & Development Services Department & APCD; Timing: During Construction & Prior to permit approval)

MITIGATION MEASURE 2 BIOLOGICAL (a)

Mitigation Measures:

a. BUOW shelter in place using hay bales and remove shelter when project is complete under supervision of qualified biologist.

b. Worker BOUW training sessions

c. Monitoring when construction is within 250 feet (February – August); 160 feet (September – January) if determined necessary by qualified biologist.

d. If construction stared during Migratory Bird Nesting season (February – August) a nesting bird survey should be completed 3 days prior to start of construction.

(Monitoring Agency: Imperial County Planning & Development Services Department; Timing: Prior to construction)

Barrett Biological surveys dates July 2018

¹ #4Ultra-Systems Air Quality Study dated November 13, 2018

MITIGATION MEASURE 3 CULTURAL & ARCHAEOLOGICAL (a)

Mitigation Measures:

- The Imperial County Planning Department shall be notified immediately if any cultural resources (e.g., prehistoric or historic artifacts) or paleontological resources (e.g., fossils) are uncovered during construction. All construction must stop in vicinity of the find and an archaeologist that meets the Secretary of the Interior's Professional Qualifications Standards in prehistoric or historical archaeology shall be retained to evaluate the finds and recommend appropriate action.
- The Imperial County Planning Department shall be notified immediately if any cultural resources (e.g., prehistoric or historic artifacts) or paleontological resources (e.g., fossils) are uncovered during construction. All construction must stop in vicinity of the find and an archaeologist that meets the Secretary of the Interior's Professional Qualifications Standards in prehistoric or historical archaeology shall be retained to evaluate the finds and recommend appropriate action.
- If any paleontological resources (fossils) are discovered during ground disturbing project activity, all
 work in the immediate vicinity must stop and the Imperial County Planning Department shall be
 immediately notified. A qualified paleontologist shall be retained to evaluate the finds and recommend
 appropriate mitigation measures for the inadvertently discovered paleontological resources.
- If avoidance is not feasible, a qualified professional archaeologist shall be on site during any
 excavations in excess of 4 feet who shall have the authority to stop construction if necessary and
 determine the appropriate protective measures if any. If subsurface deposits are found, an area equal
 to 200 feet around the area shall be halted from construction until appropriate removal or alternative
 solution of collective of artifacts is concluded. In the event that human remains are found,
 construction activities within 200 feet radius shall cease, the Imperial County Coroner notified and
 work not resume until the recommendations of an MLD (Most Likely Descendant) are implemented.

(Monitoring Agency: Imperial County Planning & Development Services Department; Timing: During Construction)

MITIGATION MEASURE 4 GREENHOUSE GAS EMISSION:

Mitigation Measures for Construction Phase:

Construction Phase:

 MM AQ-1 The operator shall limit vehicle speed to less than 15 miles per hour on any and all unpaved surfaces on the project site.

Operational:

- MM AQ-2: The proponent shall pay an in-lieu mitigation fee to be determined and administered by the ICAPCD.² In accordance with the ICAPCD *CEQA Air Quality Handbook*, the long-term operational impacts would be less than significant upon implementation of mitigation measure
- (Monitoring Agency: Imperial County Planning & Development Services Department & APCD; Timing: Prior to permit approval)

MITIGATION MEASURE 5 HYDROLOGY AND WATER QUALITY:

- The project applicant is required to prepare a Storm Water Pollution and Prevention Plan (SWPPP) to be administered through all phases of grading and project construction. The SWPPP must incorporate Best Management Practices (BMPs) meeting technical standards of the General Construction permit to ensure that potential water quality impacts (including on-site and off-site erosion) during construction phases are minimized and that violations of water quality standards do not occur. The SWPPP must address spill prevention and include a countermeasure plan describing measures to ensure proper collection and disposal of all pollutants handled or produced on the site during construction, including sanitary wastes, cement, and petroleum products. BMPs included in the SWPPP must be consistent with the California Storm-water Best Management Practices Handbook for Construction. The SWPPP must be submitted to the Region 7 Regional Water Quality Control Board and to the County for review prior to the issuance of grading permits.
- The project applicant is required to prepare a Storm Water Pollution and Prevention Plan (SWPPP) . governing industrial operations to be administered so long as industrial activities are ongoing. The Industrial SWPPP must incorporate Best Management Practices (BMPs) meeting the technical standards of the General Industrial Permit to ensure that potential water quality impacts during the operational phase are minimized and that violations of water quality standards do not occur. The Industrial SWPPP will include permanent post-construction BMPs meeting the County's requirements under its program implementing the Small MS4 Permit. These post-construction BMPs will be included in the Industrial SWPPP and must be consistent with the California Storm-water Best Management Practices Handbook for Commercial and Industrial operations. The BMPs will include the implementation of three [3] detention basins, collectively sized to retain a 100-year frequency storm event from the project site. These detention basins will meet design standards imposed by the County and the Imperial Irrigation District, including draining within 72 hours following a storm event and having outlet structures no larger than 12 inches in diameter and containing a backflow prevention device. The Industrial SWPPP must be submitted to the Region 7 Regional Water Quality Control prior to the issuance of certificates of occupancy. As per Mitigation Measure in Pacific Ethanol EIR 2006.

(Monitoring Agency: Imperial County Planning & Development Services Department; Timing: Prior to permit approval)

MITIGATION MEASURE 6 PUBLIC SERVICES

- An Emergency Response Plan shall be prepared in coordination with local fire agencies and the County of Imperial. The Emergency Response Plan shall be updated annually in coordination with the Imperial County Fire Department and the Imperial County Office of Emergency Services would appear to bring impacts to a less than significant level.
- A Hazardous Materials Business Plan shall be prepared in accordance with Title 19, Division 2, Chapter 4, and Article 4 of California Code of Regulations. The Hazardous Material Inventory shall be updated annually to the Imperial County Fire Department and the Imperial County Office of Emergency Services.

(Monitoring Agency: Imperial County Planning & Development Services Department & Fire Department; Timing: Prior to permit approval)

MITIGATION MEASURE 7 TRANSPORTATION / TRAFFIC

- Yocum Road is classified as 4-Lane Major Collector requiring eighty four feet (84) of right of way, being forty two (42) feet from existing centerline. Forty feet (40') of right of way has been provided per Grant Deed Doc # Book 2249 pg. 1381, 2003. As directed by Imperial County Board of Supervisors per Minute Order #6 dated 11/22/1994 per the Imperial County Circulation Element Plan of the General Plan).
- Albright Road is classified as 2-Lane Minor Collector requiring seventy feet (70) of right of way, being thirty five (35) feet from existing centerline. Seventeen feet and Six inches (17'-6') of right of way has been provided per Grant Deed Doc # Book 2249 pg. 1378, 2003. Sufficient right of way must be provided to meet this road classification. As directed by Imperial County Board of Supervisors per Minute Order #6 dated 11/22/1994 per the Imperial County Circulation Element Plan of the General Plan).
- The applicant shall furnish a Drainage and Grading Plan/Study to provide for property grading and drainage control, which shall also include prevention of sedimentation of damage to off-site properties. The Plan/Study shall be prepared per the Engineering Design Guidelines Manual for the Preparation and checking of Street Improvement, Drainage, and Grading Plans within Imperial County and submitted to the Department of Public Works for review and approval. The applicant shall implement the approved plan. Employment of the appropriate Best Management Practices (BMPs) shall be included on the plan.
- The applicant for encroachment permits, grading plans, and/or improvement plans is responsible for researching, protecting and preserving survey monuments per the Professional Land Surveyor's Act (8771 (b)). This shall include a copy of the referenced survey map and tie card(s) (if applicable) for all monuments that may be impacted by the project whether it be on-site of off-site.
- At time of development, if required, by Section 8762(b) of the Professional Land Surveyors Act, a record of survey shall be filed with the County Recorder of Imperial County.
- Street improvements shall be required in conjunction with, but not limited to, any construction, grading, or related work, including the construction of structures, buildings, or major additions thereto, on property located adjacent to any county street or on property utilizing any county street for ingress and egress, except that such improvements may be deferred as described in <u>Section 12.10.040</u> of this chapter for residential property (Per Imperial County Code of Ordinances, Chapter 12.10.020). The street improvements required shall be a commercial type driveway per Imperial County Standards and a secondary emergency access driveway as approved by this Department. The secondary emergency access driveway shall be constructed of asphalt concrete or as approved by this Department.
- No building permit for any structure or building or major addition to a building or structure shall be issued until the improvements required by <u>Section 12.10.010</u> of this chapter have been installed and/or bonded. In addition, no building permit shall be issued until there has been compliance with <u>Chapter 12.12</u> of this title and the requirement that an encroachment permit be obtained (Per Imperial County Code of Ordinances, Chapter 12.10.030).
- Any activity and/or work within Imperial County right-of-way shall be completed under an encroachment permit
 issued by this Department (Per Imperial County Code of Ordinances, Chapter 12.12). Any activity and/or work
 may include, but not be limited to, the installation of temporary traffic control devices, construction of access
 driveways, etc.
- The applicant/owner of facility shall fund needed future construction and improvements for said turn lanes installations for right and/or left turn lanes into the facility.

Figure 7-1 of the transportation impact analysis indicates that 15% of the truck traffic will be using Yocum Road east of Kershaw Road (Brown Avenue). This section of Yocum Road is unpaved.- Unpaved Haul/Access Roads Requirements of Rule 805 of the Imperial County Air Pollution Control District limits any traffic on unpaved roads to generate visible dust emissions (VDE) to less than 20% opacity. If the applicant is unable to maintain the opacity level as required by Rule 805, the applicant shall mitigate the generation of dust due to project traffic along Yocum Road between Kershaw Road (Brown Avenue) and Blair Road and along Blair Road between Yocum Road and State Route 115 by one of the methods

below:

- <u>Asphalt Concrete Road Improvements</u>: The road section shall be improved by installing two (2) 12-foot travel lanes consisting of 4 inches of asphalt concrete over 18 inches of Class 2 Base, including Class 2 base shoulder backing, as approved by the Director of Public Works. Any activities related to these road improvements shall be completed under an encroachment permit from this Department.
- Road Surface Chemical Stabilization: The road surface shall be stabilized by applying chemical stabilization products as recommended by the product manufacturer to accommodate for two (2) 12- foot travel lanes and as approved by the Director of Public Works. Any activities related to this road stabilization shall be completed under an encroachment permit from this Department.
- <u>Aggregate Base Road Improvements</u>: The road section shall be improved by installing two (2) 12-foot travel lanes consisting of a minimum of 3" of Class 2 Base material, as recommended by a California Geotechnical Engineer, and as approved by the Director of Public Works. Any activities related to these road improvements shall be completed under an encroachment permit from this Department.
- <u>Road Dust Mitigation Plan</u>: The applicant shall prepare a Road Dust Mitigation Plan and submit it to this Department for review and approval. Any activities related to the implementation of the road dust mitigation plan shall be completed under an encroachment permit from this Department.
- <u>Traffic Restriction</u>: Any existing and/or proposed project traffic, truck or passenger vehicles, associated with the project site shall be restricted from using the road section. The transportation impact analysis shall be revised to indicate the revised traffic distribution and resubmitted to this Department for review and approval prior to the Zone Change Approval.
- All solid and hazardous waste shall be disposed of in approved solid waste disposal sites in accordance with existing County, State and Federal regulations (Per Imperial County Code of Ordinances, Chapter 8.72).
- All on-site traffic area shall be hard surfaced to provide all weather access for fire protection vehicles. The surfacing shall meet the Department of Public Works and Fire/OES Standards as well as those of the Air Pollution Control District (APCD) (Per Imperial County Code of ordinances, Chapter 12.10.020 A).
- The project shall submit a National Pollutant Discharge Elimination System (NPDES) permit and Notice of Intent (NOI) from the Regional Water Quality Control Board (RWQCB) prior county approval of onsite grading plan (40 CFR 122.28).
- A Transportation Permit shall be submitted to the local road agency(s) having jurisdiction over the haul route(s) for any hauls of heavy equipment and large vehicles which impose greater then legal loads on riding surfaces, including bridges. (Per Imperial County Code of Ordinances, Chapter 10.12.020).
- As a part of the project's compliance with the mandatory regulation, the existing railroad crossing shall be reevaluated to conform to the traffic control devices, systems, and practices described in the Manual on Uniform Traffic Control Devices (MUTCD), Federal, State, and local laws and regulations. The applicant shall also consult with Commission's Rail Crossings Engineering Section and Union Pacific Railroad (UPRR) and comply with the mandatory requirements established from the consultations for the inclusion of the trains required for the proposed project.

Monitoring Agency: Imperial County Planning & Development Services Department & Public Works Department; Timing: Prior to permit approval

S:\APN\024\260\032\gpa18-0001\EEC\mmrp

Attachment B. Revised Project Description (1-23-2019)

1

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT 1/23/2019

All American Grain Company- Zone Change & GPA

- Applicant: All-American Grain Company, LLC
- Engineer: LC Engineering Consultant, Inc. (License No. 55432)
- Planning: DuBose Design Group, Inc.
- Contractor: Andy Hoyt General Engineering, Inc. (License No. 578349)
- Location: The site is located just south of the City of Calipatria, Imperial County, California. The approximate site address is Albright Road and Highway 111, Calipatria, California. Latitude and longitude are 33°06'28'' and 115°30'43'', respectively.
- Property Size:
 89 +/- acres

 Project Size:
 42 +/- acres

 APN:
 024-260-032

Proposed Development:

All-American Grain, LLC (applicant) proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a container yard, an additional inner rail-spur and a bridge allowing for alternative access. The proposed Zone

Figure 1. Property Site

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial) zone, while the General Plan Amendment will amend the Imperial County Land Use Element *Table 4: Compatibility Matrix*¹, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in *Table 4: Compatibility Matrix*. This General Plan Amendment is meant to correct *Table 4: Compatibility Matrix* so that it is compatible with the Land Use Element's contents.

Project Summary:

The Project Site

The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria (please see **Figure 1**). The property is currently divided into two separate zoning distinctions but with one land use designations (reference **Appendix A**). In 2008, the property underwent a Zone Change and General Plan Amendment, in which approximately 47 +/- acres changed from A-2 to M-2 zoning while the entire parcel changed from Agriculture to Urban Area land use. Currently, most of the eastern portion of the property is zoned M-2 while the entire western portion and small portions of the northeastern side of the property are zoned A-2 as indicated above.

Project Development

The applicant proposes to construct a container yard that will act as storage area for loading and unloading containers and will be primarily situated on the southernmost portion of APN 024-260-032 (please see **Figure 5**). A proposed inner rail-spur located within the existing rail-spur would be construct for organizational purposes and due to regulations set forth by Union Pacific Rail-Road. The existing facility accommodates two trains per week, including one (1) train loaded with corn that unloads at the existing All-American Grain facility and (1) unit train that ships agricultural products to the Port of Long Beach. Because the applicant proposes to accommodate one (1) more unit train, scheduling conflicts will likely occur between the corn train and unit trains. This proposed inner rail-spur will allow the unit trains to cycle around the proposed inner rail-spur while the corn train utilizes the outer rail-spur, simultaneously. Additionally, through careful

¹ Imperial County Land Use Element

PLANNING • CIVIL ENGINEERING • LAND SURVEYING • PROJECT MANAGEMENT consideration the applicant may decide to construct a bridge that will be located at either Option A or Option B (please see Appendix B). In an effort to maximize efficiency, access to the container yard will be provided to loaded trucks and emergency vehicles by the proposed bridge once either the inner and/or outer rail-spur is completely occupied.

Need for Project

As of now, operations for agricultural exporters rely heavily on trucks for distribution purposes. As discussed below, containers are loaded with agricultural commodities and are driven via truck to the Port of Long Beach (POLB) for distribution. As the amount of containers being transported to POLB increases so does the level of complexity. As noted on the POLB's website, exports for the month of April from the POLB have increased by 22% as compared to last year. This level of increase places an even higher strain on nearby infrastructure, truck drivers/haulers and port authorities. The increased number of trucks to the POLB creates congestion on major highways to the Port, congestion at the port terminal and makes meeting appointment times at the terminal difficult to achieve. Additionally, the availability of logistic truck drivers has fallen, other labor markets such as construction are drawing these drivers away. To solve these issues, All American Grain Company proposes the construction of a loading/distribution facility that will utilize train units for distribution purposes to the POLB, thus cutting down the amount of trucks needed for distribution.

Project Use

The current operations of the facility act as a grain transfer and storage station for locally grown containered agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown rufage in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley by adding an additional one (1) unit train. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the *primary method* of distribution to the POLB. Ultimately, the applicant's goal is to become more efficient with the delivery of out-going hay products that leave

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

the valley and reduce the amount of trip miles made by trucks. This addition of one-unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks. Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of offloading containers from the train and then reloading the containers that were loaded at the source. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the POLB utilizing the Union Pacific Rail Road.

Project Circulation

In order to gain access to the project site, the applicant requires the construction of two (2) driveways for purposes of ingress and egress. The driveway closest to the intersection of HWY 111 and E. Albright Rd will be utilized as the point of egress while the further east driveway will be utilized as the point of ingress. These access points will be located on the southern boundary of the site where E. Albright intersects HWY 111 (see **Figure 2**). The distance between the entrance to the facility and the turn-off from Hwy 111 will provide enough space if numerous trucks show up all at once. As discussed earlier, the applicant desires to have the ability to construct a bridge that will allow access to the storage container yard when both the existing and proposed additional rail spur are fully occupied.

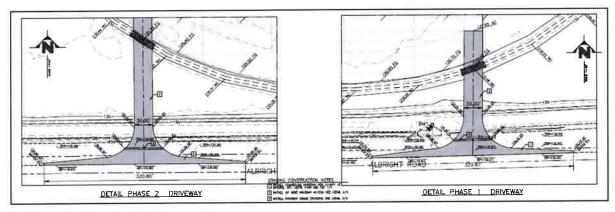


Figure 2. Driveways

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Construction Activities

In order to support the additional loading and unloading zones and to stay compliant with County of Imperial Planning Department, County of Imperial Fire Department and APCD, the proposed container yard will install "all weather surface" pavement to the standards of both the County of Imperial and the Air Pollution Control District. The container yard will accommodate containers that will be stacked 4 high over a space of 8 ft by 40 ft (the container on the ground level). There will be 840 containers within the loading area at the peak on one day. The stacks of containers will not exceed the height of the nearby silos. Individual containers will weight approximately 60,000 lbs when filled. Once stacked in fours the total approximate weight of the stack will be 240,000 lbs (a soils recommendation will be provided from a geotechnical expert). With this being said, the load bearing capacity for the surface must withstand this total amount of weight. For descriptions of the pavement section for both the Container Yard and the All-Weather Access Driveways please see **Figure 3** and **Figure 4**. The unloading and loading of the containers will occur two days per week, during these days the train will be on site for 10-12 hours for purposes of unloading and loading.

Figure 3. Container Yard

Figure 4. Access Driveways

Project Operation

As previously stated, the operation of the facility will act as a grain transfer and storage station for locally grown agricultural commodities. These commodities will be harvested throughout the Imperial Valley, loaded into empty containers and shipped via truck to the container yard. Upon arrival, the loaded containers will be stored at the container yard for a short period of time until the unit train arrives. Once the unit train has arrived, it will move into position for both unloading and loading. The train will move forward for every 10 railcars that are unloaded and loaded. The containers themselves are then unloaded and loaded via RS46 Series Hyster container loaders.

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

When the facility is completely operational, there will be a maximum of four (4) container loaders at the site.

Project Phasing

It is the intent of the applicant to construct this container yard in phases (see **Figure 5**). On the furthest east portion of the project, contains Phase 1, which is permitted by right to allow for a container yard. Phase 1 is unrelated to this Zone Change and General Plan Amendment for the reason stated previously. As of 8/06/2018 and 8/07/2018, the applicant has submitted with County of Imperial Building Department and Public Works Department for a grading permit for Phase 1. Once the Zone Change and General Plan Amendment have been approved, grading permits will be submitted for Phases 2 & 3.

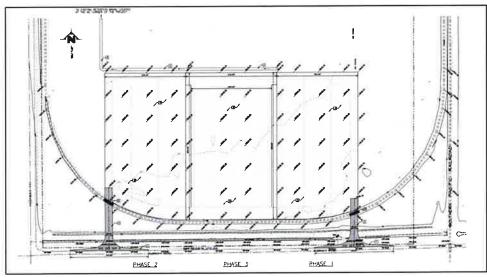


Figure 5. Project Phasing

Environmental Consideration

It is understood by the applicant that this proposed alteration to the current use will trigger additional environmental studies. With consultation from the County of Imperial, it has been determined that environmental studies will include: (1) Air Study, (2) Noise Study, (3) Traffic Study and (4) Biological.

PLANNING . CIVIL ENGINEERING - LAND SURVEYING - PROJECT MANAGEMENT Air Study

As instructed by the Imperial County Planning and Development Services, an Air Quality Study was performed by UltraSystems, Inc. analyzing the air quality including Greenhouse Gas Emissions generated by the proposed project. As further discussed in the Air Quality and Greenhouse Gas Emissions Report, sources of air pollution include locomotive emissions, container loader emissions, hauling truck emissions, and employee commuter emissions. These sources of emissions would emit pollutants of concern include ROG, CO, NOx, PM10 and PM2.5. As the report indicates, the long-term project operational emissions would not exceed applicable thresholds for ROG, PM10 or CO but they would exceed the Tier 2 threshold for NOx. However, as discussed in the attached Memo to the Air Quality Study, APCD requested that UltraSystems perform a comparison of criteria pollutants emissions from truck and train transport of Agricultural products from All American Grain in Calipatria to Riverside County Line. Ultimately, the amount of NOx decreases a substantial amount due to reliance on trains rather than trucks.

Noise Study

As instructed by the Imperial County Planning and Development Services, a Noise Study was prepared by UltraSystems, Inc. analyzing the noise levels generated by the proposed project. As further discussed in the Noise Study Report, noise sources include container loaders, trucks, trains, landscape and building maintenance. Offsite noise would be attributed to project-induced traffic. Although the project would generate some noise, UltraSystems found that there would be no significant short- or long-term noise impacts due to the project so no mitigation measures are necessary.

Traffic Study

As instructed by the Imperial County Planning and Development Services, a Traffic Study was prepared by Linscott Law & Greenspan (LLG) to analyze the traffic impacts caused by the proposed project. Based on information obtained from the applicant, LLG predicts the Total Project would generate a maximum of 20 Average Daily Traffic (ADT) by passenger vehicles. It would also generate 360 ADT by trucks, with 15 inbound and 15 outbound trips during the AM and PM peak hours. As previously discussed, the project would have driveways dedicated for both entrances and exits for vehicles (**Figure 2**).

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Biological Study

As instructed by the Imperial County Planning and Development Services, a Biological Study was conducted by Barrett's Biological Surveys. They performed a biological habitat assessment of the lower portion where the project site would be located. As further described in the Biological Report, there were no vegetation that was found that would be considered endangered, threatened or species of concern. Additionally, there were no fauna found that would be considered endangered or threatened, however, three burrowing owls, one occupied burrow and one active burrow were found offsite on Imperial Irrigation District Right-of-Way. Mitigation measures were given for those instances.

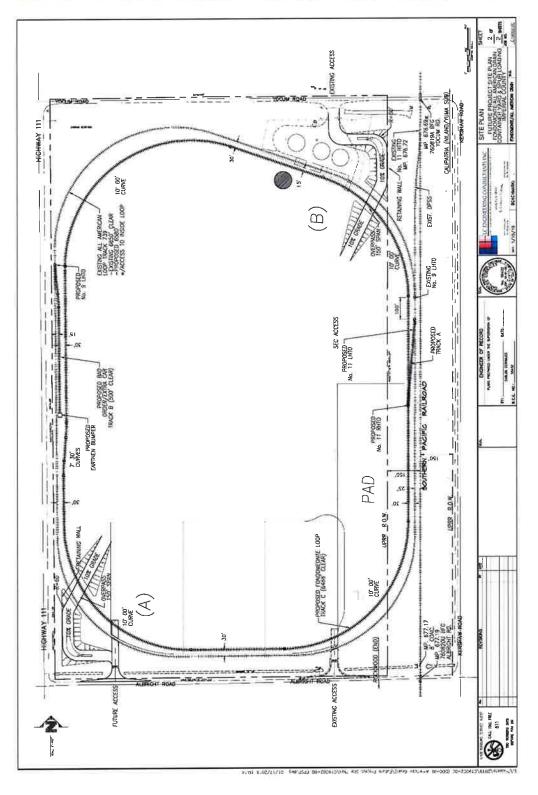
PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Appendix A



PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT



PLANNING • CIVIL ENGINEERING • LAND SURVEYING • PROJECT MANAGEMENT

Appendix B

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Attachment C.

Request for Agency Comments Package

Imperial County Planning & Development Services Planning / Building

Jim Minnick DIRECTOR

December 7, 2018 REQUEST FOR REVIEW AND COMMENTS

EEC/PC: TBD

The attached project and materials are being sent to you for your review and as an early notification that the following project is being requested and being processed by the County's Planning & Development Services Department. Please review the proposed project based on your agency/department area of interest, expertise, and/or iurisdiction.

o: County Agencies	State Agencies/Other	Cities/Other
County Executive Office- Andy Home	Caltrans District 11- Jacob Armstrong/Beth Landrum	City of Calipatria-Romualdo Medina
Public Works – John Gay/ Carlos Yee	CA Public Utilities Commission	Golden State Water CO-Perry Dahlstrom
APCD – Monica Soucier/Matt Desert	🖾 CA RWQC Board – Nadim-Shukry Zeywar	Dept of Fish & Wildlife-Magdalena Rodriguez
IC Fire/OES Office - Robert Malek/ Andrew Loper	BLM- Tom Zale/ Carrie Sahagun	City of Brawley- Gordon Gaste
IC Sheriff's Office – Thomas Garcia	Southern California Gas CO-Justin Freeman	Carlsbad Fish & Wildlife Office
EHS Office – Jeff Lamoure/Jorge Perez	State Historic Preservation Office- Julianne Polanco	X Naval Air Facility-Marybeth Dreusike
AG Commissioner- Carlos Ortiz/ Sandra Mendivil	CA Dept. Conservation – John Lowrie	IID Env. Compliance Don Vargas
Heber Union Elementary School District- Juan Cruz	CHP (Imperial Office) - Arturo Proctor, Capt.	Southern CA Water CO-Sunil Pillai
Board of Supervisors – Luis Plancarte Dist. #2	Sanchez/Frank Lienert	Southern CA Edison-Erlinda Martinez

Project Contact: David Black, Planner IV – (442) 265-1736 ext. 1746 or davidblack@co.imperial.ca.us

Project ID: General Plan Amendment (GPA) #18-0001 & Zone Change (ZC) #18-0002 & Conditional Use Permit (CUP) #07-0023 (Recirculation)

Project Location: APN: 024-260-032-001 ADDRESS: 305 E. Yocum Road, Calipatria, CA

Project Description: Applicant wishes to rezone portion of the aforementioned property in hopes of creating more uniform zoning area. Applicant wishes to clean up the inconsistent zoning of their single property cause by a prior zone change.

Applicants: All American Grain Company LLC/ Mark Brandt, Secretary

Your written comments, recommendations, or conditions are requested by the deadline below so that they can be reviewed for appropriateness by the Director of Planning & Development Services and incorporated as part of project consideration. Please submit your response to the Case Planner. Jim Minnick, Director, Thank You!

Comments due by: December 27, 2018 at 5:00 p.m.

COMMENTS: (attach a separate sheet if necessary) (if no comments, please state below and mail, fax, or e-mail this sheet to Case Planner)

Name:	Signature:	Title:	
Date:	Telephone No.:	E-mail:	
DB\LA\S:\APN\024	260\032\GPA18-0001 & ZC18-0002 Request for	Review and Comments 12.06.18.docx	
	AND HE HE		

Project Site-Prior to Zone Change

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT 11/26/2018

All American Grain Company- Proposed Container Yard

Client:	All American Grain Company, LLC
---------	---------------------------------

Engineer: LC Engineering Consultant, Inc. (License No. 55432)

Planning: DuBose Design Group, Inc.

Contractor: Andy Hoyt General Engineering, Inc. (License No. 578349)

Location: The site is located just south of the City of Calipatria, Imperial County, California. The approximate site address is Albright Road and Highway 111, Calipatria, California. Latitude and longitude are 33°06'28'' and 115°30'43'', respectively.

Property Size:	89 +/- acres
Project Size:	42 +/- acres
APN:	024-260-032

Proposed Development:

Applicant proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a Container Yard and Rail Spur. The proposed Zone Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial)

Figure 1. Property Site

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

zone, while the General Plan Amendment will amend the Imperial County Land Use Element *Table 4: Compatibility Matrix*¹, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in *Table 4: Compatibility Matrix*. This General Plan Amendment is meant to correct *Table 4: Compatibility Matrix* so that it is compatible with the Land Use Element's contents.

Project Summary:

The Project Site

The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria (please see **Figure 1**). The property is currently divided into two separate zoning distinctions but with one land use designations (reference **Appendix A**).

In 2008, the property underwent a Zone Change and General Plan Amendment, in which approximately 47 +/- acres changed from A-2 to M-2 zoning while the entire parcel changed from Agriculture to Urban Area land use. Currently, most of the eastern portion of the property is zoned M-2 while the entire western portion and small portions of the northeastern side of the property are zoned A-2 as indicated above. The Container Yard will be primarily situated on the southernmost portion of APN 024-260-032 (please see **Figure 5**).

Need for Project

As of now, operations for agricultural exporters rely heavily on trucks for distribution purposes. As discussed below, containers are loaded with agricultural commodities and are driven via truck to the Port of Long Beach (POLB) for distribution. As the amount of containers being transported to POLB increases so does the level of complexity. As noted on the POLB's website, exports for the month of April from the POLB have increased by 22% as compared to last year. This level of increase places an even higher strain on nearby infrastructure, truck drivers/haulers and port authorities. The increased number of trucks to the POLB creates congestion on major highways to the Port, congestion at the port terminal and makes meeting appointment times at the terminal difficult to achieve. Additionally, the availability of logistic truck drivers has fallen, other labor

¹ Imperial County Land Use Element

PLANNING = CIVIL ENGINEERING * LAND SURVEYING * PROJECT MANAGEMENT markets such as construction are drawing these drivers away. To solve these issues, All American Grain Company proposes the construction of a loading/distribution facility that will utilize train units for distribution purposes to the POLB, thus cutting down the amount of trucks needed for distribution.

Project Use

The current operations of the facility act as a grain transfer and storage station for locally grown containered agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown rufage in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the *primary method* of distribution to the POLB. Ultimately, the applicant's goal is to become more efficient with the delivery of out-going hay products that leave the valley and reduce the amount of trip miles made by trucks. This addition of one-unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks. Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of offloading containers from the train and then reloading the containers that were loaded at the source. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the POLB utilizing the Union Pacific Rail Road.

Project Circulation

In order to gain access to the project site, the applicant requires the construction of two (2) driveways for purposes of ingress and egress. The driveway closest to the intersection of HWY 111 and E. Albright Rd will be utilized as the point of egress while the further east driveway will be utilized as the point of ingress. These access points will be located on the southern boundary of the site where E. Albright intersects HWY 111 (see **Figure 2**). The distance between the entrance

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

to the facility and the turn-off from Hwy 111 will provide enough space if numerous trucks show up all at once. Additionally, the exit location will be located at the south/west corner of the property, allowing the option to either turn right or left depending on logistical reasons.

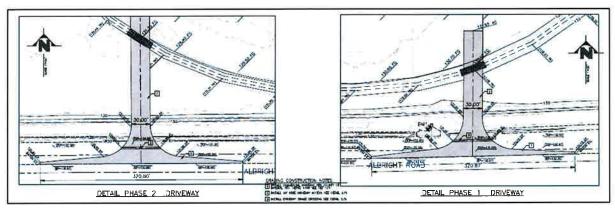
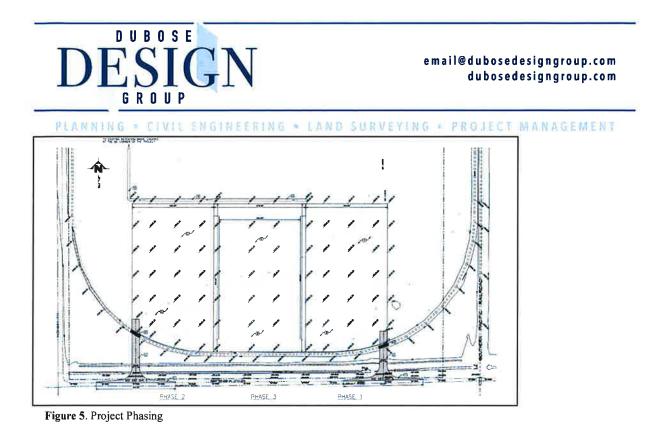


Figure 2. Driveways

Construction Activities

In order to support the additional loading and unloading zones and to stay compliant with County of Imperial Planning Department, County of Imperial Fire Department and APCD, the proposed container yard will install "all weather surface" pavement to the standards of both the County of Imperial and the Air Pollution Control District. The Container Yard and Spur Loading zone will accommodate containers that will be stacked 4 high over a space of 8 ft by 40 ft (the container on the ground level). There will be 840 containers within the loading area at the peak on one day. The stacks of containers will not exceed the height of the nearby silos. Individual containers will weight approximately 60,000 lbs when filled. Once stacked in fours the total approximate weight of the stack will be 240,000 lbs (a soils recommendation will be provided from a geotechnical expert). With this being said, the load bearing capacity for the surface must withstand this total amount of weight. For descriptions of the pavement section for both the Container Yard and the All-Weather Access Driveways please see **Figure 3** and **Figure 4**. The unloading and loading of the containers will occur two days per week, during these days the train will be on site for 10-12 hours for purposes of unloading and loading.


Figure 4. Access Driveways

Project Operation

As previously stated, the operation of the facility will act as a grain transfer and storage station for locally grown agricultural commodities. These commodities will be harvested throughout the Imperial Valley, loaded into empty containers and shipped via truck to the Container Yard. Upon arrival, the loaded containers will be stored at the Container Yard for a short period of time until the unit train arrives. Once the unit train has arrived, it will move into position for both unloading and loading. The train will move forward for every 10 railcars that are unloaded and loaded. The containers themselves are then unloaded and loaded via RS46 Series Hyster container loaders. When the facility is completely operational, there will be a maximum of four (4) container loaders at the site.

Project Phasing

It is the intent of the applicant to construct this Container Yard in phases (see Figure 5). On the furthest east portion of the project, contains Phase 1, which is permitted by right to allow for a container yard. Phase 1 is unrelated to this Zone Change and General Plan Amendment for the reason stated previously. As of 8/06/2018 and 8/07/2018, the applicant has submitted with County of Imperial Building Department and Public Works Department for a grading permit for Phase 1. Once the Zone Change and General Plan Amendment have been approved, grading permits will be submitted for Phases 2 & 3.

Environmental Consideration

It is understood by the applicant that this proposed alteration to the current use will trigger additional environmental studies. With consultation from the County of Imperial, it has been determined that environmental studies will include: (1) Air Study, (2) Noise Study, (3) Traffic Study and (4) Biological.

Air Study

As instructed by the Imperial County Planning and Development Services, an Air Quality Study was performed by UltraSystems, Inc. analyzing the air quality including Greenhouse Gas Emissions generated by the proposed project. As further discussed in the Air Quality and Greenhouse Gas Emissions Report, sources of air pollution include locomotive emissions, container loader emissions, hauling truck emissions, and employee commuter emissions. These sources of emissions would emit pollutants of concern include ROG, CO, NOx, PM10 and PM2.5. As the report indicates, the long-term project operational emissions would not exceed applicable thresholds for ROG, PM10 or CO but they would exceed the Tier 2 threshold for NOx. However, as discussed in the attached Memo to the Air Quality Study, APCD requested that UltraSystems perform a comparison of criteria pollutants emissions from truck and train transport of Agricultural products from All American Grain in Calipatria to Riverside County Line. Ultimately, the amount of NOx decreases a substantial amount due to reliance on trains rather than trucks.

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Noise Study

As instructed by the Imperial County Planning and Development Services, a Noise Study was prepared by UltraSystems, Inc. analyzing the noise levels generated by the proposed project. As further discussed in the Noise Study Report, noise sources include container loaders, trucks, trains, landscape and building maintenance. Offsite noise would be attributed to project-induced traffic. Although the project would generate some noise, UltraSystems found that there would be no significant short- or long-term noise impacts due to the project so no mitigation measures are necessary.

Traffic Study

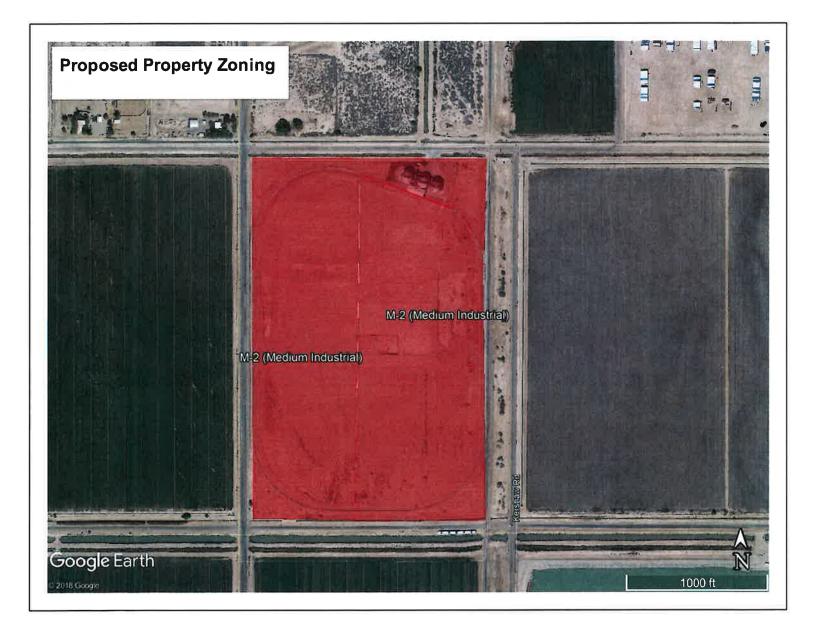
As instructed by the Imperial County Planning and Development Services, a Traffic Study was prepared by Linscott Law & Greenspan (LLG) to analyze the traffic impacts caused by the proposed project. Based on information obtained from the applicant, LLG predicts the Total Project would generate a maximum of 20 Average Daily Traffic (ADT) by passenger vehicles. It would also generate 360 ADT by trucks, with 15 inbound and 15 outbound trips during the AM and PM peak hours. As previously discussed, the project would have driveways dedicated for both entrances and exits for vehicles (**Figure 2**).

Biological Study

As instructed by the Imperial County Planning and Development Services, a Biological Study was conducted by Barrett's Biological Surveys. They performed a biological habitat assessment of the lower portion where the project site would be located. As further described in the Biological Report, there were no vegetation that was found that would be considered endangered, threatened or species of concern. Additionally, there were no fauna found that would be considered endangered or threatened, however, three burrowing owls, one occupied burrow and one active burrow were found offsite on Imperial Irrigation District Right-of-Way. Mitigation measures were given for those instances.

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Appendix A



PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

All American Grain Company- Proposed Container Yard

Engineer: LC Engineering Consultant, Inc. (License No. 55432)

Planning: DuBose Design Group, Inc.

Contractor: Andy Hoyt General Engineering, Inc. (License No. 578349)

Location: The site is located just south of the City of Calipatria, Imperial County, California. The approximate site address is Albright Road and Highway 111, Calipatria, California. Latitude and longitude are 33°06'28'' and 115°30'43'', respectively.

Property Size:	89 +/- acres
Project Size:	42 +/- acres
APN:	024-260-032

Proposed Development:

Applicant proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a Container Yard and Rail Spur. The proposed Zone Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial)

Figure 1. Property Site

zone, while the General Plan Amendment will amend the Imperial County Land Use Element *Table 4: Compatibility Matrix*¹, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in *Table 4: Compatibility Matrix*. This General Plan Amendment is meant to correct *Table 4: Compatibility Matrix* so that it is compatible with the Land Use Element's contents.

Project Summary:

The Project Site

The entire APN 024-260-032 is currently situated on approximately $89 \pm -$ acres of land located within the County of Imperial, about half a mile south of the City of Calipatria (please see **Figure 1**). The property is currently divided into two separate zoning distinctions but with one land use designations (reference **Appendix A**).

In 2008, the property underwent a Zone Change and General Plan Amendment, in which approximately 47 +/- acres changed from A-2 to M-2 zoning while the entire parcel changed from Agriculture to Urban Area land use. Currently, most of the eastern portion of the property is zoned M-2 while the entire western portion and small portions of the northeastern side of the property are zoned A-2 as indicated above. The Container Yard will be primarily situated on the southernmost portion of APN 024-260-032 (please see Figure 5).

Need for Project

As of now, operations for agricultural exporters rely heavily on trucks for distribution purposes. As discussed below, containers are loaded with agricultural commodities and are driven via truck to the Port of Long Beach (POLB) for distribution. As the amount of containers being transported to POLB increases so does the level of complexity. As noted on the POLB's website, exports for the month of April from the POLB have increased by 22% as compared to last year. This level of increase places an even higher strain on nearby infrastructure, truck drivers/haulers and port authorities. The increased number of trucks to the POLB creates congestion on major highways to the Port, congestion at the port terminal and makes meeting appointment times at the terminal difficult to achieve. Additionally, the availability of logistic truck drivers has fallen, other labor

¹ Imperial County Land Use Element

markets such as construction are drawing these drivers away. To solve these issues, All American Grain Company proposes the construction of a loading/distribution facility that will utilize train units for distribution purposes to the POLB, thus cutting down the amount of trucks needed for distribution.

Project Use

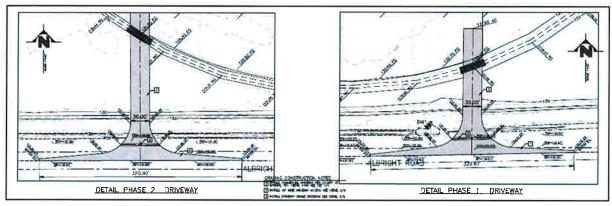
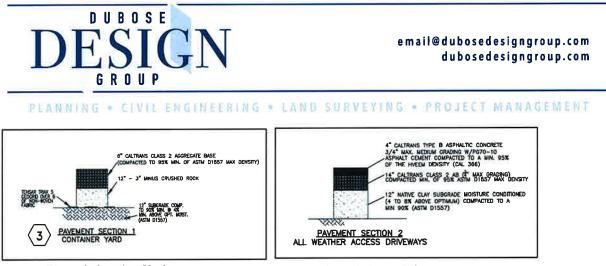
The current operations of the facility act as a grain transfer and storage station for locally grown containered agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown rufage in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

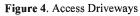
The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the *primary method* of distribution to the POLB. Ultimately, the applicant's goal is to become more efficient with the delivery of out-going hay products that leave the valley and reduce the amount of trip miles made by trucks. This addition of one-unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks. Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of offloading containers from the train and then reloading the containers that were loaded at the source. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the POLB utilizing the Union Pacific Rail Road.

Project Circulation

In order to gain access to the project site, the applicant requires the construction of two (2) driveways for purposes of ingress and egress. The driveway closest to the intersection of HWY 111 and E. Albright Rd will be utilized as the point of egress while the further east driveway will be utilized as the point of ingress. These access points will be located on the southern boundary of the site where E. Albright intersects HWY 111 (see Figure 2). The distance between the entrance

to the facility and the turn-off from Hwy 111 will provide enough space if numerous trucks show up all at once. Additionally, the exit location will be located at the south/west corner of the property, allowing the option to either turn right or left depending on logistical reasons.


Figure 2. Driveways

Construction Activities

In order to support the additional loading and unloading zones and to stay compliant with County of Imperial Planning Department, County of Imperial Fire Department and APCD, the proposed container yard will install "all weather surface" pavement to the standards of both the County of Imperial and the Air Pollution Control District. The Container Yard and Spur Loading zone will accommodate containers that will be stacked 4 high over a space of 8 ft by 40 ft (the container on the ground level). There will be 840 containers within the loading area at the peak on one day. The stacks of containers will not exceed the height of the nearby silos. Individual containers will weight approximately 60,000 lbs when filled. Once stacked in fours the total approximate weight of the stack will be 240,000 lbs (a soils recommendation will be provided from a geotechnical expert). With this being said, the load bearing capacity for the surface must withstand this total amount of weight. For descriptions of the pavement section for both the Container Yard and the All-Weather Access Driveways please see **Figure 3** and **Figure 4**. The unloading and loading of the containers will occur two days per week, during these days the train will be on site for 10-12 hours for purposes of unloading and loading.

Figure 3. Container Yard

Project Operation

As previously stated, the operation of the facility will act as a grain transfer and storage station for locally grown agricultural commodities. These commodities will be harvested throughout the Imperial Valley, loaded into empty containers and shipped via truck to the Container Yard. Upon arrival, the loaded containers will be stored at the Container Yard for a short period of time until the unit train arrives. Once the unit train has arrived, it will move into position for both unloading and loading. The train will move forward for every 10 railcars that are unloaded and loaded. The containers themselves are then unloaded and loaded via RS46 Series Hyster container loaders. When the facility is completely operational, there will be a maximum of four (4) container loaders at the site.

Project Phasing

It is the intent of the applicant to construct this Container Yard in phases (see **Figure 5**). On the furthest east portion of the project, contains Phase 1, which is permitted by right to allow for a container yard. Phase 1 is unrelated to this Zone Change and General Plan Amendment for the reason stated previously. As of 8/06/2018 and 8/07/2018, the applicant has submitted with County of Imperial Building Department and Public Works Department for a grading permit for Phase 1. Once the Zone Change and General Plan Amendment have been approved, grading permits will be submitted for Phases 2 & 3.

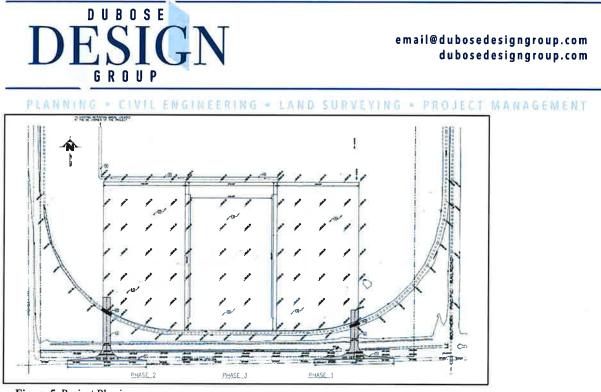


Figure 5. Project Phasing

Environmental Consideration

It is understood by the applicant that this proposed alteration to the current use will trigger additional environmental studies. With consultation from the County of Imperial, it has been determined that environmental studies will include: (1) Air Study, (2) Noise Study, (3) Traffic Study and (4) Biological.

Air Study

As instructed by the Imperial County Planning and Development Services, an Air Quality Study was performed by UltraSystems, Inc. analyzing the air quality including Greenhouse Gas Emissions generated by the proposed project. As further discussed in the Air Quality and Greenhouse Gas Emissions Report, sources of air pollution include locomotive emissions, container loader emissions, hauling truck emissions, and employee commuter emissions. These sources of emissions would emit pollutants of concern include ROG, CO, NOx, PM10 and PM2.5. As the report indicates, the long-term project operational emissions would not exceed applicable thresholds for ROG, PM10 or CO but they would exceed the Tier 2 threshold for NOx. However, as discussed in the attached Memo to the Air Quality Study, APCD requested that UltraSystems perform a comparison of criteria pollutants emissions from truck and train transport of Agricultural products from All American Grain in Calipatria to Riverside County Line. Ultimately, the amount of NOx decreases a substantial amount due to reliance on trains rather than trucks.

Noise Study

As instructed by the Imperial County Planning and Development Services, a Noise Study was prepared by UltraSystems, Inc. analyzing the noise levels generated by the proposed project. As further discussed in the Noise Study Report, noise sources include container loaders, trucks, trains, landscape and building maintenance. Offsite noise would be attributed to project-induced traffic. Although the project would generate some noise, UltraSystems found that there would be no significant short- or long-term noise impacts due to the project so no mitigation measures are necessary.

Traffic Study

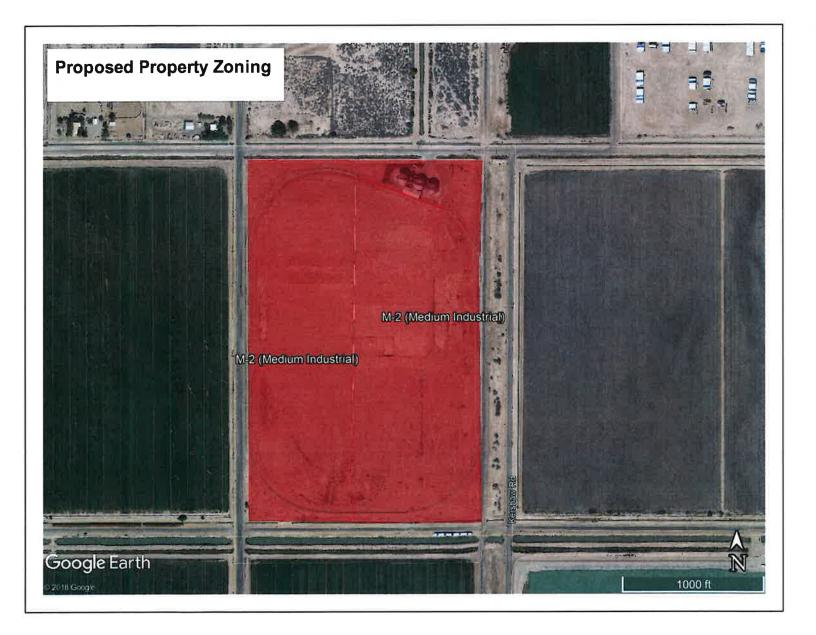
As instructed by the Imperial County Planning and Development Services, a Traffic Study was prepared by Linscott Law & Greenspan (LLG) to analyze the traffic impacts caused by the proposed project. Based on information obtained from the applicant, LLG predicts the Total Project would generate a maximum of 20 Average Daily Traffic (ADT) by passenger vehicles. It would also generate 360 ADT by trucks, with 15 inbound and 15 outbound trips during the AM and PM peak hours. As previously discussed, the project would have driveways dedicated for both entrances and exits for vehicles (**Figure 2**).

Biological Study

As instructed by the Imperial County Planning and Development Services, a Biological Study was conducted by Barrett's Biological Surveys. They performed a biological habitat assessment of the lower portion where the project site would be located. As further described in the Biological Report, there were no vegetation that was found that would be considered endangered, threatened or species of concern. Additionally, there were no fauna found that would be considered endangered or threatened, however, three burrowing owls, one occupied burrow and one active burrow were found offsite on Imperial Irrigation District Right-of-Way. Mitigation measures were given for those instances.

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Appendix A



PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

All American Grain Company- Proposed Container Yard

Client:	All American	Grain	Company,	LLC
---------	--------------	-------	----------	-----

Engineer: LC Engineering Consultant, Inc. (License No. 55432)

Planning: DuBose Design Group, Inc.

Contractor: Andy Hoyt General Engineering, Inc. (License No. 578349)

Location: The site is located just south of the City of Calipatria, Imperial County, California. The approximate site address is Albright Road and Highway 111, Calipatria, California. Latitude and longitude are 33°06'28'' and 115°30'43'', respectively.

Property Size:	89 +/- acres
Project Size:	42 +/- acres
APN:	024-260-032

Proposed Development:

Applicant proposes a Zone Change (ZC) and General Plan Amendment (GPA) to the west half of APN: 024-260-032 in an effort to bring the parcel into conformance with applicable zoning & land use regulations. The Zone Change & General Plan Amendment will allow more acreage under the Medium Industrial use so that the applicant may establish a Container Yard and Rail Spur. The proposed Zone Change will change the current A-2 (General Agriculture) zone to M-2 (Medium Industrial)

Figure 1. Property Site

zone, while the General Plan Amendment will amend the Imperial County Land Use Element *Table 4: Compatibility Matrix*¹, located on page 64 of the Land Use Element. The current land use designation for APN: 024-260-032 is Urban Area which allows for compatibility with M-2 zoning as stated within the contents of the Land Use Element, however, this is not reflected in *Table 4: Compatibility Matrix*. This General Plan Amendment is meant to correct *Table 4: Compatibility Matrix* so that it is compatible with the Land Use Element's contents.

Project Summary:

The Project Site

The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria (please see **Figure 1**). The property is currently divided into two separate zoning distinctions but with one land use designations (reference **Appendix A**).

In 2008, the property underwent a Zone Change and General Plan Amendment, in which approximately 47 +/- acres changed from A-2 to M-2 zoning while the entire parcel changed from Agriculture to Urban Area land use. Currently, most of the eastern portion of the property is zoned M-2 while the entire western portion and small portions of the northeastern side of the property are zoned A-2 as indicated above. The Container Yard will be primarily situated on the southernmost portion of APN 024-260-032 (please see Figure 5).

Need for Project

As of now, operations for agricultural exporters rely heavily on trucks for distribution purposes. As discussed below, containers are loaded with agricultural commodities and are driven via truck to the Port of Long Beach (POLB) for distribution. As the amount of containers being transported to POLB increases so does the level of complexity. As noted on the POLB's website, exports for the month of April from the POLB have increased by 22% as compared to last year. This level of increase places an even higher strain on nearby infrastructure, truck drivers/haulers and port authorities. The increased number of trucks to the POLB creates congestion on major highways to the Port, congestion at the port terminal and makes meeting appointment times at the terminal difficult to achieve. Additionally, the availability of logistic truck drivers has fallen, other labor

¹ Imperial County Land Use Element

PLANNING • CIVIL ENGINEERING • LAND SURVEYING • PROJECT MANAGEMENT markets such as construction are drawing these drivers away. To solve these issues, All American Grain Company proposes the construction of a loading/distribution facility that will utilize train units for distribution purposes to the POLB, thus cutting down the amount of trucks needed for distribution.

Project Use

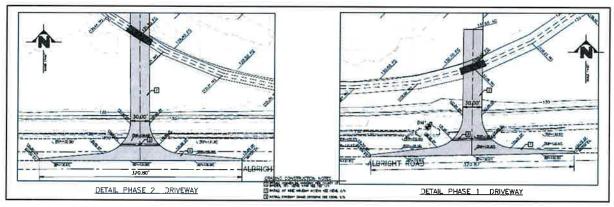
The current operations of the facility act as a grain transfer and storage station for locally grown containered agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown rufage in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

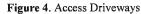
The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the *primary method* of distribution to the POLB. Ultimately, the applicant's goal is to become more efficient with the delivery of out-going hay products that leave the valley and reduce the amount of trip miles made by trucks. This addition of one-unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks. Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of offloading containers from the train and then reloading the containers that were loaded at the source. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the POLB utilizing the Union Pacific Rail Road.

Project Circulation

In order to gain access to the project site, the applicant requires the construction of two (2) driveways for purposes of ingress and egress. The driveway closest to the intersection of HWY 111 and E. Albright Rd will be utilized as the point of egress while the further east driveway will be utilized as the point of ingress. These access points will be located on the southern boundary of the site where E. Albright intersects HWY 111 (see Figure 2). The distance between the entrance

to the facility and the turn-off from Hwy 111 will provide enough space if numerous trucks show up all at once. Additionally, the exit location will be located at the south/west corner of the property, allowing the option to either turn right or left depending on logistical reasons.

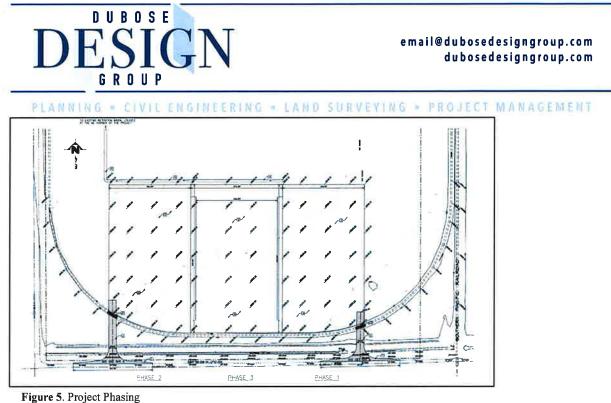



Figure 2. Driveways

Construction Activities

In order to support the additional loading and unloading zones and to stay compliant with County of Imperial Planning Department, County of Imperial Fire Department and APCD, the proposed container yard will install "all weather surface" pavement to the standards of both the County of Imperial and the Air Pollution Control District. The Container Yard and Spur Loading zone will accommodate containers that will be stacked 4 high over a space of 8 ft by 40 ft (the container on the ground level). There will be 840 containers within the loading area at the peak on one day. The stacks of containers will not exceed the height of the nearby silos. Individual containers will weight approximately 60,000 lbs when filled. Once stacked in fours the total approximate weight of the stack will be 240,000 lbs (a soils recommendation will be provided from a geotechnical expert). With this being said, the load bearing capacity for the surface must withstand this total amount of weight. For descriptions of the pavement section for both the Container Yard and the All-Weather Access Driveways please see **Figure 3** and **Figure 4**. The unloading and loading of the containers will occur two days per week, during these days the train will be on site for 10-12 hours for purposes of unloading and loading.

Figure 3. Container Yard



Project Operation

As previously stated, the operation of the facility will act as a grain transfer and storage station for locally grown agricultural commodities. These commodities will be harvested throughout the Imperial Valley, loaded into empty containers and shipped via truck to the Container Yard. Upon arrival, the loaded containers will be stored at the Container Yard for a short period of time until the unit train arrives. Once the unit train has arrived, it will move into position for both unloading and loading. The train will move forward for every 10 railcars that are unloaded and loaded. The containers themselves are then unloaded and loaded via RS46 Series Hyster container loaders. When the facility is completely operational, there will be a maximum of four (4) container loaders at the site.

Project Phasing

It is the intent of the applicant to construct this Container Yard in phases (see **Figure 5**). On the furthest east portion of the project, contains Phase 1, which is permitted by right to allow for a container yard. Phase 1 is unrelated to this Zone Change and General Plan Amendment for the reason stated previously. As of 8/06/2018 and 8/07/2018, the applicant has submitted with County of Imperial Building Department and Public Works Department for a grading permit for Phase 1. Once the Zone Change and General Plan Amendment have been approved, grading permits will be submitted for Phases 2 & 3.

r gare er rojeer i nasnig

Environmental Consideration

It is understood by the applicant that this proposed alteration to the current use will trigger additional environmental studies. With consultation from the County of Imperial, it has been determined that environmental studies will include: (1) Air Study, (2) Noise Study, (3) Traffic Study and (4) Biological.

Air Study

As instructed by the Imperial County Planning and Development Services, an Air Quality Study was performed by UltraSystems, Inc. analyzing the air quality including Greenhouse Gas Emissions generated by the proposed project. As further discussed in the Air Quality and Greenhouse Gas Emissions Report, sources of air pollution include locomotive emissions, container loader emissions, hauling truck emissions, and employee commuter emissions. These sources of emissions would emit pollutants of concern include ROG, CO, NOx, PM10 and PM2.5. As the report indicates, the long-term project operational emissions would not exceed applicable thresholds for ROG, PM10 or CO but they would exceed the Tier 2 threshold for NOx. However, as discussed in the attached Memo to the Air Quality Study, APCD requested that UltraSystems perform a comparison of criteria pollutants emissions from truck and train transport of Agricultural products from All American Grain in Calipatria to Riverside County Line. Ultimately, the amount of NOx decreases a substantial amount due to reliance on trains rather than trucks.

Noise Study

As instructed by the Imperial County Planning and Development Services, a Noise Study was prepared by UltraSystems, Inc. analyzing the noise levels generated by the proposed project. As further discussed in the Noise Study Report, noise sources include container loaders, trucks, trains, landscape and building maintenance. Offsite noise would be attributed to project-induced traffic. Although the project would generate some noise, UltraSystems found that there would be no significant short- or long-term noise impacts due to the project so no mitigation measures are necessary.

Traffic Study

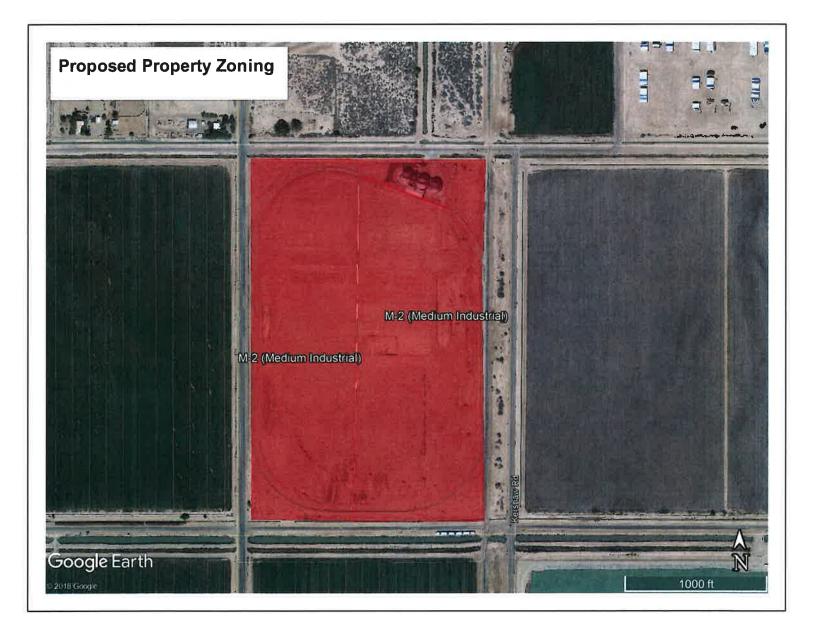
As instructed by the Imperial County Planning and Development Services, a Traffic Study was prepared by Linscott Law & Greenspan (LLG) to analyze the traffic impacts caused by the proposed project. Based on information obtained from the applicant, LLG predicts the Total Project would generate a maximum of 20 Average Daily Traffic (ADT) by passenger vehicles. It would also generate 360 ADT by trucks, with 15 inbound and 15 outbound trips during the AM and PM peak hours. As previously discussed, the project would have driveways dedicated for both entrances and exits for vehicles (**Figure 2**).

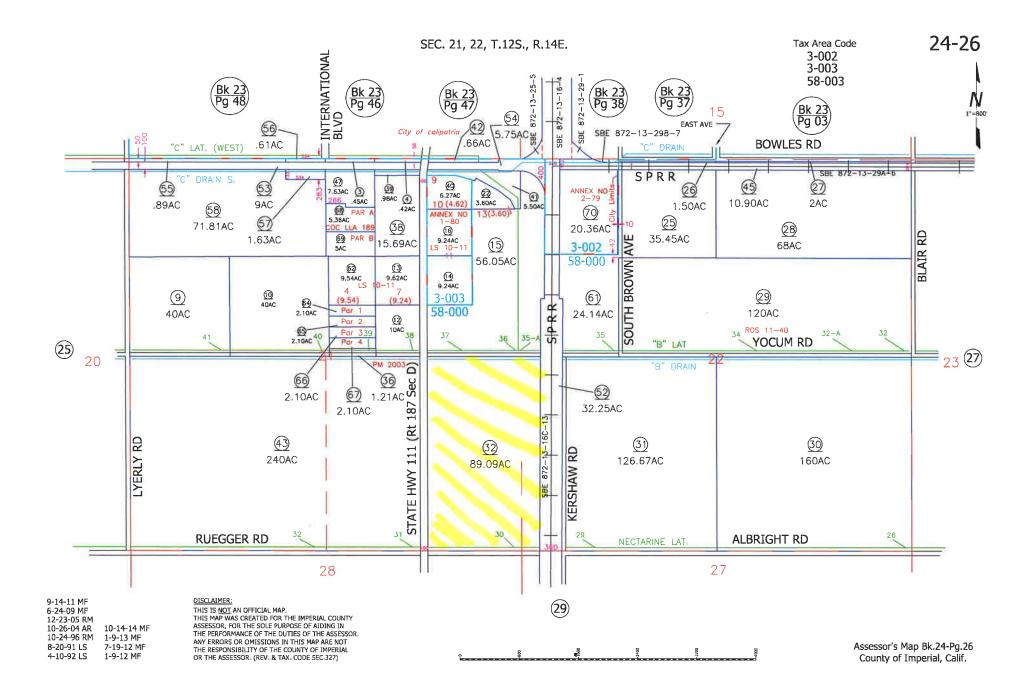
Biological Study

As instructed by the Imperial County Planning and Development Services, a Biological Study was conducted by Barrett's Biological Surveys. They performed a biological habitat assessment of the lower portion where the project site would be located. As further described in the Biological Report, there were no vegetation that was found that would be considered endangered, threatened or species of concern. Additionally, there were no fauna found that would be considered endangered or threatened, however, three burrowing owls, one occupied burrow and one active burrow were found offsite on Imperial Irrigation District Right-of-Way. Mitigation measures were given for those instances.

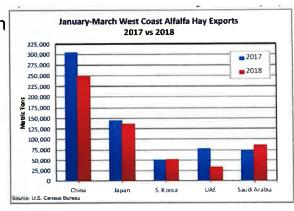
PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

Appendix A

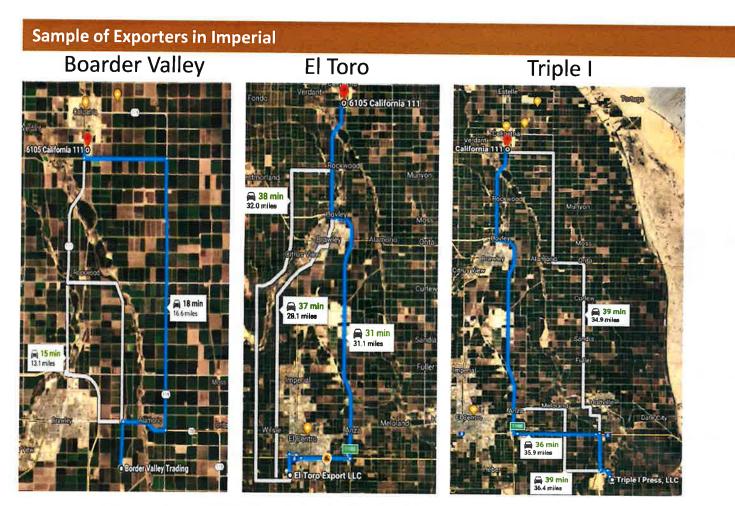



PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT

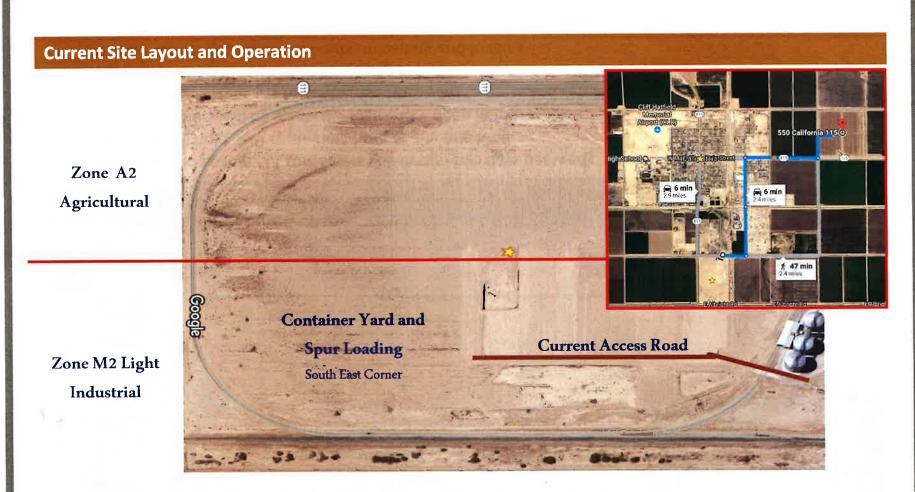
PLANNING . CIVIL ENGINEERING . LAND SURVEYING . PROJECT MANAGEMENT


ALL AMERICAN CONTAINER YARD PROPOSAL

Agenda


- 1. Logistics Overview
- 2. Site Location in relation to other exporters
- 3. Site Zoning
- 4. Proposed site layout
- 5. Next Steps

Californian Logistics Overview


- Capacity reduction of over 30% in the trucking fleet driven by ELOGs
 - Independent haulers have withdrawn from the market
 - Large haulers who were prepared for the ELOGs are not prepared for the increase in volume due to independent withdrawal
 - In Service Hours being strictly inforced
- Availability of truck drivers has fallen
 - Other labor markets such as construction are drawing drivers away from logistics
 - Home every night
 - Earning potential similar or better in construction
- Port of Los Angeles/Long Beach
 - Congestion on the major highways to the port
 - Congestion at the port terminal
 - Pier passes on day and night shift moving forward
 - Appointment times at the terminals

- Calipatria Container Yard
 - Eliminate the requirement for exporters to transport containers too and from the port
 - Eliminate the need to increase truck fleets to transport the same volume
 - Continue to make the Imperial Valley forage competitive with the Pacific Northwest for exporters
 - Substantial reduction of air emissions from diesel consumption
 - Proposal is for 1 additional unit train of 105 well cars which is 210 containers

- All within 35 miles of Calipatria, 45 minutes or less
- All can access the site via the 111 or 115 using
 - Albright
 - Kershaw
 - Yocum

- Unloading and Loading of containers will occurs one day per week
 - We will hold 210 containers here at any one time as buffer
- 5 days per week transfers of containers from yard to press and return
 - All American will use the facility approx one day a week for unloading grain
- Train will be on site for 10-12 hours unloading and loading

- Unloading and Loading of containers will occurs two days per week
 - We will hold 420 containers here at any one time
 - Containers will be stacked 3 high and 7 deep in four stacks of 105
- 6 days per week transfers of containers from yard to press and return
 - 70 trucks per day will be accessing the site
- Train will be on site for 10-12 hours unloading and loading

NEXT STEPS

THANK YOU

Attachment D. Agency Comments

TELEPHONE: (442) 265-1800 FAX: (442) 265-1799

December 26, 2018

Jim Minnick Planning & Development Services Director 801 Main Street El Centro, CA 92243

SUBJECT: Request for GPA 18-0001 and ZC 18-0002 and CUP 07-0023 (Recirculation) for the purpose of establishing a Container Yard and Rail Spur.

Dear Mr. Minnick,

The Imperial County Air Pollution Control District ("Air District") would like to thank you for the opportunity to review the request by All American Grain Company, LLC for a proposed General Plan Amendment (GPA) 18-0001, Zone Change (ZC) 18-0002, and Conditional Use Permit (CUP) 07-0023. The GPA and ZC to the west half of APN 024-260-032 would ultimately allow for the establishment of a Container Yard and Rail Spur at 305 E. Yocum Road in Calipatria, California.

Due to ongoing conversations with the Enforcement and Engineering & Permitting Divisions of the Air District, the applicant is aware that compliance with Regulation VIII Rules is a requirement. Any changes to the details of the proposal can be addressed in future conversations between the two parties. Other than that, the Air District has No Comment.

As a reminder, Air District Rules and Regulations can be found on our website at <u>www.co.imperial.ca.us/AirPollution</u> under the "Planning" tab. The ICAPCD office can be reached at (442) 265-1800.

Sincerely. Contig Blandell

Curtis Blondell Environmental Coordinator

DEC 26 2018 IMPERIAL COUNTY PLANNING & DEVELOPMENT SERVICES

AUGUSTINE BAND OF CAHUILLA INDIANS

PO Box 846 84-481 Avenue 54 Coachella CA 92236 Telephone: (760) 398-4722 Fax (760) 369-7161 Tribal Chairperson: Amanda Vance Tribal Vice-Chairperson: William Vance Tribal Secretary: Victoria Martin

December 27, 2018

Daivd Black Imperial County Planning & Development Services 801 Main St. El Centro, CA 92243

Re: Project Notification Pursuant to Senate Bill 18 for the All American Grain Project in Imperial County, California

Dear Mr. Black-

Thank you for the opportunity to offer input concerning the development of the above-identified project. We appreciate your sensitivity to the cultural resources that may be impacted by your project, and the importance of these cultural resources to the Native American peoples that have occupied the land surrounding the area of your project for thousands of years. Unfortunately, increased development and lack of sensitivity to cultural resources has resulted in many significant cultural resources being destroyed or substantially altered and impacted. Your invitation to consult on this project is greatly appreciated.

At this time we are unaware of specific cultural resources that may be affected by the proposed project. We encourage you to contact other Native American Tribes and individuals within the immediate vicinity of the project site that may have specific information concerning cultural resources that may be located in the area. We also encourage you to contract with a monitor who is qualified in Native American cultural resources identification and who is able to be present on-site full-time during the pre-construction and construction phase of the project. Please notify us immediately should you discover any cultural resources during the development of this project.

Very truly yours,

to IN & Victoria N

Victoria Martin Tribal Secretary

DEC 31 2018 IMPERIAL COUNTY PLANNING & DEVELOPMENT SERVICES

COLORADO RIVER INDIAN TRIBES

Tribal Historic Preservation Office

26600 Mohave Road Parker, Arizona 85344 Telephone: (928)-669-5822 Fax: (928) 669-5843

Imperial County Planning 801 Main St. El Centro, CA 92243 Date: January 8, 2019

RE: All-American Grain – General Plan Amendment, GPA 18-0001/ zone change ZC 18-0002, APN #024-260-032-000.

Dear: Jim Minnick, Director

The Colorado River Indian Tribes' Tribal Historic Preservation Office ("CRIT THPO") has received your letter dated December 14, 2018, regarding the All-American Grain – General Plan Amendment, GPA 18-0001/ zone change ZC 18-0002 APN #024-260-032-000.

As a preliminary matter, the Colorado River Indian Tribes are a federally recognized Indian tribe comprised of over 4,200 members belonging to the Mohave, Chemehuevi, Hopi and Navajo Tribes. The almost 300,000-acre Colorado River Indian Reservation sits astride the Colorado River between Blythe, California and Parker, Arizona. The ancestral homelands of the Tribe's members, however, extend far beyond the Reservation boundaries. Significant portions of public and private lands in California, Arizona and Nevada were occupied by the ancestors of the Colorado River Indian Tribes' Mohave and Chemehuevi members since time immemorial. These landscapes remain imbued with substantial cultural, spiritual and religious significance for the Tribes' current members and future generations. For this reason, we have a strong interest in ensuring that potential cultural resource impacts are adequately considered and mitigated.

In addition, we respond as follows, The Colorado River Indian Tribes do not have any specific comment on the proposed project and instead defer to the comments of other affiliated tribes. Thank you for your consideration. Please contact the undersigned if you have any questions or concerns.

Sincerely,

COLORADO RIVER INDIAN TRIBES TRIBAL HISTORIC PRESERVATION OFFICE

/s/ Bryan Etsitty, Acting-Director 26600 Mohave Road Parker, AZ 85344 Phone: (928) 669-5822 E-mail: <u>betsitty@crit-nsn.gov</u>

10 1 1 4 2019

PLANNING & DEVELOPMENT SERVICES

Public Works works for the Public

COUNTY OF

DEPARTMENT OF

PUBLIC WORKS

155 S. 11th Street

El Centro, CA

January 24, 2019

Mr. Jim Minnick, Director Planning & Development Services Department 801 Main Street El Centro, CA 92243 RECEIVED

JAN 2 5 2019

IMPERIAL COUNTY PLANNING & DEVELOPMENT SERVICES

92243 Tel: (442) 265-1818 Fax: (442) 265-1858

Follow Us:

www.facebook.com/ ImperialCountyDPW/

https://twitter.com/ CountyDpw/ Attention: David Black, Planner IV

SUBJECT: ZC 18-0002 / GPA 18-0001 – All American Grain Company, LLC Located on 306 E. Yocum Road, Calipatria, CA APN 024-260-032-000

Dear Mr. Minnick:

This letter is in response to your submittal received by this department on April 25, 2018 for the above mentioned project. The applicant proposes to rezone a portion of the aforementioned property in hopes of creating a more uniform zoning area and clean-up the inconsistent zoning of their single property caused by prior zone change.

Department staff has reviewed the package information and the following comments are provided for the applicant use:

- 1. Yocum Road is classified as 4-Lane Major Collector requiring eighty four feet (84) of right of way, being forty two (42) feet from existing centerline. Forty feet (40') of right of way has been provided per Grant Deed Doc # Book 2249 pg. 1381, 2003. As directed by Imperial County Board of Supervisors per Minute Order #6 dated 11/22/1994 per the Imperial County Circulation Element Plan of the General Plan).
- 2. Albright Road is classified as 2-Lane Minor Collector requiring seventy feet (70) of right of way, being thirty five (35) feet from existing centerline. Seventeen feet and Six inches (17'-6') of right of way has been provided per Grant Deed Doc # Book 2249 pg. 1378, 2003. Sufficient right of way must be provided to meet this road classification. As directed by Imperial County Board of Supervisors per Minute Order #6 dated 11/22/1994 per the Imperial County Circulation Element Plan of the General Plan).
- 3. The applicant shall furnish a Drainage and Grading Plan/Study to provide for property grading and drainage control, which shall also include prevention of sedimentation of damage to off-site properties. The Plan/Study shall be prepared per the Engineering Design Guidelines Manual for the Preparation and checking of Street Improvement, Drainage, and Grading Plans within Imperial County and submitted to the Department of Public Works for review and approval. The applicant shall implement the approved plan. Employment of the appropriate Best Management Practices (BMPs) shall be included on the plan.

- 4. The applicant for encroachment permits, grading plans, and/or improvement plans is responsible for researching, protecting and preserving survey monuments per the Professional Land Surveyor's Act (8771 (b)). This shall include a copy of the referenced survey map and tie card(s) (if applicable) for all monuments that may be impacted by the project whether it be on-site of off-site.
- 5. At time of development, if required, by Section 8762(b) of the Professional Land Surveyors Act, a record of survey shall be filed with the County Recorder of Imperial County.
- 6. Street improvements shall be required in conjunction with, but not limited to, any construction, grading, or related work, including the construction of structures, buildings, or major additions thereto, on property located adjacent to any county street or on property utilizing any county street for ingress and egress, except that such improvements may be deferred as described in <u>Section 12.10.040</u> of this chapter for residential property (Per Imperial County Code of Ordinances, Chapter 12.10.020). The street improvements required shall be a commercial type driveway per Imperial County Standards and a secondary emergency access driveway as approved by this Department. The secondary emergence of a sphalt concrete or as approved by this Department.
- 7. No building permit for any structure or building or major addition to a building or structure shall be issued until the improvements required by <u>Section 12.10.010</u> of this chapter have been installed and/or bonded. In addition, no building permit shall be issued until there has been compliance with <u>Chapter 12.12</u> of this title and the requirement that an encroachment permit be obtained (Per Imperial County Code of Ordinances, Chapter 12.10.030).
- 8. Any activity and/or work within Imperial County right-of-way shall be completed under an encroachment permit issued by this Department (Per Imperial County Code of Ordinances, Chapter 12.12). Any activity and/or work may include, but not be limited to, the installation of temporary traffic control devices, construction of access driveways, etc.
- 9. The applicant shall update the transportation impact analysis at one (1) year and five (5) years from the date of the Zone Change Approval and/or as directed by the Road Commissioner. The updates of the transportation impact analysis shall include:
 - a. Current traffic volume data along County Roads (within 1 year of the date of the transportation impact report update) at the following locations:
 - i. Albright Road between State Route 111 and Kershaw Road
 - ii. Albright Road between Kershaw Road and State Route 115
 - iii. Yocum Road between State Route 111 and Kershaw Road
 - iv. Yocum Road between Kershaw Road (west) and Kershaw Road (Brown Road)
 - v. Yocum Road between Kershaw Road (Brown Avenue) and Blair Road
 - vi. Yocum Road between Blair Road and State Route 115

- vii. Blair Road between Yocum Road and State Route 115
- viii. Kershaw Road between Albright Road and Yocum Road
- ix. Kershaw Road (Brown Avenue) between Yocum Road and Calipatria City Limits
- b. If the transportation impact analysis to be completed within five (5) years of the Zone Change Approval warrants the installation for right and/or left turn lanes into the facility, the applicant shall fund the construction for said turn lanes.
- 10. Figure 7-1 of the transportation impact analysis indicates that 15% of the truck traffic will be using Yocum Road east of Kershaw Road (Brown Avenue). This section of Yocum Road is unpaved.
 - a. Section E Unpaved Haul/Access Roads Requirements of Rule 805 of the Imperial County Air Pollution Control District limits any traffic on unpaved roads to generate visible dust emissions (VDE) to less than 20% opacity. If the applicant is unable to maintain the opacity level as required by Rule 805, the applicant shall mitigate the generation of dust due to project traffic along Yocum Road between Kershaw Road (Brown Avenue) and Blair Road and along Blair Road between Yocum Road and State Route 115 by one of the methods below:
 - i. <u>Asphalt Concrete Road Improvements</u>: The road section shall be improved by installing two (2) 12-foot travel lanes consisting of 4 inches of asphalt concrete over 18 inches of Class 2 Base, including Class 2 base shoulder backing, as approved by the Director of Public Works. Any activities related to these road improvements shall be completed under an encroachment permit from this Department.
 - ii. <u>Road Surface Chemical Stabilization</u>: The road surface shall be stabilized by applying chemical stabilization products as recommended by the product manufacturer to accommodate for two (2) 12-foot travel lanes and as approved by the Director of Public Works. Any activities related to this road stabilization shall be completed under an encroachment permit from this Department.
 - iii. <u>Aggregate Base Road Improvements</u>: The road section shall be improved by installing two (2) 12-foot travel lanes consisting of a minimum of 3" of Class 2 Base material, as recommended by a California Geotechnical Engineer, and as approved by the Director of Public Works. Any activities related to these road improvements shall be completed under an encroachment permit from this Department.
 - iv. <u>Road Dust Mitigation Plan</u>: The applicant shall prepare a Road Dust Mitigation Plan and submit it to this Department for review and approval. Any activities related to the implementation of the road dust mitigation plan shall be completed under an encroachment permit from this Department.
 - v. <u>Traffic Restriction</u>: Any existing and/or proposed project traffic, truck or passenger vehicles, associated with the project site shall be restricted from

using the road section. The transportation impact analysis shall be revised to indicate the revised traffic distribution and resubmitted to this Department for review and approval prior to the Zone Change Approval.

INFORMATIVE:

The following items are for informational purposes only. The applicant is responsible to determine if the enclosed items affect the subject project.

- All solid and hazardous waste shall be disposed of in approved solid waste disposal sites in accordance with existing County, State and Federal regulations (Per Imperial County Code of Ordinances, Chapter 8.72).
- All on-site traffic area shall be hard surfaced to provide all weather access for fire protection vehicles. The surfacing shall meet the Department of Public Works and Fire/OES Standards as well as those of the Air Pollution Control District (APCD) (Per Imperial County Code of ordinances, Chapter 12.10.020 A).
- The project may require a National Pollutant Discharge Elimination System (NPDES) permit and Notice of Intent (NOI) from the Regional Water Quality Control Board (RWOCB) prior county approval of onsite grading plan (40 CFR 122.28).
- A Transportation Permit may be required from road agency(s) having jurisdiction over the haul route(s) for any hauls of heavy equipment and large vehicles which impose greater then legal loads on riding surfaces, including bridges. (Per Imperial County Code of Ordinances, Chapter 10.12.020).
- As this project proceeds through the planning and the approval process, additional comments and/or requirements may apply as more information is received.

Should you have any questions, please do not hesitate to contact this office. Thank you for the opportunity to review and comment on this project.

Respectfully,

John A. Gay, PE Director of Public Works

FO/cv

www.iid.com

Since 1911

May 14, 2018

Mr. David Black Planner IV Planning & Development Services Department County of Imperial 801 Main Street El Centro, CA 92243

SUBJECT: All American Grain Company, LLC GPA No. 18-0001 and ZC No. 18-0002

Dear Mr. Black:

On April 25, 2018, the Imperial Irrigation District received from the Imperial County Planning & Development Services Department, a request for agency comments on General Plan Amendment no. 18-0001 and Zone Change no. 18-000. The applicant, All American Grain Company, LLC; is proposing to rezone a portion of property to correct the inconsistent zoning created by a prior zone change. The property is located at 306 E. Yocum Road, Calipatria, CA.

The Imperial Irrigation District has assessed the information and has the following comments:

- IID water facilities that may be impacted include the Nectarine Lateral A along the parcel's southern boundary and the B Drain along the parcel's northern boundary. An existing ethanol plant entrance/drain crossing is located along the parcel's northern boundary. No new construction is proposed with the General Plan amendment or zone change. However, IID Water Department should be consulted prior to the installation of any facilities adjacent to IID's facilities. For further information, IID Water Engineering Services can be contacted at (760) 339-9265.
- 2. In addition, If future impacts to IID water facilities should result, the IID Water Department must be informed regarding encroachments, drainage and water service.
- 3. Any construction or operation on IID property or within its existing and proposed right of way or easements including but not limited to: surface improvements such as proposed new streets, driveways, parking lots, landscape; and all water, sewer, storm water, or any other above ground or underground utilities; will require an encroachment permit, or encroachment agreement (depending on the circumstances). A copy of the IID encroachment permit application and instructions for its completion are available at <u>http://www.iid.com/departments/real-estate</u>. The IID Real Estate Section should be contacted at (760) 339-9239 for additional information regarding encroachment permits or agreements. No foundations or buildings will be allowed within IID's right of way.

David Black May 14, 2018 Page 2

- 4. In addition to IID's recorded easements, IID claims, at a minimum, a prescriptive right of way to the toe of slope of all existing canals and drains. Where space is limited and depending upon the specifics of adjacent modifications, the IID may claim additional secondary easements/prescriptive rights of ways to ensure operation and maintenance of IID's facilities can be maintained and are not impacted and if impacted mitigated. Thus, IID should be consulted prior to the installation of any facilities adjacent to IID's facilities. Certain conditions may be placed on adjacent facilities to mitigate or avoid impacts to IID's facilities.
- 5. Any new, relocated, modified or reconstructed IID facilities required for and by the project (which can include but is not limited to electrical utility substations, electrical transmission and distribution lines, etc.) need to be included as part of the project's CEQA and/or NEPA documentation, environmental impact analysis and mitigation. Failure to do so will result in postponement of any construction and/or modification of IID facilities until such time as the environmental documentation is amended and environmental impacts are fully analyzed. Any and all mitigation necessary as a result of the construction, relocation and/or upgrade of IID facilities is the responsibility of the project proponent.

Should you have any questions, please do not hesitate to contact me at 760-482-3609 or at dvargas@iid.com. Thank you for the opportunity to comment on this matter.

Respectfully

Donald Vargas Compliance Administrator II

Kevin Kelley – General Manager Mike Pacheco – Manager, Water Dept. Charles Allegranza – Manager, Energy Dept., Operations Jarnie Asbury – Deputy Manager, Energy Dept., Operations Carlos Vasquez – Deputy Manager, Energy Dept. Planning & Engineering Enrique De Leon – Asst. Mgr., Energy Dept., Distr., Planning, Eng. & Customer Service Vance Taylor – Asst. General Counsel Robert Laurie – Asst. General Counsel Michael P. Kemp – Superintendent, Regulatory & Environmental Compliance Harold Walk Jr. – Supervisor, Real Estate Randy Gray – ROW Agent, Real Estate Jessica Lovecchio – Environmental Project Mgr. Sr., Water Dept. Attachment E. Studies & Memo's to Studies

ALL AMERICAN GRAIN BIOLOGICAL HABITAT ASSESSMENT Zone Change and General Plan Amendment

JULY, 2018

Prepared for:

DUBOSE DESIGN GROUP MATTHEW HARMON Assistant Planner 1065 State Street El Centro, CA 92243

Prepared by: Barrett's Biological Surveys Certified as performed in accordance with established biological practices by:

arrest marie &

Marie S. Barrett, Biologist 2035 Forrester Road El Centro, Ca 92243 760.352.4159

CONTENTS

I.	PROJECT DESCRIPTION	3
11.	BIOLOGICAL REQUIREMENTS	5
III.	BIOLOGICAL HABITAT ASSESSMENT SURVEY Table 1: Field Survey	5 5
IV.	BIOLOGICAL OBSERVATIONS Table 2: Vegetation Table 3: Animals/Invertebrates Table 4: BUOW Burrow Locations	6 6 7
V.	AVOIDANCE, MINIMIZATION AND MITIGATIONS	7
photo Vicini Biolo	FIVE BOTANICAL AND ZOOLOGICAL SPECIES (CNDDB/CNPS) DGRAPHS TY MAP GICAL RESOURCE MAP FICATIONS	

I. PROJECT DESCRIPTION

Applicant wishes to propose a Zone Change and General Plan Amendment to the half of 024-260-032 in order expand more acreage under the M-2 zone (Medium Industrial) and under the Industrial land use, approximately 42 acres of 89 acres. The current zone of the western portion is A-2 (Agriculture), please see **Figure 1** below. The added acreage under the M-2 zoning/land use will allow the applicant more available space to establish a Container Yard and Rail Spur for loading and distribution purposes.

The intent of the applicant is to propose a Zone Change and General Plan Amendment that would conform to the General Plan and zoning regulations/policies of the County of Imperial. The entire property is divided up into two zoning & land use distinctions, Zoning: A-2, M-2 and Land Use: Agriculture, Industrial. The applicant wishes to address the non-conforming portion of the property and bring it into conformance by changing its zoning from A-2 to M-2 and its land use from Agriculture to Industrial. This request is consistent with the City of Calipatria's General Plan and future zoning regulations if area is annexed in the future.

The entire APN 024-260-032 is currently situated on approximately 89 +/- acres of land located within the County of Imperial, about half a mile south of the City of Calipatria. The property is currently divided into two separate zoning distinctions and two separate land use designations (**Figure 1**). In 2008, the property underwent a Zone Change and General Plan Amendment, in which approximately 47 +/- acres changed from A-2 to M-2 zoning and from Agriculture to Industrial land use, while the rest of the property kept its prior A- 2 zoning. Most of the eastern portion of the property is zoned M-2 while the entire western portion and small portions of the northeastern side of the property are zoned A-2 as indicated above.

As of now, operations for Agricultural Exporters rely heavily on trucks for distribution purposes. As discussed below, containers are loaded with agricultural commodities and are driven via truck to the Port of Long Beach (POLB) for distribution. As the amount of containers being transported to POLB increases so does the level of complexity. As noted on the Port of Long Beach's website, exports for the month of April from the POLB have increased by 22% as compared to last year. This level of increase places an even higher strain on nearby infrastructure, truck drivers/haulers and port authorities. The increased number of trucks to the POLB creates congestion on major highways to the Port, congestion at the port terminal and makes meeting appointment times at the terminal difficult to achieve. Additionally, the availability of logistic truck drivers has fallen, other labor markets such as construction are drawing these drivers away. To solve these issues, All American Grain Company proposes the construction of a loading/distribution facility that will utilize train units for distribution purposes to the POLB, thus cutting down the amount of trucks needed for distribution.

The current operations of the facility act as a grain transfer and storage station for locally grown contained agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown ruffage in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution

outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the primary method of distribution to the Port of Long Beach. Ultimately, the applicant's goal is to more efficiently deliver out-going hay products that leave the valley via truck to these unit trains, and reducing the amount of trip miles made by trucks. This addition of one additional unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks. Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of off-loading containers from the train and then reloading the containers that were loaded at the source. Access to the container yard will come off of E. Albright Rd., at the south/east corner of the property. The distance between the entrance to the facility and the turn-off from Hwy 111 will provide enough space if numerous trucks arrive concurrently. Additionally, the exit location will be located at the southwest corner of the property, allowing the option to either turn right or left depending on logistical reasons. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the Port of Long Beach utilizing the Union Pacific Railroad.

In order to support the additional loading and unloading zones and to stay compliant with County of Imperial Planning Department, County of Imperial Fire Department and APCD, the proposed container yard will install "all weather surface" pavement to the standards of both the County of Imperial and the Air Pollution Control District. The Container Yard and Spur Loading zone will accommodate containers that will be stacked 4 high over a space of 8 ft by 40 ft (the container on the ground level). There will be 840 containers within the loading area at the peak on one day. The stacks of containers will not exceed the height of the nearby silos. Individual containers will weigh approximately 60,000 lbs when filled. Once stacked in fours the total approximate weight of the stack will be 240,000 lbs (a soils recommendation will be provided from a geotechnical expert). With this being said, the load bearing capacity for the surface must withstand this total amount of weight. The unloading and loading of the containers will occur two days per week, during these days the train will be on site for 10-12 hours for purposes of unloading and loading.

Figure 1. Project Site

II. BIOLOGICAL REQUIREMENTS

Barrett's Biological Surveys has conducted biological assessment field survey of the area that conforms with California Department of Fish and Wildlife guidelines. The results of the survey are provided in this report.

III. BIOLOGICAL HABITAT ASSESSMENT SURVEY

On 17 July, 2018, a biological habitat assessment was conducted by Marie Barrett and Jacob Calanno biologists, on the Project site. A 500 foot buffer area was also surveyed. The project is located on the southern most portion of APN 024-260-032; bordered on the north by the northern portion of APN 024-260-032, on the south by Imperial Irrigation District (IID) Nectarine Lateral A, Albright Road and Vail Supply Canal; on the east by the Union Pacific railroad, Kershaw Road, agricultural fields; on the west Highway 111 and agricultural fields.

Date	Surveyors	Hours/Surveyor	Total	Conditions
			hours/day	
7/17/18	Marie Barrett	630-830	4.0	89-96°F/100%
	Jacob Calanno	2.0 hrs		cloud cover/0-4
				mph
		Total hours in	4.0	
		field		

Table 1: Field Survey

IV. BIOLOGICAL OBSERVATIONS

Surveys were conducted to determine the presence/absence nesting birds and of Western Burrowing Owl, Athene cunicularia hypugaea, using procedures found in Staff Report on Burrowing Owl Mitigation, California Department of Fish and Game (Wildlife),2012.

Common name	Scientific name	Cal-IPC Rating*
Alkali mallow	i mallow Malvella leprosa	
Arrowweed	Pluchea sericea	
Quail bush	Atriplex lentiformis	
Bermuda	Cynodon dactylon	
Watergrass	Echinochloa sp.	
Saltgrass	Distichlis spicata	
Alkali heliotrope	Heliotropium curassavicum	
Saltcedar	Tamarix sp.	Ca Noxious Weed Cal-IPC rating: High

Table 2 Ruderal vegetation found around the project site:

No vegetation was found that would be considered endangered, threatened or species of concern. No vegetation onsite.

Common name	Scientific name
Burrowing owl	Athene cunicularia
Cattle egret	Bubulcus ibis
Cliff swallow	Petrochelidon pyrrhonota
Grackle	Quiscalus mexicanus
Mourning dove	Zenaida macroura
Redwinged blackbird	Agelaius phoeniceus
White faced ibis	Plegadis chihi
White-throated swift	Aeronautes saxatalis
White winged dove	Zenaida asiatica
Western meadowlark	Sturnella neglecta
Alfalfa butterfly	Colias eurytheme
Common bee	Aphis spp.
Velvet ant	Dasymutilla occidentalis
Ants	various
Crickets	Gryllus
Dragonfly	various
Gopher mound	Thomomys bottae
Canine tracks	various
Jackrabbit	Lepus californicus

Table 3 Animals/Invertebrates were observed in vicinity:

No fauna was found that would be considered endangered or threatened

Three burrowing owls, a CDFW species of concern, one occupied burrow and one active burrow were found offsite on Imperial Irrigation District Right Of Way (IIDROW), Nectarine Lateral A. The table below lists the locations BUOW or burrows were observed and appropriate avoidance, minimization and mitigation techniques.

Location WGS 84 EPE 11-	Biological Resource	Minimization/Mitigation
13 ft		
1. 33°6'14.8"/115°30'45.5"	Occupied burrow	Offsite: Shelter in place
	2 adult BUOWs/1 juvenile	with haybales if
	_	construction within 250
		ft (February-August) or
		160 feet (Sept-January)
2. 33°6'14.6"/115°30'47.4"	Active burrow	Observe and shelter if
		necessary

Table 4: BUOW Burrow Locations

Burrowing owls, a CDFW species of concern, occupied and active burrows were found; they could be within 160-250 foot buffer zone of construction activities.

This survey was conducted during the prime nesting season for BUOW; BUOW were observed. Habitat on site was determined not suitable for BUOW foraging or burrowing.

V. AVOIDANCE, MINIMIZATION AND MITIGATION ACTIVITIES DURING CONSTRUCTION

Activities, under the supervision of a biologist, include the following:

- BUOW shelter in place (using hay bales) and remove shelters when project is complete under supervision of qualified biologist
- Worker BUOW training sessions
- Monitoring when construction is within 250 feet (February-August); 160 feet (September-January) if determined necessary by qualified biologist
- If construction started during Migratory Bird Nesting season (February-August) a nesting bird survey should be completed 3 days prior to start of construction

APPENDIX A SENSITIVE BOTANICAL AND ZOOLOGICAL SPECIES (CNDDB/CNPS) Iris Quadrangle (Nine Quad Search) 7/13/2018						
BOTANICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL		
Peirson's milk-vetch Astragalus magdalenae var. peirsonii	T/E/1B	Silvery, short-lived perennial plant that is somewhat broom like in appearance. A member of the pea and bean family, it can grow to 2.5 feet tall and is notable among milkvetches for its greatly reduced leaves. Peirson's milkvetch produces attractive, small purple flowers, generally in March or April, with 10 to 17 flowers per stalk. It yields inflated fruit similar to yellow-green pea pods with triangular beaks.	Desert dune habitats. In California, known from sand dunes in the Algodones Dunes system of Imperial County. Was known historically from Borrego Valley in San Diego County and at a site southwest of the Salton Sea in Imperial County	L None observed. No dune habitat		

BOTANICAL SPECIES	STATUS'	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Algodones Dunes Sunflower <i>Helianthus</i> <i>niveus ssp. tephrodes</i> (<i>A.</i> Gray) Heiser	CNDDB Ranks: G4T2, S1.2; CNPS: 1B.2; Cal: Endangered	The Algodones Dunes sunflower produces clusters of large, bright yellow daisy-like flower heads	Sandy desert areas, creosote bush scrub, Algodones Dunes, Imperial Co.	L No habitat
Slender Cottonheads Nemacaulis denudata var. gracilis	CNDDB Ranks: G4T1, S1; CNPS: 2.2	Plants ascending to erect, $0.4-2.5(-4) \times 0.4-2$ dm. Leaf-blades usually linear or narrowly spatulate, 1-7 $\times 0.1-0.6$ cm. Inflorescences with slender, light brown branches; glomerules distinctly pedunculate, 2-4 mm across. Peduncles 0.5-3 mm. Involucral bracts 2-4 \times 0.5-1 mm, light brown to yellowish-green in the tawny tomentum. Flowers 5(-12), usually obscured by the tomentum, 0.5-1.2 mm; outer perianth lobes linear to oblong.	Coastal Strand, Creosote Bush Scrub. Dunes.	L No Habitat

BOTANICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Giant Spanish Needle Palafoxia arida var. gigantea	CNDDB Ranks: G5T3, S2; CNPS: 1B.3	An attractive pink- flowered member of the sunflower, or aster family. It is an annual or short-lived perennial species with dark green, linear shaped leaves. Heads of pink disk flowers appear in both the spring and fall, with sufficient rainfall.	Found throughout much of the Sonoran and Mojave deserts.	L No habitat
Mecca-aster <i>Xylorhiza cognata</i>	CNPS: 1B.2	Woody stemmed thorny leaves with purple flowers.	Arid canyons to 750', northern Sonora Desert, Mecca Hills, Riverside Co.	L No habitat
Glandular ditaxis <i>Ditaxis claryana</i>	CNPS: 2.2	Staminate flower: sepals 5, edges abutting in bud; petals 5; stamens 5–15, generally in 2 sets, some > others, filaments fused into a column, staminodes 0– 3 at column tip	Sandy soils, Creosote Bush Scrub	L No habitat

BOTANICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Munz's Cholla Opuntia munzii	CNDDB Ranks: G3, S1.2; CNPS: 1B.3	Shrub to tree-like, 6.4 - 12.8 feet (2-4 meters) tall, almost as wide. Main trunk 4-6 inches (10-15cm) thick. Stem succulent. Lower branches rather bare. Tubercles (small, wart- like projections) strongly raised, 3/8 - 5/8 inches (10-16mm) long, 2/8 inch (5-6mm) wide. Areoles (area bearing spines) with short, tan bristles, and 10-12 yellowish, somewhat equal spines, 3/8 - 5/8 inches (1-2cm) long. Flowers few. Petals yellowish-green, 5/8 - 6/8 inches (1.5-2cm) long. Fruit is dry. Seeds are somewhat rounded, 1/8 inch (3mm).	Dry, gravelly or sandy places. Creosote bush scrub. Elevation 480 - 1,920 feet (150-600 meters).	L No habitat

BOTANICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Harwood's milk-vetch Astragalus insularis var. harwoodii	CNDDB Ranks: G5T3, S2.2?; CNPS: 2.2	Long leaves with purplish flowers	Creosote Bush Scrub. Dunes	L No habitat
Slender-spined All- thorn <i>Koeberlinia</i> <i>spinosa ssp.</i> <i>tenuispina</i>	CNPS: 2.2	Flower: sepals 1–2 mm, ovate, entire, greenish white; petals 3–4 mm, 0.5–1 mm wide, short- clawed with an obovate or oblanceolate limb, white; stamens 2.8–4 mm, anthers 0.8–1 mm; ovary 1–1.2 mm, stalk 0.3–0.5 mm, style 1–1.5 mm	Creosote Bush Scrub. Occurs in wetlands in another region, but occurs almost always under natural conditions in non wetlands in California	L No habitat
Sand Evening- primrose Camissonia arenaria	CNPS: 2.2	The flowers generally open at dawn, and may be yellow, white, or lavender, often with darker shades at the base. They are usually cup-shaped, thus the common name.	Creosote Bush Scrub	L No habitat

BOTANICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Wiggins' croton Croton wigginsii	CNDDB Ranks:G2G3, S1.2; CNPS: 2.2 Cal:Rare	This spreading shrub approaches a meter in height. Its sparse foliage is made up of long oval-shaped leaves covered in a coating of white hairs.	This small gray-green shrub is native to the deserts of northern Mexico and into California and Arizona where it is an inhabitant of sand dunes.	L No habitat
Abrams's Spurge Chamaesyce abramisiana	CNPS list: 2	Annual herbaceous blooms Sept/Nov. Common spurge in area has large purple spot and is prostrate; Abram's is not as colorful.	Sonoran Desert Shrub	L No habitat; no spurges found.
Sand Food Pholisma sonorae	State: S1.2 (threatened); CNPS list:1B.2	Parasite on species such as <i>Erigonus,</i> <i>/tiquilia, ambrosia,</i> <i>pluchea.</i> White to brown color. Corolla pink to purple.	Sonoran Desert Dunes; loose deep sand	L No deep loose sand available, no habitat; none observed

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Birds				
Yuma clapper rail	Fed:Endangered	A chickenlike marsh bird with a long, slightly	Lives in freshwater and brackish marshes. Prefers dense cattails, bulrushes, and other aquatic	L None observed or heard;
Rallus longirostris yumanensis	Ca: Threatened	drooping bill and an often upturned tail. Light brownish with dark streaks above. Rust- colored breast; bold, vertical gray and white bars on the flanks; white undertail coverts	bulrushes, and other aquatic vegetation. Nests in riverine wetlands near upland, in shallow sites dominated by mature vegetation, often in the base of a shrub. Prefers denser cover in winter than in summer. Very shy.	Cattails not found in dense stands; no suitable habitat on site or in adjacent drains.
Gull-billed Tern <i>Gelochelidon nilotica</i>	Species of concern	This is a fairly large and powerful tern. The short thick gull-like bill, broad wings, long legs and robust body are distinctive. The summer adult has grey upperparts, white under parts, a black cap, strong black bill and black legs.	This species breeds in colonies on lakes, marshes and coasts. It nests in a ground scrape and lays two to five eggs.	L No suitable habitat

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Caspian Tern Hydroprogne caspia, formerly Sterna caspia	CNDDB Rank: G5, S4	It is the world's largest tern with a length of 48– 56 cm, a wingspan of 127–140 cm and a weight of 574–782g. Adult birds have black legs, and a long thick red-orange bill with a small black tip. They have a white head with a black cap and white neck, belly and tail. The upper wings and back are pale grey; the underwings are pale with dark primary feathers.	Their breeding habitat is large lakes and ocean coasts in North America (including the Great Lakes), and locally in Europe (mainly around the Baltic Sea and Black Sea), Asia, Africa, and Australasia (Australia and New Zealand). North American birds migrate to southern coasts, the West Indies and northernmost South America. European and Asian birds spend the non-breeding season in the Old World tropics. African and Australasian birds are resident or disperse over short distances.	L No suitable habitat

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Merlin Falco columbarius	CNDDB Rank: G5, S3	The Merlin is 24–33 cm (9.5–13 in) long with a 50–67 cm (20–26 in) wingspan. adult males may weigh 150-210 grams (5.3-7.4 oz), and females 190-255 grams (6.7-9 oz). The male Merlin has a blue-grey back, ranging from almost black to silver-grey in different subspecies. Its under parts are buff- to orange-tinted and more or less heavily streaked with black to reddish brown. The female and immature are brownish-grey to dark brown above, and whitish buff spotted with brown below.	Merlins inhabit fairly open country, such as willow or birch scrub, shrubland, but also taiga forest, parks, grassland such as steppe and prairies, or moorland. They are not very habitat-specific and can be found from sea level to the treeline. In general, they prefer a mix of low and medium-height vegetation with some trees, and avoid dense forests as well as treeless arid regions. During migration however, they will utilize almost any habitat.	L No habitat; no trees

ZOOLOGICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	НАВІТАТ	OBSERVATION/ SITE POTENTIAL
Yellow-breasted Chat Icteria virens	CNDDB Rank: G5, S3; CNPS: SC	Yellow-breasted Chats are noticeably larger than all other warblers, reaching a length of 7.5 in (19 cm) and a wingspan of 9.75 in (24.8 cm). These birds have olive upperparts with white bellies and yellow throats and breasts; they also have long tails, thick heavy bills, large white eye-rings, and dark legs.	The breeding habitats of this species are dense, brushy areas and hedgerows. The nests of these birds are cup-shaped, and are placed in thick shrubs. These birds eat insects and berries, and will forage in dense vegetation, occasionally gripping food with their feet.	L No dense vegetation available
Ferruginous Hawk <i>Buteo regalis</i>	CNDDB Rank: G4, S3S4	Adults have long broad wings and a broad gray, rusty or white tail. The legs are feathered to the talons	The countryside is open, level, or rolling prairies; foothills or middle elevation plateaus largely devoid of trees; and cultivated shelterbelts or riparian corridors.	L May occasionally hunt in area
Gray-Headed Junco Junco hyemalis caniceps	CNDDB Rank: G5T5; S1	Adults generally have gray heads, necks, and breasts, gray or brown backs and wings, and a white belly, but show a confusing amount of variation in plumage details. The white outer tail feathers flash distinctively in flight and while hopping on the ground. The bill is usually pale pinkish.	It breeds in the southern Rocky Mountains from Colorado to central Arizona and New Mexico, and winters into northern Mexico.	L May pass through on migration

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Black-tailed Gnatcatcher <i>Polioptila melanura</i>	CNDDB Rank: G5; S2	Reaches about 4.5 to 5 inches in length, much of it taken up by a long black tail lined with white outer feathers. The body is blue-gray, with white underparts.	Ranges throughout the Sonoran and Chihuahuan Deserts of the southwestern United States and northern Mexico. It is nonmigratory and found in arid desert areas year-round.	L No desert habitat
Burrowing Owl Athene cunicularia	CDFG: SC Species of Concern	Small raptors that nest in burrows that have been borrowed from other species in open grassland areas. Have adapted well in Imperial County using canals/drains/ditches to establish burrows and foraging for insects in agricultural fields	Open, dry annual or perennial grasslands; deserts & scrublands	H Owls/burrow found off site. Survey results included in this report

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Yellow Warbler Dendroica petechia brewsteri	CNDDB Rank: G5T3, S2; CDFG: SC	A Family of seed- eating, small to moderately large passerine birds that have strong, stubby beaks, which in some species can be quite large. They have a bouncing flight, alternating flapping with gliding on closed wings. Most sing well.	Yellow warblers in southern California breed in lowland and foothill riparian woodlands dominated by cottonwoods, alders, or willows and other small trees and shrubs typical of low, open-canopy riparian woodland (Garrett and Dunn 1981). During migration, they occur in lowland and foothill woodland habitats such as desert oases, riparian woodlands, oak woodlands, mixed deciduous-coniferous woodlands, suburban and urban gardens and parks, groves of exotic trees, farmyard windbreaks, and orchards (Small 1994).	L Sparse thickets
Crissal Thrasher <i>Toxostoma crissale</i>	CDFG Species of Concern	A large thrasher found in the Southwestern United. The bird grows to 32 cm (12.5 inches), and has a deeply curved bill. It can be found near water in dense underbrush, and in the low desert near canyon chaparral; seldom flies in the open.	Dense vegetation along streams/washes in mesquite/willows/arrowweed	L None observed; scarce habitat

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Black Skimmer <i>Rynchops niger</i>	Fed: - CDFG: SC	A medium-sized to large waterbird with long red and black bill. Black back and cap.Underparts white with very short red legs.	Fairly common summer resident at the Salton Sea. Forages on small fishes and crustaceans in calm, shallow water. Roosts on sandy beaches or gravel bars	L No suitable habitat
Short-eared owl	CDFG: SC	Medium sized with light and dark brown mottled upperparts with dark- streaked, pale buff underparts. The head has large, round, pale buff facial disk with fine, brown tinges, black around eyes, and small ear tufts. Eyes are yellow and bill is black. Flight is erratic with flopping wing beats. Hunts day or night.	Found in fresh and saltwater swamplands, lowland meadows and irrigated alfalfa fields. Requires tall grass or cattail patches for nesting and cover. Nests on dry ground in depression concealed in vegetation.	L Irrigated alfalfa could provide hunting area. No nesting areas

ZOOLOGICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
California Black Rail Laterallus jamaicensis coturniculus	CDFG: Threatened	The smallest of all rails, the black rail is slate- colored, with a black bill, red eyes and a white-speckled back. The legs are moderately long and the toes are unwebbed. The sexes are similar.	Most commonly occurs in tidal emergent wetlands dominated by pickleweed or in brackish marshes with bulrushes in association with pickleweed. In freshwater, usually found in bulrushes, cattails, and saltgrass and in immediate vicinity of tidal sloughs. Typically occurs in the high wetland zones near upper limit of tidal flooding, not in low wetland areas with considerable annual or daily fluctuations in water levels. Nests are concealed in dense vegetation, often pickleweed, near upper limits of tidal flooding	L None observed; no habitat on site
Sonoran desert toad	CDFG: SC	Smooth, typically olive- green/brown skin, cranial crests, and prominent, elongated glands on both sides of the back of the head and on the hind legs. Young toads have small dark, orange-tipped spots on the back. Larger tadpoles are gray or brown with a rounded tail tip, and grow to about 2.25".	Sonoran Desert scrub, semi- desert grasslands. May be found many miles from water, particularly during the summer monsoons. Most Sonoran Desert toads are found at night during the monsoon season, but they may emerge a month or more before the summer rains begin, particularly in areas of permanent water. Can be found in rodent burrows or underground retreats.	L None observed. No habitat present on site.

ZOOLOGICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Leopard frog Lithobates yavapaiensis	Species of concern	Tan,gray-brown or light gray-green to green above; yellow below. Vague upper lip stripe, tuberculate skin. Dark network on rear of thighs; yellow groin color often extends onto rear of belly and underside of legs. Male will exhibit a swollen and darkened thumb base.	Find in desert grassland and in woodlands. Uses permanent water sources, stays near water. Breed Feb-April. Bullfrogs are predators	L No water sources on site; not expected on site.
Carlson's dune Beetle Anomala carlsoni	CNDDB Ranks: G2, S2;	Length 7.6 mm, width of prothorax 2.7 mm. Head dorsally pale red- brown, eyes black.	Sandy dune area	L No habitat
Hardy's dune Beetle Anomala hardyorum	CNDDB Ranks: G2, S2;	Members of this species have a light tan coloration with males ranging from 0.28 to 0.39 in (7 to 10 mm) in length, and females from 0.28 to 0.35 in (7 to 9 mm)	The species has most often been found on north- or east- facing dune slip faces. All known collections are from the Algodones Dunes in Imperial County, California	L No habitat

ZOOLOGICAL SPECIES	STATUS'	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
A mellitid bee <i>Melitta californica</i>	CNDDB Rank: SNR	They are typically moderate-sized bees (8–15 mm), which are commonly oligolectic	Restricted to Africa and the northern temperate zone.	L Honey bee only bee observed
Flat-tailed horned lizard <i>Phrynosoma mcallii</i>	CNDDB Rank: G3; S2 CDFG; SC	A small (up to 87 mm or 3.4" from snout to vent), exceptionally flat and wide lizard with a long (for a horned lizard) broad, flat tail and a dark stripe running down the middle of the back.	Occupy a small range in the Sonoran Desert of southwestern California, southwestern Arizona, and extreme northern Mexico.	L No habitat
American Badger <i>Taxidea taxus</i>	CDFG: Species of Concern	Burrowing animals that feed on ground squirrels, rabbits, gophers and other small animals. Prefer grasslands, agricultural areas.	Found in drier open areas with friable soils	L None seen; no burrows observed with badger characteristics observed. Not expected because of farming activities
Nelson's Bighorn sheep Ovis canadensis nelsoni	CNDDB Ranks: G4T4, S3	Sheep have short hair which is light gray to grayish brown, except around their stomachs and rump, where it is creamy white. Their tails are about four inches long.	Occupy a variety of plant communities, ranging from mixed-grass hillsides, shrubs. Avoids dense vegetation	L None observed; no habitat

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Desert Pupfish Cyprinodon macularius	CNDDB Rank: G1; S1 Federal: Endangered; Cal: Endangered	The body of the desert pupfish is thickened and markedly compressed laterally in adult males. The mouth is superior, highly protractile, armed with tricuspid teeth. The scales bear spine-like projections. The dorsal profile of the fish is	The pupfish occupies shallow waters of springs, small streams, and marshes.	L No drains located near Salton Sea near site
Razorback Sucker	Fed/CA: Endangered	smoothly rounded. One of the largest suckers in North	Colorado River	L
Xyrauchen texanus		America can grow to up to 13 pounds and lengths exceeding 3 feet. The razorback is brownish-green with a yellow to white-colored belly and has an abrupt, bony hump on its back shaped like an upside- down boat keel		No habitat

ZOOLOGICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Pocketed free-tailed bat <i>Nyctinomops</i> <i>femorosaccus</i>	CNDDB Rank: G4, S2S3; CDFG: SC	A small fold, or "pocket" in the wing membrane of the free-tailed bat, near its knee, gives this bat its common name. Pocketed free-tailed bats have large ears and long wings, and fly rapidly, generally pursuing insects on the wing. They eat many kinds of insects, but seem to prefer small moths.	It occurs in the arid lowlands of the desert Southwest, and primarily roosts in crevices in rugged cliffs, slopes, and tall rocky outcrops.	L No habitat
Western Mastiff Bat Eumops perotis californicus	CNDDB Rank: G5T4, S3; CDFG: SC	Eumops perotis can be distinguished from all other North American molossid (free-tail) species based on size. With a forearm of 73-83 mm, it is North America's largest species.	In California, the E. perotis is most frequently encountered in broad open areas. Generally, this bat is found in a variety of habitats, from dry desert washes, flood plains, chaparral, oak woodland, open ponderosa pine forest, grassland, montane meadows, and agricultural areas.	L No habitat
Western Yellow bat Lasiurus xanthinus	CDFG SC:	Consumes small to medium-sized, night flying insects. Yellow color/short ears.	Roosts in leafy vegetation the deserts of the southwestern United States. Roosts among the dead fronds of palm trees and cottonwoods	L Not expected; no palms or cottonwood trees found on site.

ZOOLOGICAL SPECIES	STATUS	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Pallid Bat Antrozous pallidus	Species of concern	Pallid bats have larger eyes than most other species of bats in North America and have pale, long, and wide ears; their fur is generally lightly colored. They have on average a total length of 92 to 135 mm (3.6 to 5.3 in).	They primarily sleep in rock crevices and buildings. Pallid bats are skilled at climbing and crawling.	L No habitat
California Leaf-nosed Bat <i>Macrotus californicus</i>	Species of concern	The California leaf- nosed bat weighs between 12 and 20 grams, has a wingspan of over 30 centimeters and a body length of over 6 centimeters, and is brown in color. As its name implies, it has a triangular fleshy growth of skin, called a noseleaf, protruding above the nose.	Its natural habitat is hot deserts.	L No habitat

ZOOLOGICAL SPECIES	STATUS ¹	DESCRIPTION OF SPECIES	HABITAT	OBSERVATION/ SITE POTENTIAL
Desert tortoise Gopherus agassizii	Fed/Cal: Threathened	A herbivore that may attain a length of 9 to 15 inches in upper shell (carapace) length. The tortoise is able to live where ground temperature may exceed 140 degrees F because of its ability to dig underground burrows and escape the heat. At least 95% of its life is spent in burrows. Their shells are high- domed, and greenish- tan to dark brown in color. Desert tortoises can grow from 4–6"in height and weigh 8–15 lb (4–7 kg) when fully grown. The front limbs have heavy, claw-like scales and are flattened for digging. Back legs are more stumpy and elephantine	Dry, flat, and gravelly or sandy ground in desert shrub communities where annual and perennial grasses are abundant. Frequent habitats with a mix of shrubs, forbs, and grasses	L Habitat not favorable

Special Status Species that Occur in Imperial County (USFWS)				
Common Name Scientific Name	Status ¹ Federal/CDFG / CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Plants				
Peirson's milk-vetch Astragalus magdalenae var. peirsonii	T/E/1B	Silvery, short-lived perennial plant that is somewhat broom like in appearance. A member of the pea and bean family, it can grow to 2.5 feet tall and is notable among milkvetches for its greatly reduced leaves. Peirson's milkvetch produces attractive, small purple flowers, generally in March or April, with 10 to 17 flowers per stalk. It yields inflated fruit similar to yellow-green pea pods with triangular beaks.	Desert dune habitats. In California, known from sand dunes in the Algodones Dunes system of Imperial County. Was known historically from Borrego Valley in San Diego County and at a site southwest of the Salton Sea in Imperial County	L No dune habitat

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Birds				
California brown pelican <i>Pelecanus</i> <i>occidentalis</i>	E/E/-	Large size and brown color. Adults weigh approximately 9 pounds, and have a wingspan of over 6 feet. They have long, dark bills with big pouches for catching and holding fish. Pelicans breed in nesting colonies on islands without mammal predators. Roosting and	Open water, estuaries, beaches; roosts on various structures, such as pilings, boat docks, breakwaters, and mudflats	L None observed. No open water
No longer endangered		loafing sites provide important resting habitat for breeding and non- breeding birds.		

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Southwestern willow flycatcher Empidonax traillii extimus	E/-/-	Small; usually a little less than 6 inches in length, including tail. Conspicuous light- colored wingbars. Lacks the conspicuous pale eye-ring of many similar <i>Empidonax</i> species. Overall, body brownish- olive to gray-green above. Throat whitish, breast pale olive, and belly yellowish. Bill relatively large; lower mandible completely pale. The breeding range of extimus includes Arizona and adjacent states.	At low elevations, breeds principally in dense willow, cottonwood, and tamarisk thickets and in woodlands, along streams and rivers. Migrants may occur more widely. Prefers riparian willow/cottonwood but will use salt cedar thickets	L No habitat

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Yuma clapper rail Rallus longirostris yumanensis	Е/Т/-	A chickenlike marsh bird with a long, slightly drooping bill and an often upturned tail. Light brownish with dark streaks above. Rust- colored breast; bold, vertical gray and white bars on the flanks; white undertail coverts. Very shy.	Lives in freshwater and brackish marshes. Prefers dense cattails, bulrushes, and other aquatic vegetation. Nests in riverine wetlands near upland, in shallow sites dominated by mature vegetation, often in the base of a shrub. Prefers denser cover in winter than in summer	L None observed or heard; no suitable habitat; not immediately adjacent to Salton Sea.
Yellow-billed cuckoo Coccyzus americanus	C/E/-	Medium-sized cuckoo with gray-brown upperparts and white underparts. Eye-rings are pale yellow. Bill is mostly yellow. Wings are gray-brown with rufous primaries. Tail is long and has white- spotted black edges. Sexes are similar.	Found in forest and open woodlands, especially in areas with dense undergrowth, such as parks, riparian woodlands, and thickets	L None observed; no habitat on site. Thickets are not.
Bald eagle Haliaeetus leucocephalus	T, PD/E/-	The distinctive white head and tail feathers Beak and eyes yellow. Bald Eagles are about 29 to 42 inches long, can weigh 7 to 15 pounds, and have a wing span of 6 to 8 feet.	Found on shores, lake margins, and near large rivers Winters at lakes, reservoirs, river systems, and some rangelands and coastal wetlands (breeding range is mainly in mountainous habitats near reservoirs, lakes and rivers)	L None observed; no habitat

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Least tern	E/E/-	Small tern. During breeding, black cap ending at white	g, black cap tt whitelagoons, and at the joining points between rivers and estuariesd. Short white e. Bill yellow ck tip. Back light derside white. ading edge to nonbreeding e has black e extending to nead, white top and black bill. -23 cm (8-9 in) an: 48-53 cm h) Weight: 30-lagoons, and at the joining points between rivers and estuaries	L
Sterna antillarum		forehead. Short white eyestripe. Bill yellow with black tip. Back light gray. Underside white. Black leading edge to wing. In nonbreeding plumage has black eyestripe extending to back of head, white top of head, and black bill. Size: 21-23 cm (8-9 in) Wingspan: 48-53 cm (19-21 in) Weight: 30- 45 g (1.06-1.59 ounces)		None observed; no habitat
Least Bell's Vireo Vireo bellii pusillus	E/E/-	Drab gray to green above and white to yellow below. It has a faint white eyering and two pale wingbars; has pale whitish cheeks and forehead and greenish wings and tail. longer tail and subtle wingbars.	Formerly a common and widespread summer resident below about 2,000 feet in western Sierra Nevada. Also was common in coastal southern California, from Santa Barbara County south, below about 4,000 feet east of the Sierra Nevada. Prefers thickets of willow, and other low shrubs afford nesting and roosting cover	L None observed; no habitat on site. Thickets are not present .

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Mountain plover Charadrius montanus	FPT/SC/-	Medium-sized plover with pale brown upperparts, white underparts, and brown sides. Head has brown cap, white face, and dark eyestripe. Upperwings are brown with black edges and white bars; underwings are white. Tail is brown- black with white edges. Sexes are similar.	Avoids high and dense cover. Uses open grass plains, plowed fields with little vegetation, and open sagebrush areas. Likes to follow livestock grazing or burned off fields.	L Fields, if planted to Bermuda or alfalfa, in vicinity could support mt. plover
Black rail Laterallus jamaicensis coturniculus	-/T/-	The smallest of all rails, the black rail is slate- colored, with a black bill, red eyes and a white-speckled back. The legs are moderately long and the toes are unwebbed. The sexes are similar.	Most commonly occurs in tidal emergent wetlands dominated by pickleweed or in brackish marshes with bulrushes in association with pickleweed. In freshwater, usually found in bulrushes, cattails, and saltgrass and in immediate vicinity of tidal sloughs. Typically occurs in the high wetland zones near upper limit of tidal flooding, not in low wetland areas with considerable annual or daily fluctuations in water levels. Nests are concealed in dense vegetation, often pickleweed, near upper limits of tidal flooding	L None observed; no habitat

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Raptors				
Peregrine Falcon Falco peregrinus	D/E/-	Large, powerful falcon; pointed winged falcon silhouette. Strong shallow wingbeats may dive at speeds up to 100 mph. Dark with dark hooded effect. Blue gray below with narrow bars Long- winged, long tailed hawk. Habitually flies low over open fields and marshes watching and listening for prey such as rodents and birds. (I observed Harrier with a white faced ibis as prey). Perches low or on ground. Low slow flight. Nests in reeds. Grey with black wingtips.	Most often found along coastlines or marshy habitats. Nest in cliffs and have been known to nest in tall buildings	L None observed; rare visitors to area outside of the Salton Sea. No waterfowl for prey or cliffs/tall buildings for nesting

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Northern Harrier	-/SC/-	Blue gray above pale reddish below; small size. Tip of tail squared off. Nesting occurs in dense tree stands which are cool, moist, well shaded and usually near water. Hunt in openings at the edges of woodlands and also brushy pastures.	Marshes, open fields. Nests in reeds	L No rodent, rabbit populations present for prey.
Sharp-shinned Hawk	-/SC/-	Gray and white with black on shoulders and under bend of wing. Graceful flyer. Adults have bright red eyes. Medium size hawk; about 15 inches long and about 12 ounces. Males pale with rufous shoulders and thigh feathers. White tail washed with rufous. Wide head wings in shallow v when soaring.	Sharp-shinned hawks may appear in woodland habitats during winter and migration periods and are often common in southern California in the coastal lowlands and desert areas; winters in woodlands and other habitats except alpine, open prairie and bare desert	L No rodent, rabbit populations present for prey.

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
White tailed Kite	/E/		Found in open country; like to perch on treetop. May be seen hovering prior to attack of a rodent.	L No rodent, rabbit populations present for prey.
Elanus leucurus				
Ferruginous hawk Buteo regalis	/SC/		Found in arid to semiarid regions, as well as grasslands and agricultural areas in southwestern Canada, western United States, and northern Mexico.	L No rodent, rabbit populations present for prey.
Mammals				
Bighorn sheep Ovis canadensis	E/E/-	Sheep have short hair which is light gray to grayish brown, except around their stomachs and rump, where it is creamy white. Their tails are about four inches long. Full-grown rams weigh between 180 and 240 pounds,	Desert Bighorn sheep occupy a variety of plant communities, ranging from mixed-grass hillsides, shrubs. Avoids dense vegetation	L None observed; no habitat

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Jaguar Panthera onca	-1-1-	Typically yellow-brown with black spots, called rosettes, but they can also be black with black spots. They are nocturnal and have a keen sense of smell and hearing. Excellent swimmers, tree climbers, and move easily on the ground.	Occurs in tropical rainforests, arid scrub, and wet grasslands. Prefers dense forests or swamps with a ready supply of water	L None observed; no habitat

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Reptiles and Amphib	ians			S I V Star A March
Desert tortoise	Т/Т/-	A herbivore that may attain a length of 9 to 15 inches in upper shell	Dry, flat, and gravelly or sandy ground in desert shrub communities where annual and	L
Gopherus agassizii		(carapace) length. The tortoise is able to live where ground temperature may exceed 140 degrees F because of its ability to dig underground burrows and escape the heat. At least 95% of its life is spent in burrows. Their shells are high- domed, and greenish- tan to dark brown in color. Desert tortoises can grow from 4–6"in height and weigh 8–15 lb (4–7 kg) when fully grown. The front limbs have heavy, claw-like scales and are flattened for digging. Back legs are more stumpy and elephantine	perennial grasses are abundant. Frequent habitats with a mix of shrubs, forbs, and grasses	None observed; habitat not favorable

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Flat-tailed horn lizard	PT/-/-	Closely related to Desert horned lizard (scat indistinquishable); only found in Imperial, Riverside County,Ca and Yuma area, Az. Small round lizard with distinquishing round spots on back. Diet of ants; needs sandy soil, shade bushes to survive.	Desert washes/sandy areas with vegetative cover. Diet of ants	L No habitat; none observed
Fish				
Desert pupfish Cyprinodon macularius	E/E/-	Small, silvery-colored fish with 6 to 9 dark bands on its sides. Grows to a full average length of only 2.5 inches; develop quickly, sometimes reaching full maturity within 2 to 3 months. Although their average life span is 6 to 9 months, some survive more than one year. Pupfish have a short, scaled head with an upturned mouth.	Springs, seeps, and slow- moving streams in Salton Sink basin and backwaters and sloughs of the Colorado River	L None observed; no habitat; drains not adjacent to Salton Sea

Common Name Scientific Name	Status ¹ Federal/CDFG /CNPS	DESCRIPTION OF SPECIES	Habitat	Suitability Of Habitat In Survey Area
Razorback Sucker <i>Xyrauchen texanus</i>	Fed/CA: Endangered	One of the largest suckers in North America can grow to up to 13 pounds and lengths exceeding 3 feet. The razorback is brownish-green with a yellow to white-colored belly and has an abrupt, bony hump on its back shaped like an upside- down boat keel	Colorado River	L None observed; no habitat

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	National Rating
Bald Eagle	Haliaeetus Ieucocephalus	Nests on tall trees or on cliffs in forested areas near large bodies of water. Winters in coastal areas, along large rivers, and large unfrozen lakes.	Low Not expected. No tall trees; not observed in area	Х	х
Swainson's Hawk	Buteo swainsoni	Breeds in open country such as grassland, shrubland, and agricultural areas. Usually migrates in large flocks often with Broad-winged Hawks. Winters in open grasslands and agricultural areas of Southern America.	M May migrate through. Not observed in area		X
Peregrine Falcon	Falco peregrinus	Inhabits open wetlands near cliffs for nesting. Also uses large cities and nests on buildings.	M No open wetlands or nesting area; could hunt in vicinity	Х	х

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Black Rail	Laterallus jamaicensis	Nests in high portions of salt marshes, shallow freshwater marshes, wet meadows, and	Low	Х	x
		flooded grassy vegetation.	No salt or freshwater marshes; no vegetation		
Snowy Plover	Chardrius alexandrinus	Barren to sparsely vegetated sand beaches, dry salt flats in lagoons, dredge spoils	Low	X	×
	deposited on beach or dune habitat, levees and flats at salt-evaporation ponds, river bars, along alkaline or sailne	No habitat; not observed			
		lakes, reservoirs, and ponds.			
Mountain Plover	Iountain Plover Charadrius montanus	Breeds on open plains at moderate elevations. Winters in short-grass plains and fields, plowed fields, and sandy deserts.	Low	X	X
			Could be found in vicinity on site if adjacent fields are planted to alfalfa or bermuda		
Black Oystercatcher Haematopus bachmani		Rocky seacoasts and islands, less commonly sandy beaches.	Low	x	x
			No habitat; not observed		

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Solitary Sandpiper	Tringa solitaria	Breeds in taiga, nesting in trees in deserted songbird nests. In migration and winter found along freshwater ponds, stream edges, temporary ponds, flooded ditches and fields, more commonly in wooded regions, less frequently on mudflats and open marshes.	Low No habitat; not observed		X
Lesser Yellowlegs	Tringa flavipes	Breeds in open boreal forest with scattered shallow wetlands. Winters in wide variety of shallow fresh and saltwater habitats.	Low No habitat; not observed		X
Upland Sandpiper	Bartramia Iongicauda	Native prairie and other dry grasslands, including airports and some croplands.	Low No habitat; not observed		X
Whimbrel	Numenius phaeopus	Breeds in various tundra habitat, from wet lowlands to dry heath. In migration, frequents various coastal and inland habitats, including fields and beaches. Winters in tidal flats and shorelines, occasionally visiting inland habitats.	L Could use adjacent fields for foraging if planted to alfalfa or bermuda	x	x

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Long-billed Curlew	Numenius americanus	Nests in wet and dry uplands. In migration and winter found on wetlands, grain fields, lake and river shores, marshes, and beaches.	Low Could use adjacent fields for foraging if planted to alfalfa or bermuda	X	x
Short-billed Dowitcher	Limnodromus griseus	Breeds in muskegs of taiga to timberline, and barely into subarctic tundra. Winters on coastal mud flats and brackish lagoons. In migration prefers saltwater tidal flats, beaches, and salt marshes. Also found in freshwater mud flats and flooded agricultural fields.	Low Could use adjacent fields for foraging if planted to alfalfa or bermuda	Х	X
Aleutian Tern	Sterna aleutica	Nest on flat vegetated islands on or near the coast. Vegetation includes dwarf- shrub tundra, grass and sedgemeadows, and coastal marsh. Migration and winter habitat not known, probably pelagic.	Low No habitat; not observed		X
Least Tern	Sterna antillarum	Seacoasts, beaches, bays, estuaries, lagoons, lakes and rivers, breeding on sandy or gravelly beaches and banks of rivers or lakes, rarely on flat rooftops of buildings.	Low No habitat; not observed		X

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Gull-billed Turn	Sterna nilotica	Breeds on gravelly or sandy beaches. Inters in salt marshes, estuaries, lagoons and plowed fields, along rivers, around lakes and in freshwater marshes.	Low No habitat; not observed		X
Black Skimmer	Rynchops niger	Breeds in large colonies on sandbars and beaches. Forages in shallow bays, inlets, and estuaries.	Low No habitat; not observed	X	X
Yellow-billed Cuckoo	Coccyzus americanus	Open woodlands with clearings, orchards, dense scrubby vegetation, mainly cottonwood, willow, and adler, often along water.	Low No habitat; not observed	X	X
Black Swift	Cypseloides niger	Nests on steep ledges on cliffs or canyons. Migrates and winters over coastal lowlands.	Low No habitat; no swifts observed in area	X	X
Costa's Hummingbird	Calypte costae	Primarily low deserts and arid brushy foothills, but also chaparral and coastal sage scrub closer to the coast. Often visits ornamental plantings and feeders in desert communities. In migration and winter frequents a wider variety of habitats, occasionally ranging into pine-oak woodlands.	Low No habitat; not observed – no feeders or nectar sources in area	X	X

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Calliope Hummingbird	Stellula calliope	Open montane forest, mountain meadows, and thickets of willow and alder. In migration and winter also in chaparral, oak and pine- oak woodlands, deserts, and gardens.	Low No habitat; not observed	х	x
Rufous Hummingbird	Selasphorus rufus	Breeds in a variety of forested habitats where flowers are found. Frequents montane meadows and just about anywhere else with flowers or feeders during migration. Winters primarily in pine and pine-oak forests in Mexico, but most birds wintering farther north are attracted either to flowers or feeders in gardens.	Low No habitat; not observed – no feeders or nectar in area.		X
Allen's Hummingbird	Selasphorus sasin	Breeds in coastal sage scrub, chaparral, and riparian corridors within coastal forests. In Mexico winters in forest edge and scrub clearings with flowers. The resident population on the mainland of southern California is largely restricted to suburban neighborhoods where feeders and flowers are plentiful.	Low No habitat; not observed. No feeders or nectar in area	X	X

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Lewis's Woodpecker	Melanerpes lewis	Breeds in open arid conifer, oak, and riparian woodlands: rare in coastal areas. Winters in breeding habitat, and oak savannas, orchards, and even in towns.	Low No habitat; not observed	X	X
Olive-sided Flycatcher	Contopus cooperi	Montane and northern coniferous forests, at forest edges and openings such as meadows, and at ponds and bags. Winters at forest edges and clearings where tall trees or snags are present.	Low No habitat; not observed	X	X
Willow Flycatcher	Empidonax trailií	Breeds in moist, shrubby areas, often with standing or running water. Winters in shrubby clearings and early successional growth.	Low No habitat; not observed	X	X
Loggerhead Shrike	Lanius Iudovicianus	Open or brushy areas.	Low No habitat; not observed. No thickets or thorny trees available. Could pass through fields	X	X
Bell's Vireo	Vireo bellii	Dense, low, shrubby vegetation generally early successional stages in riparian areas, brushy fields, young second-growth forest or woodland, scrub oak, coastal chaparral, and mesquite brushlands, often near water in arid regions.	Low No habitat; not observed. No thickets available. Could pass through fields	x	X

Common Name	Species Name	Habitat	Potential Onsite	Region 8 Imperial County	Common Name
Black-chinned Sparrow	Spizella atrogularis	Arid brushland, commonly in tall and fairly dense sagebrush, and dry chaparral. Often in rocky, rugged country from sea level to around 8,900 ft (2700m).	Low No habitat; not observed	X	X
Tricolored Blackbird	Agelaius tricolor	Breeds in marsh vegetation, particulalry cattails, near grain fields, riparian scrublnd, and forests, but always near water. Dairies and feedlots also commonly used for foraging. Urban and suburban areas occasinoally utilized, particularly park lawns. Cultivated lands also suitable for foraging. Large night-time roosts form during nonbreeding season in cattail marshes near foraging grounds.	Low No habitat; not observed	x	x
Lawrence's Goldfinch	Carduelis lawrencei	Prefers dry interior foothills, mountain valleys, open woodlands, chaparral, and weedy fields. Often found near isolated water sources such as springs and cattle troughs.	Low No habitat; not observed	X	x

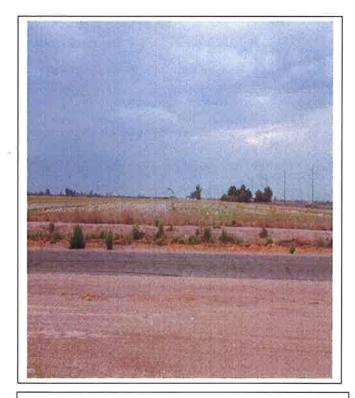
CNPS Species or Community Level

G1 = Less than 6 viable element occurrences (EOs) OR less than 1,000 individuals OR less than 2,000 acres.

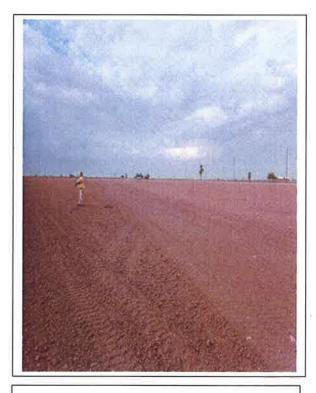
G2 = 6-20 EOs OR 1,000-3,000 individuals OR 2,000-10,000 acres.

G3 = 21-80 EOs OR 3,000-10,000 individuals OR 10,000-50,000 acres.

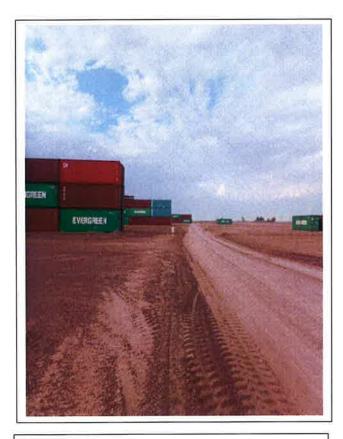
G4 = Apparently secure; this rank is clearly lower than G3 but factors exist to cause some concern; i.e., there is some threat, or somewhat narrow habitat. G5 = Population or stand demonstrably secure to ineradicable due to being commonly found in the world.

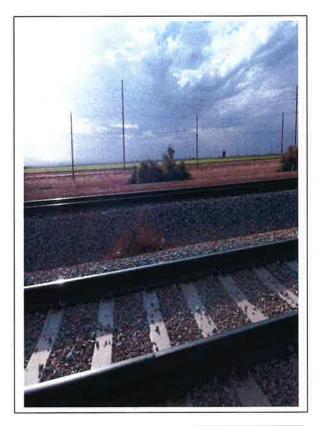

State Ran	king
The state rank (S-rank) is assigned much the same way as the global rank, except state ranks in California often also contain a threat designation attached to the S-rank.	The R-E-D Code contains information on Rarity, Endangerment, and Distribution, ranked as a 1, 2, or 3 for each value (as below). This code was originally known as the R-E-V-D Code (through the 3rd edition 1980), and the V (Vigor) was removed in the 4th edition (1984).
S1 = Less than 6 EOs OR less than 1,000 individuals OR less than 2,000 acres	R - Rarity
S1.1 = very threatened	1 – Rare, but found in sufficient numbers and distributed widely enough that the potential for extinction is low at this time
S1.2 = threatened	2 – Distributed in a limited number of occurrences, occasionally more if each occurrence is small
S1.3 = no current threats known	3 – Distributed in one to several highly restricted occurrences, or present in such small numbers that it is seldom reported
S2 = 6-20 EOs OR 1,000-3,000 individuals OR 2,000-10,000 acres	E - Endangerment
S2.1 = very threatened	1 – Not very endangered in California
S2.2 = threatened	2 – Fairly endangered in California
S2.3 = no current threats known	3 – Seriously endangered in California
S3 = 21-80 EOs or 3,000-10,000 individuals OR 10,000-50,000 acres	D - Distribution
S3.1 = very threatened	1 – More or less widespread outside California
S3.2 = threatened	2 – Rare outside California
S3.3 = no current threats known	3 – Endemic to California
S4 = Apparently secure within California; this rank is clearly lower than S3 but factors exist to cause some concern; i.e. there is some threat, or somewhat narrow habitat. NO THREAT RANK. S5 = Demonstrably secure to ineradicable in California. NO THREAT RANK.	

Sources: CDFG/CNDDB 2018, California Wildlife 2016; CNPS 2018; USFWS, 2016				
State/CDFG:	¹ Status: Federal:			
E = Listed as an endangered species; or previously known as "rare, fully protected"	E = Listed as an endangered species			
T = Listed as a threatened species	T = Listed as a threatened species			
SC = species of special concern (designation intended for use as a management tool and for information; species of special concern have no legal status (www.dfg.ca.gov/wildlife/species/ssc/birds.html))	C = Candidate for listing			
CNPS (California Native Plant Society):	D = Delisted			
1B = Rare, threatened, or endangered in California or elsewhere	PD = Proposed for delisting/PT = Proposed for threatened status			
2= Plants rare, threatened, or endangered in Ca, but more common elsewhere				
3=Plants about which more information is needed				
Habitat Suitability Codes: H = Habitat is of high suitability for this species M = Habitat is of moderate suitability for this species L = Habitat is of low suitability for this species				


PHOTOGRAPHS

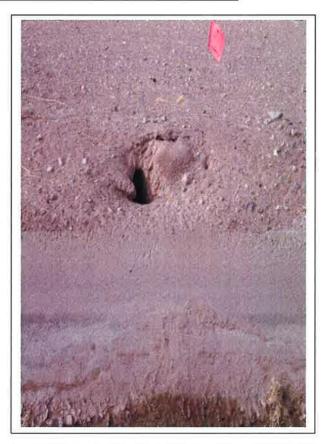
1. Southwest corner of site looking north; SR 111 and ag fields to left


2. Agriculture field south of site; Albright Road and Vail Supply Canal; cattle egrets white face ibis in field


3. Northern boundary of site looking south; bare ground – no vegetation on site

4. All American Grain facility to north of site

5. Container facility on site; southeast corner


6. Union Pacific railroad tracks at east boundary of site looking east; Blair Road and agricultural field in background

7. Nectarine Lateral A adjacent to south end of property looking west; site to right

8. Adult with juvenile in burrow along Nectarine Lateral A canal offsite to the south of site

9. Active burrow along Nectarine Lateral A canal offsite to the south of site

PROJECT STATEWIDE LOCATION

PROJECT REGIONAL LOCATION

MARIE S. BARRETT

2035 Forrester Road, El Centro, CA 92243 (760) 352 4159 mariebarrett@roadrunner.com LICENSES/CERTIFICATES

Flat Tailed Horn Lizard Surveyor CDFG/BLM

Burrowing Owl Surveyor (CDFG/USFWS)

USFW Desert Tortoise Egg Handling Desert Tortoise Council Survey Techniques Workshop Certificate

BCI Bat Conservation and Management Workshop (Acoustic) Certificate

Southwestern Willow Flycatcher Workshop Kernville, CA 2010

California Pest Control Advisor #70373 California Pest Control Operator #103123

CA Scientific Collection Permit 126/USFWS Salvage Permit MB52633B-1

CAREER HISTORY

Barrett's Biological Surveys, El Centro, California BIOLOGIST 3/95 -present

Helped established protocol and perform Vegetative Baseline Studies and Biological Surveys for

Mining Reclamation Plans in Imperial County. Have performed numerous (over 20,000 acres) surveys involving varied wildlife including burrowing owl, nesting birds and plant species and writing reports and biological assessments. Certified to perform Flat Tailed Horned Lizard Surveys; completed Desert Tortoise workshops; approved to handle desert tortoise (American Girl Mine/BLM project, 1/2013). Work closely with governmental agencies such as such as Bureau of Land Management, State Office of Mining Reclamation, California Department of Fish and Game. Written over ten Environmental Assessments for BLM, El Centro office. Over 150 days spent in field monitoring/surveying for FTHL; 98 days in field monitoring/surveying for desert tortoise and 32,000 acres surveyed for burrowing owl and nesting birds; 2 IID Burrowing owl surveys with AECOM (2011/12- 226 hrs). Wrote Imperial Irrigation District Artificial Burrow Installation Manual (2009). Over 25 active burrowing owl burrows passively relocated and 50 artificial burrows installed. Volunteered for desert tortoise work (20 hrs) with Dr. Jeff Lovich. Coachella Valley Projects: Torres-Martinez (Desert Cahuilla Composting Facility Biological Resource Technical Report/Surveys 60 acres, SR 86/Ave 84, 2013; Augustine Tribe (Solar Farm Biological Resource Technical Report/Surveys 10 acres, La Quinta, CA, 2010); Benitez Family Trust Therapeutic Community, Dillon and Cabazon Roads, 10 acres, 2008); Chandri Group (Dairy Queen Chill/Grill Project, 1.5 acres, Date Palm Drive/I-10, La Ouinta, CA, 2014). Blythe 8Minutenergy Mt. Signal Solar 5000 acres Preconstruction surveys/construction monitoring and BUOW Post construction monitoring; Biological report. 2010-2017

Black Mt. MetTower Installation: desert tortoise survey and monitoring approved by BLM, El Centro office Salton City Burrtec Landfill FTHL monitoring/clearance 2010-2014 (42.5 hrs); Superior Redi Mix: FTHL surveys, Oat Pit Environmental Assessment for BLM, El Centro, 2009-14. (20 hours) SDG&E La Rosite Pole Replacement FTHL Monitoring 2012-2013(410 hrs); Imperial County Department of Public Works, FTHL surveys for Coyote Mine Environmental Assessment, BLM, El Centro, 2008. (10 hours) All American Aggregates, FTHL surveys, Boyd Road Mine Environmental Assessment, BLM El Centro, 2007. (9.5 hours) All American Aggregates, FTHL surveys, Wheeler Road Mine Environmental Assessment, BLM, El Centro, 2006. (8.5 hours); ValRock, FTHL surveys, Ocotillo ByPass Road Environmental Assessment, County of Imperial/BLM, El Centro, 2004. (7 hours). USFWS Authorized desert tortoise biologist: American Girl Mine and Mesquite Mine.

<u>Citizens' Congressional Task Force on the New River, Brawley, Ca</u> PROGRAM COORDINATOR 1/98 - present Assisted with design, construction, planting and monitoring of four constructed wetlands in Imperial County. Responsible for coordinating activities relating to student and public outreach education to promote the water quality opportunities of wetlands ponding systems on the New River.

Imperial Valley College, Imperial, California ENVIRONMENTAL MANAGEMENT PROJECT COORDINATOR 9/95-12/99

Responsible for establishing an Environmental Technology curriculum, presenting public forums, short courses and certificate courses in hazardous materials and safety areas. In conjunction with Division Chairman, established a budget for 96-98 program and obtained funding of \$131,000 based on 95-96 program performance. Established short courses that trained over 700 people in hazardous materials safety programs. Compiled a survey of employers, which provided direction for the program.

VOLUNTEER ORGANIZATIONS

CALIFORNIA NATIVE PLANT SOCIETY: Imperial Valley Coordinator, 2006-2016. SALTON SEA INTERNATIONAL BIRD FESTIVAL: Coordinator: 2001-2010. Organize bird festival in the Imperial Valley that attracts over 300 birders.

COLORDO RIVER WATER QUALITY CONTROL BOARD: Board member Dec 05-Sept 06.

FRIENDS OF SONNY BONO NATIONAL WILDLIFE REFUGE: Board Chairman, May 2015-16

EDUCATION

University of Arizona, Tucson, Arizona

Masters of Science Degree – AGRICULTURAL EDUCATION

Thesis: Survey and training protocol for documenting burrowing owls and habitat in Imperial County, California

California State Polytechnic College, Kellogg-Voorhis Campus, Pomona, California

Bachelor of Science Degree.- AGRICULTURAL BIOLOGY

Imperial Valley College, Imperial, California Associate of Science Degree. AGRICULTURE

Jacob Calanno Post Office Box 458 Niland, California 92257 760-550-4214

	700-330-4214
SPECIALTIES:	Biological Surveys and Monitoring, Mechanical Process Applications, Field operations.
EDUCATION:	Imperial Valley College, Imperial, Ca Municipal Water and Waste Water Treatment; Licensing pending.
COMPUTER	
SKILLS: CERTIFIED	Basic computer skills, Lab View for Engineers.
SPECIALIZED	
TRAINING:	Environmental Review & Compliance for Natural Gas Facilities Seminar- June 5-7, 2012 Desert tortoise Surveying, Monitoring and Handling Techniques Certificate Nov. 5-6, 2012 Flat Tail Horn Lizard Training- June 20, 2012
	40 Hour Hazwoper Feb. 8, 2013
	CALIFORNIA OSHA TITLE-2011
	Confine Space Training, 2005
	Lockout/Tagout , 2005
	Respirator Training, 2005
	Operators Safety Training, 2005
	Foreman Field Crew Supervisory and Operations Training, 2005
SUMMARY:	Biological surveyor and Monitor/ Field Operations Crew Foreman/Operations Technician For the past 6 years I have been specifically working on biological surveys and
	monitoring including burrowing owl, flat tail horned lizard, desert tortoise and
	migratory birds. I have 15 years' experience in the environmental remediation
	industry. My area of expertise is in remedial mechanical applications, equipment
	operations and maintenance programs.
	Training and hands on experience working in the field with endangered species;
	Desert Tortoise and the Flat Tail Horned Lizard, followed compliance policy and
	procedure when encountering endangered species. This training was received while working on specific projects such as:
	5
WORK EXPER	
2012-18	Barrett's Biological Surveys Project Salton City Burrtec Landfill: 320 acre clearance and provided FTHL training to construction
	crew(42 hrs)
	Project AECOM/IID Burrowing Owl habitat surveys June, 2015
	Project Imperial County Public Works Desert Tortoise/MBTA monitoring: 195.7 hours at Walters Camp, near Palo Verde, CA
	Project Mesquite Mine: 30 acre desert tortoise clearance; fence installation monitoring (25 hrs) Project Oat Mine: FTHL monitoring (186 hrs)
	Project CalTrans: FTHL monitoring (50 hrs)
	Project: Arms and Dudes Film Project FTHL/MBTA monitoring (181 hours)
	Project Niland Wastewater Project BUOW/Biological surveys (5 days)
	rojectimana wastemater roject booth biological carries to says

	Project: Hell's Kitchen MBTA Nesting Bird/Burrowing Owl Surveys (5 days) BLM, El Centro, CA office: Volunteer Bat Surveys with Pat Brown (20 hours) CDFW, Avian Carcass Collection Volunteer (5 hours)
2005 to 2010	Volper, LLC, Burbank, Ca.
	Provided field supervision of construction
	Responsibilities include plan and coordinate field construction and activities,
	field reports and tracking hours.
	Manager/Grower
2003 to 2005	Cape Environmental, Irvine, California
	Field Operations Supervisor/Sr. Operations Technician
	Provided technical equipment applications support on various environmental remediation projects.
	Responsibilities included; construction, planning and field supervision for the installation, operation and maintenance of ground water remediation equipment
2000 to 2003	Foster Wheeler Environmental, San Diego, California
	Field Operation Supervisor/Sr. Operations Technician
	Provided technical equipment applications support on various environmental remediation projects.
	Responsibilities included; construction, planning and field supervision for the installation, operation and maintenance of ground water remediation equipment.

REFERENCES:

Mr. Fredrick Rivera	Marie Barrett
IR Manager,	2035 Forrester Rd
Naval Air Facility - El Centro	El Centro, CA 92243
760-339-2226	760 427 7006

Ed Cooney Engineering Technician FEAD/PW Bldg.504 NAF El Centro, CA 92243 760-339-2469 LANDMARK Geo-Engineers and Geologists

August 3, 2018

Mr. Mark Brandt All American Grain 305 E. Yocum Road Calipatria, CA 92233 780 N. 4th Street El Centro, CA 92243 (760) 370-3000 (760) 337-8900 fax

77-948 Wildcat Drive Palm Desert, CA 92211 (760) 360-0665 (760) 360-0521 fax

Rail Loop Loading Pad Structural Sections SEC of State Hwy 111 and Yocum Road Calipatria, California LCI Report No. LE18146 (Refer LCI Report No. LE06217)

Dear Mr. Brandt:

Landmark Consultants, Inc. conducted a geotechnical investigation at the Unit – Train Rail Loop in 2006 for proposed industrial development. Currently, the interior of the rail loop is being used to load shipping containers loaded with compressed hay bales onto rail cars. Pavement structural sections are being provided for design of the Hay Loading Pad and Container Storage Areas. It is our understanding that the Container Reach Lift/Stacker is a Hyster Model RS45-31 CH which has an axle load of 127,000 pounds (front axle-dual wheels at 145 psi). The container reach lift/stacker service weights for unloaded and loaded conditions were provided by the hay loading company. In the storage areas, containers will be stacked up to four (4) high. Each loaded container weights about 60,000 lbs with a total weight of 240,000 lbs for a stack of four (4) containers over an area of 8'x 40' (320 sf) resulting in a uniform load of 750 psf. The equipment loads are approximately equivalent to a Traffic Index of 11.0 (Caltrans pavement design method).

Landmark's geotechnical investigation conducted in June 2006 at this site identifies the predominant native subgrade soils to be clays that yield an R-Value strength of 5 when tested in accordance with test method CAL 301. Based on the Container Reach Lift/Stacker service loads, an estimated R-value of 5 for the subgrade soil and assumed traffic index of 11.0, the following table provides our suggested Portland Cement Concrete (PCC) pavement structural section for the Hay Loading Pad.

	Rigid (PCC) Pavements		
Traffic Index	Concrete Thickness (in.)	Aggregate Base Thickness (in.)	
11.0	11.0	15.0	

Rigid Pavement Structural Section

Twelve (12) inches of moisture conditioned (minimum 4% above optimum) native clay soil compacted to a minimum of 90% of the maximum dry density determined by ASTM D1557 shall support the pavement structural section. After compaction of the subgrade soil, a layer of 6 oz. non-woven geotextile fabric conforming to AASHTO M288 Class 2 Specification and a layer of Tensar TriAx 160 (or Greenbook Type S2 bi-axial geogrid) geogrid reinforcing shall be placed directly above the compacted subgrade surface.

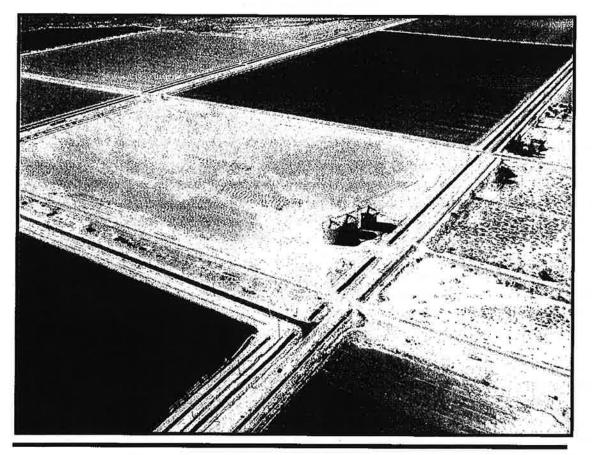
Aggregate base shall conform to Caltrans Class 2 (¾ in. maximum), compacted to a minimum of 95% of ASTM D1557 maximum dry density. Portland cement concrete for pavements should have Type V cement, a minimum compressive strength of 5,000 psi at 28 days, and a maximum water-cement ratio of 0.40 (600 psi flexural strength).

Unpaved Structural Section (Maintenance Required):

The container storage and loading areas may consist of 18 inches of aggregate base. The bottom 12 inches may consist of crushed concrete aggregate base and the top 6 inches should consist of crushed natural rock aggregate base. Recycled and crushed aggregate bases shall conform to Caltrans Class 2 (¾ in. maximum), compacted to a minimum of 95% of ASTM D1557 maximum dry density. The aggregate base layers shall be placed on 12 inches of moisture conditioned (minimum 4% above optimum) native clay soil compacted to a minimum of 90% of the maximum dry density determined by ASTM D1557. After compaction of the subgrade soil, a layer of 6 oz. non-woven geotextile fabric conforming to AASHTO M288 Class 2 Specification and a layer of Tensar TriAx 160 (or Greenbook Type S2 bi-axial geogrid) geogrid reinforcing shall be placed directly above the compacted subgrade surface before the aggregate base is laid.

The unpaved aggregate base section shall be wetted regularly to minimize dust generation and maintain the surface of the aggregate base without raveling. Areas of the surface found to yield or rut under lift hoist wheel loads should be repaired with stiffer material such as cement treated base.

The opportunity to provide professional services for project design for the rail car loading pad is appreciated. Please contact our office with any questions or comments.


Geotechnical Report

Pacific Ethanol Plant SEC State Hwy 111 and Yocum Road

Calipatria, California

Prepared for:

TKDA 1500 Piper Jaffray Plaza 444 Cedar Street St. Paul, MN 55101-2140

Prepared by:

Landmark Consultants, Inc. 780 N. 4th Street El Centro, CA 92243 (760) 370-3000

July 2006

July 13, 2006

Mr. Brent Paulsen TKDA 1500 Piper Jaffray Plaza 444 Cedar Street St. Paul, MN 55101-2140

> Geotechnical Investigation Pacific Ethanol Plant SEC State Hwy 111 and Yocum Road Calipatria, California LCI Report No. LE06217

Dear Mr. Paulsen:

This geotechnical report is provided for design and construction of the proposed Pacific Ethanol Plant located at the southeast corner of State Hwy 111 and Yocum Road within the All American Grain Facility's unit train rail loop south of Calipatria, California. Our geotechnical investigation was conducted in response to your request for our services. The enclosed report describes our soil engineering investigation and presents our professional opinions regarding geotechnical conditions at the site to be considered in the design and construction of the project.

This summary presents *selected* elements of our findings and recommendations only. It *does not* present crucial details needed for the proper application of our findings and recommendations. Our findings, recommendations, and application options are related *only through reading the full report*, and are best evaluated with the active participation of the engineer of record who developed them.

The findings of this study indicate that the site is, in general, predominantly underlain by clays of moderate to high expansion potential that will require foundations and slabs-on-grade designed to resist expansive soil heave (CBC Section 1815 and 1816). The California Building Code (CBC) design method requires grade-beam stiffening of floor slabs at a maximum spacing of 18 feet on center, grade-beam stiffened post-tensioned slabs or flat-plate structural slabs. Design and construction of site improvements (concrete flatwork, curbs, patios, etc.) should include provisions to mitigate clay soil movement. Additionally, the weak clay subgrade soil requires thickened structural sections for pavements.

In order to reduce settlement in some structures to generally accepted limits, existing soft, compressible clays may be strengthened by soil improvement (soil mixing, stone colums, geopiers, etc.) or by placement of a deep foundation system like driven piles or drilled piers. These options are discussed in the report.

780 N. 4th Street El Centro, CA 92243 (760) 370-3000 (760) 337-8900 fax

77-948 Wildcat Drive Palm Desert, CA 92211 (760) 360-0665 (760) 360-0521 fax

The soil is highly corrosive to metals and contains sufficient sulfates and chlorides to require special concrete mixes (4,500 psi strength with 0.45 maximum water cement ratio and Type V cement) and protection of embedded steel components when concrete is placed in contact with native soil.

Evaluation of liquefaction potential at the site indicates that 1 to 5 foot thick, isolated, interbedded layers of silt and silty sand at a depth between 16 to 50 feet may liquefy under seismically induced groundshaking, potentially resulting in an estimated 1 to 2³/₄ inches of deep seated settlement. There is a 16-foot layer of non-liquefiable clay soils above any potentially liquefiable soil; therefore, it is unlikely that there will be rapid deformation or punching bearing failures of the surface soils should liquefaction occur.

We did not encounter soil conditions that would preclude implementation of the proposed project provided the recommendations contained in this report are implemented in the design and construction of this project.

We appreciate the opportunity to provide our findings and professional opinions regarding geotechnical conditions at the site. If you have any questions or comments regarding our findings, please call our office at (760) 360-0665.

Respectfully Submitted, Landmark Consultants, Inc. CERTIFIED ENGINEERING eologist Steven K. Williams, CEG Senior Engineering Geologist Jeffrey O. Lyon, PE No. 31921 EXPIRES 12-31-06 President Distribution:

Client (4)

Julian alos Staff Engineer

TABLE OF CONTENTS

Page
Section 1
INTRODUCTION1
1.1 Project Description1
1.2 Purpose and Scope of Work
1.3 Authorization
Section 2
METHODS OF INVESTIGATION
2.1 Field Exploration4
2.2 Laboratory Testing
Section 3
DISCUSSION
3.1 Site Conditions
3.2 Geologic Setting
3.3 Seismicity and Faulting
3.4 Site Acceleration and UBC Seismic Coefficients
3.5 Subsurface Soil
3.6 Groundwater
3.7 Liquefaction12
Section 4
RECOMMENDATIONS
4.1 Site Preparation
4.2 Spread Foundations and Settlements
4.3 Slabs-On-Grade
4.4 Deep Foundations
4.5 Tank Foundations and Settlements
4.6 Concrete Mixes and Corrosivity
4.7 Excavations
4.8 Lateral Earth Pressures
4.9 Seismic Design
4.10 Pavements
4.11 Railroad Spur Line Subgrade Preparation:
Section 5
LIMITATIONS AND ADDITIONAL SERVICES
5.1 Limitations
5.2 Additional Services
APPENDIX A: Vicinity and Site Maps
APPENDIX B: Subsurface Soil Logs and Soil Key

APPENDIX C: Laboratory Test Results

- APPENDIX D: San Diego Regional Standard Drawing
- APPENDIX E: References

Section 1 INTRODUCTION

1.1 Project Description

This report presents the findings of our geotechnical investigation for the proposed Pacific Ethanol Plant located at the southeast corner of State Hwy 111 and Yocum Road within the All American Grain Company's unit train rail loop south of Calipatria, California (See Vicinity Map, Plate A-1). The proposed development will consist of several buildings for offices, storage, control rooms, fermentation, main processing and distillation processes. Also, the proposed plant will have steel storage tanks, cooling towers, silos, hoppers, storage yards and associated internal roadways. A parallel rail loop is planned for splitting of the unit train rail cars to allow at grade plant access during train unloading. A site plan for the proposed development was provided by the client at the time that this report was prepared.

The structures (buildings) are planned to consist of slabs-on-grade foundations with masonry and steel-frame or panelized tilt-up concrete construction. Footing loads at exterior bearing walls are estimated at 1 to 5 kips per lineal foot. Column loads are estimated to range from 5 to 100 kips. Expected plant components, cooling towers, hoppers and silos columns loads range from 5 to 300 kips. The dimensions for the proposed steel storage tanks were not provided at the time that this report was prepared. The estimated loads imposed at ground surface by the loaded tanks are expected to range from 2,000 to 3,000 pounds per square foot.

If structural loads exceed those stated above, we should be notified so we may evaluate their impact on foundation settlement and bearing capacity. Site development will include foundation support pad preparation, underground utility installation, roadway and concrete flatwork placement.

1.2 Purpose and Scope of Work

The purpose of this geotechnical study was to investigate the upper 50 feet of subsurface soil at selected locations within the site for evaluation of physical/engineering properties. From the subsequent field and laboratory data, professional opinions were developed and are provided in this report regarding geotechnical conditions at this site and the effect on design and construction.

The scope of our services consisted of the following:

- Field exploration and in-situ testing of the site soils at selected locations and depths.
- Laboratory testing for physical and/or chemical properties of selected samples.
- Review of the available literature and publications pertaining to local geology, faulting, and seismicity.
- Engineering analysis and evaluation of the data collected.
- Preparation of this report presenting our findings, professional opinions, and recommendations for the geotechnical aspects of project design and construction.

This report addresses the following geotechnical issues:

- Subsurface soil and groundwater conditions
- Site geology, regional faulting and seismicity, near source factors, and site seismic accelerations
- Liquefaction potential and its mitigation
- Expansive soil and methods of mitigation
- Aggressive soil conditions to metals and concrete

Professional opinions with regard to the above issues are presented for the following:

- Site grading and earthwork
- Building pad and foundation subgrade preparation
- Allowable soil bearing pressures and expected settlements
- Concrete slabs-on-grade
- Lateral earth pressures
- Excavation conditions and buried utility installations
- Mitigation of the potential effects of salt concentrations in native soil to concrete mixes and steel reinforcement
- Seismic design parameters
- Pavement structural sections
- Rail bed subgrade/subbase requirements

Our scope of work for this report did not include an evaluation of the site for the presence of environmentally hazardous materials or conditions.

1.3 Authorization

Mr. Richard N. Sobiech, president of TKDA provided authorization by written agreement to proceed with our work on June 12, 2006. We conducted our work according to our written proposal dated June 8, 2006.

Section 2 METHODS OF INVESTIGATION

2.1 Field Exploration

Subsurface exploration was performed on June 14, 2006 using Holguin, Fahan, & Associates, Inc. of Cypress, California to advance seven (7) electric cone penetrometer (CPT) soundings to an approximate depth of 50 feet below existing ground surface. The soundings were made at the locations shown on the Site and Exploration Plan (Plate A-2). The approximate sounding locations were established in the field and plotted on the site map by sighting to discernable site features.

CPT soundings provide a continuous profile of the soil stratigraphy with readings every 2.5cm (1 inch) in depth. Direct sampling for visual and physical confirmation of soil properties has been used by our firm to establish direct correlations with CPT exploration in this geographical region.

The CPT exploration was conducted by hydraulically advancing an instrumented Hogentogler 10cm^2 conical probe into the ground at a rate of 2cm per second using a 23-ton truck as a reaction mass. An electronic data acquisition system recorded a nearly continuous log of the resistance of the soil against the cone tip (Qc) and soil friction against the cone sleeve (Fs) as the probe was advanced. Empirical relationships (Robertson and Campanella, 1989) were then applied to the data to give a continuous profile of the soil stratigraphy. Interpretation of CPT data provides correlations for SPT blow count, phi (ϕ) angle (soil friction angle), undrained shear strength (S_u) of clays and overconsolidation ratio (OCR). These correlations may then be used to evaluate vertical and lateral soil bearing capacities and consolidation characteristics of the subsurface soil.

Additional subsurface exploration was performed on June 14 and 15, 2006 using 2R Drilling of Ontario, California to advance seven (25) borings to depths of 5 to 41.5 feet below existing ground surface. The borings were advanced with a truck-mounted, CME 55 drill rig using 8-inch diameter, hollow-stem, continuous-flight augers. The approximate boring locations were established in the field and plotted on the site map by sighting to discernable site features. The boring locations are shown on the Site and Exploration Plan (Plate A-2).

A staff engineer observed the drilling operations and maintained a log of the soil encountered and sampling depths, visually classified the soil encountered during drilling in accordance with the Unified Soil Classification System, and obtained drive tube and bulk samples of the subsurface materials at selected intervals. Relatively undisturbed soil samples were retrieved using a 2-inch outside diameter (OD) split-spoon sampler or a 3-inch OD Modified California Split-Barrel (ring) sampler. The samples were obtained by driving the sampler ahead of the auger tip at selected depths. The drill rig was equipped with a 140-pound CME automatic hammer for conducting Standard Penetration Tests (SPT). The number of blows required to drive the samplers 12 inches into the soil is recorded on the boring logs as "blows per foot". Blow counts reported on the boring logs represent the field blow counts. No corrections have been applied for effects of overburden pressure, automatic hammer drive energy, drill rod lengths, liners, and sampler diameter. Pocket penetrometer readings were also obtained to evaluate the stiffness of cohesive soils retrieved from sampler barrels.

After logging and sampling the soil, the exploratory borings were backfilled with the excavated material. The backfill was loosely placed and was not compacted to the requirements specified for engineered fill.

The subsurface borings logs and interpretive logs of the CPT soundings are presented on Plates B-1 through B-32 in Appendix B. A key to the interpretation of CPT soundings and the borings logs are presented on Plates B-33 and B-34, respectively. The stratification lines shown on the subsurface logs represent the approximate boundaries between the various strata. However, the transition from one stratum to another may be gradual over some range of depth.

2.2 Laboratory Testing

Laboratory tests were conducted on selected bulk soil samples obtained from a hand auger boring made adjacent to the CPT location to aid in classification and evaluation of selected engineering properties of the near surface soils. The tests were conducted in general conformance to the procedures of the American Society for Testing and Materials (ASTM) or other standardized methods as referenced below. The laboratory testing program consisted of the following tests:

- Plasticity Index (ASTM D4318) used for soil classification, settlement estimates and expansive soil design criteria.
- Amount of Soil Particles Finer than No. 200 Sieve (ASTM D1140) used determine the fines content of the soil.
- Unconfined Compression (ASTM D2166) used for soil strength estimates.
- Unit Dry Densities (ASTM D2937) and Moisture Contents (ASTM D2216) used for insitu soil parameters.
- Expansion Index (Swell) Test (UBC 18-2 and ASTM D4829) used for evaluating relative expansion classification.
- Chemical Analyses (soluble sulfates & chlorides, pH, and resistivity) (Caltrans Methods) used for concrete mix evaluations and corrosion protection requirements.

The laboratory test results are presented on the subsurface logs in Appendix B and on Plates C-1 through C-6 in Appendix C.

Engineering parameters of soil strength, compressibility and relative density utilized for developing design criteria provided within this report were either extrapolated from correlations with the subsurface CPT data or from data obtained from the field and laboratory testing program.

Section 3 DISCUSSION

3.1 Site Conditions

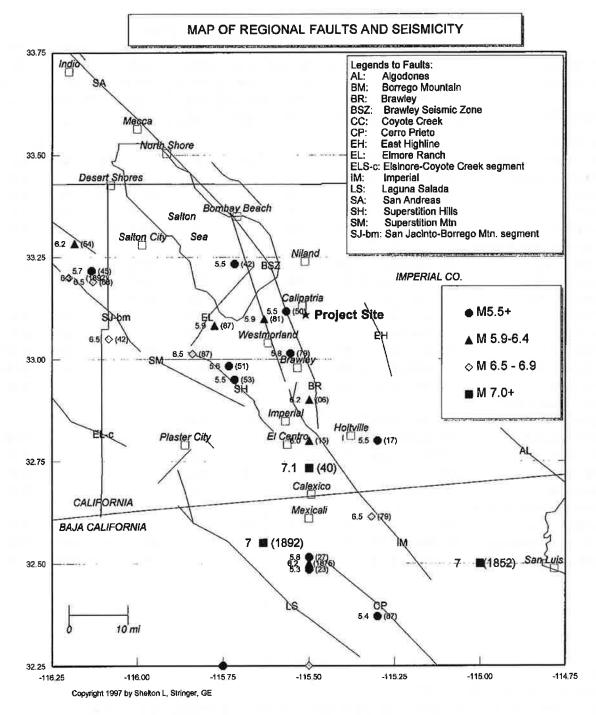
The project site is located within the central area of the elevated rail (about 3 feet above grade) for the All American Grain Company's unit train rail loop. The site area is relatively flat-lying (sloping northwesterly) and consists of approximately 90-acres of vacant land. The site was previously agricultural use land which has been fallow for about 5 years. Yocum Road, Albright Road, Kershaw Road and State Highway 111, all paved roadways, are located along the north, south, east and west sides of the site. Adjacent properties are flat-lying and are approximately at the same elevation with this site. Vacant land is located to the north and agriculture fields are located to the south, east and west sides of the proposed project property.

An existing office building, rail car unloading building/tunnel and three steel grain silos are located outside the rail loop at the northeast corner of the property. A unit train (100 rail cars) railroad track is located along the perimeter of the proposed project site. Several piles of soil and soil-cement mixture from construction of the grain silos are located within the north side of the project site

The project site lies at an elevation of approximately 175 feet below mean sea level (El. 825 local datum) in the Imperial Valley region of the California low desert. The surrounding properties lie on terrain which is flat (planar), part of a large agricultural valley, which was previously an ancient lake bed covered with fresh water to an elevation of $43\pm$ feet above MSL. Annual rainfall in this arid region is less than 3 inches per year with four months of average summertime temperatures above 100 °F. Winter temperatures are mild, seldom reaching freezing.

3.2 Geologic Setting

The project site is located in the Imperial Valley portion of the Salton Trough physiographic province. The Salton Trough is a geologic structural depression resulting from large scale regional faulting. The trough is bounded on the northeast by the San Andreas Fault and Chocolate Mountains and the southwest by the Peninsular Range and faults of the San Jacinto Fault Zone. The Salton Trough represents the northward extension of the Gulf of California, containing both marine and non-marine sediments since the Miocene Epoch.


Tectonic activity that formed the trough continues at a high rate as evidenced by deformed young sedimentary deposits and high levels of seismicity. Figure 1 shows the location of the site in relation to regional faults and physiographic features.

The Imperial Valley is directly underlain by lacustrine deposits, which consist of interbedded lenticular and tabular silt, sand, and clay. The Late Pleistocene to Holocene lake deposits are probably less than 100 feet thick and derived from periodic flooding of the Colorado River which intermittently formed a fresh water lake (Lake Cahuilla). Older deposits consist of Miocene to Pleistocene non-marine and marine sediments deposited during intrusions of the Gulf of California. Basement rock consisting of Mesozoic granite and Paleozoic metamorphic rocks are estimated to exist at depths between 15,000 - 20,000 feet.

3.3 Seismicity and Faulting

<u>Faulting and Seismic Sources:</u> We have performed a computer-aided search of known faults or seismic zones that lie within a 62 mile (100 kilometers) radius of the project site as shown on Figure 1 and Table 1. The search identifies known faults within this distance and computes deterministic ground accelerations at the site based on the maximum credible earthquake expected on each of the faults and the distance from the fault to the site. The Maximum Magnitude Earthquake (Mmax) listed was taken from published geologic information available for each fault (CDMG OFR 96-08 and Jennings, 1994).

<u>Seismic Risk:</u> The project site is located in the seismically active Imperial Valley of southern California and is considered likely to be subjected to moderate to strong ground motion from earthquakes in the region. The proposed site structures should be designed in accordance with the California Building Code (CBC) for near source factors derived from a "Design Basis Earthquake" (DBE). The DBE is defined as the motion having a 10 percent probability of being exceeded in 50 years.

Faults and Seismic Zones from Jennings (1994), Earthquakes modified from Ellsworth (1990) catalog.

Figure 1. Map of Regional Faults and Seismicity

	1	stance	Γ			Maximum	Avg	Avg	Date of	La	rgest	Est
Fault Name or	(mi) &	Fa	wit	Fault	Magnitude	Slip	Return	Last	Hia	storic	Site
Seismic Zone	Dir	ection	Τj	pe	Length	Mmax	Rate	Period	Rupture	E	vent	PGA
	fro	m Site			(km)	(Mw)	(mm/yr)	(yrs)	(year)	>5.5N	(year)	(g)
Reference Notes: (1)			(2)	(3)	(2)	(4)	(3)	(3)	(3)		(5)	(6)
Imperial Valley Faults												
Brawley Seismic Zone	2.8	WSW	в	в	42	6.4	25	24		5.9	1981	0.37
East Highline Canal	10	E	c	C	22	6.3	1	774				0.17
Brawley	11	S	в	в	14	7.0	20		1979	5.8	1979	0.24
Imperial	11	S	A	в	62	7.0	20	79	1979	7.0	1940	0.23
Cerro Prieto	42	S	A	в	116	7.2	34	50	1980	7.1	1934	0.10
San Jacinto Fault System												
- Elmore Ranch	12	NW	в	A	29	6.6	1	225	1987	5.9	1987	0.18
- Superstition Hills	17	SW	в	A	22	6.6	4	250	1987	6.5	1987	0.14
- Superstition Mtn.	19	SW	в	A	23	6.6	5	500	1440 +/-			0.13
- Borrego Mtn	28	W	в	A	29	6.6	4	175		6.5	1942	0.10
- Anza Segment		WNW			90	7.2	12	250	1918	6.8	1918	0.11
- Coyote Creek	42	10.1.8181961.811.8	В	A	40	6.8	4	175	1968	6.5	1968	0.08
- Hot Spgs-Buck Ridge		WNW		A	70	6.5	2	354		6.3	1937	0.06
- Whole Zone		76266275662	A	A	245	7.5						0.21
Elsinore Fault System											1	
- Laguna Salada	34	sw	в	в	67	7.0	3.5	336		7.0	1891	0.10
- Coyote Segment		WSW		A	38	6.8	4	625				0.09
- Earthquake Valley	52		в	A	20	6.5	2	351				0.06
- Julian Segment	54		Ā	A	75	7.1	5	340				0.08
- Whole Zone		wsw			250	7.5						0.13
San Andreas Fault System		1.244									1	••••
- Coachella Valley	21	NW	A	A	95	7.4	25	220	1690+/-	6.5	1948	0.19
- San Gorgonio-Banning	63	NW	A	A	98	7.4	10		1690+/-	6.2	1986	0.08
- Whole S. Calif. Zone	21	NW	A	A	440	7.9			1857	7.8	1857	0.24
					-							

Table 1 FAULT PARAMETERS & DETERMINISTIC ESTIMATES OF PEAK GROUND ACCEL FRATION (PGA)

Notes:

1. Jennings (1994) and CDMG (1996)

2. CDMG (1996), where Type A faults -- slip rate >5 mm/yr and well constrained paleoseismic data Type B faults -- all other faults.

3. WGCEP (1995)

- 4. CDMG (1996) based on Wells & Coppersmith (1994)
- 5. Ellsworth Catalog in USGS PP 1515 (1990) and USBR (1976), Mw = moment magnitude,
- 6. The deterministic estimates of the Site PGA are based on the attenuation relationship of: Boore, Joyner, Fumal (1997)

Landmark Consultants, Inc.

Seismic Hazards.

► Groundshaking. The primary seismic hazard at the project site is the potential for strong groundshaking during earthquakes along the Brawley Seismic Zone and the Imperial, Brawley, and Superstition Hills Faults. A further discussion of groundshaking follows in Section 3.4.

▶ Surface Rupture. The project site does not lie within a State of California, Alquist-Priolo Earthquake Fault Zone. Surface fault rupture is considered to be unlikely at the project site because of the well-delineated fault lines through the Imperial Valley as shown on USGS and CGS maps. However, because of the high tectonic activity and deep alluvium of the region, we cannot preclude the potential for surface rupture on undiscovered or new faults that may underlie the site.

• Liquefaction. Liquefaction is a potential design consideration because of underlying saturated sandy substrata. The potential for liquefaction at the site is discussed in more detail in Section 3.7.

Other Secondary Hazards.

► Landsliding. The hazard of landsliding is unlikely due to the regional planar topography. No ancient landslides are shown on geologic maps of the region and no indications of landslides were observed during our site investigation.

► Volcanic hazards. The site is not located in proximity to any known volcanically active area and the risk of volcanic hazards is considered very low.

• Tsunamis, sieches, and flooding. The site does not lie near any large bodies of water, so the threat of tsunami, sieches, or other seismically-induced flooding is unlikely.

► Expansive soil. In general, much of the near surface soils in the Imperial Valley consist of silty clays and clays which are moderate to highly expansive. The expansive soil conditions are discussed in more detail in Section 3.5.

3.4 Site Acceleration and UBC Seismic Coefficients

<u>Site Acceleration</u>: Deterministic horizontal peak ground accelerations (PGA) from maximum probable earthquakes on regional faults have been estimated and are included in Table 1. Ground motions are dependent primarily on the earthquake magnitude and distance to the seismogenic (rupture) zone. Accelerations also are dependent upon attenuation by rock and soil deposits, direction of rupture and type of fault; therefore, ground motions may vary considerably in the same general area.

We have used the computer program FRISKSP (Blake, 2000) to provide a probabilistic estimate of the site PGA using the attenuation relationship of Boore, Joyner, and Fumal NEHRP D 250 (1997). The PGA estimate for the project site having a 10% probability of being exceeded in 50 years (return period of 475 years) is **0.79g**.

<u>CBC Seismic Response Coefficients</u>: The CBC seismic response coefficients are calculated from the near-source factors for Seismic Zone 4. The near-source factors are based on the distance from the fault and the seismic source type. The following table lists seismic and site coefficients (near source factors) determined by Chapter 16 of the 2001 CBC. *This site lies approximately 4.5 km from a Type B fault and overlies S_p (stiff) soil.*

CBC Code Soil Prot Edition Type	Soil Profile	I Source I	Distance to Critical Source	Near Sour	ce Factors	Seismic Coefficients	
				Na	Nv	Ca	Cv
2001	S _D (stiff soil)	В	4.5 km	1.05	1.27	0.46	0.81
Ref. Table	16-J	16-U		16-S	16-T	16-Q	16-R

CBC Seismic Coefficients for Chapter 16 Seismic Provisions

3.5 Subsurface Soil

Subsurface soils encountered during the field exploration conducted on June 14 and 15, 2006 consist of dominantly stiff to very stiff clay and silty clay to a depth of 16 to 17 feet. Medium dense to dense silty sands and sands extend from 16 feet to 34 feet. Interbedded layers of stiff to very stiff silty clays/clays and clayey silts/silts extend from 32 to 50 feet, the maximum depth of exploration. The subsurface logs (Plates B-1 through B-32) depict the stratigraphic relationships of the various soil types.

The native surface clays exhibit high swell potential (Expansion Index, EI = 120) when tested according to Uniform Building Code Standard 18-2 methods and moderate to high swell potential (Expansion Index, EI = 70 to 130) when correlated to Plasticity Index tests (ASTM D4318) performed on the native clays. The clay is expansive when wetted and can shrink with moisture loss (drying). Development of building foundations, concrete flatwork, and asphaltic concrete pavements should include provisions for mitigating potential swelling forces and reduction in soil strength, which can occur from saturation of the soil. Causes for soil saturation include landscape irrigation, broken utility lines, or capillary rise in moisture upon sealing the ground surface to evaporation. Moisture losses can occur with lack of landscape watering, close proximity of structures to downslopes and root system moisture extraction from deep rooted shrubs and trees placed near the foundations.

Typical measures used for commercial/industrial projects to remediate expansive soil include:

- moisture conditioning subgrade soils to a minimum of 5% above optimum moisture (ASTM D1557) for the full range in depth of surface soils.
- capping silt/clay soil with a non-expansive sand layer of sufficient thickness to reduce the effects of soil shrink/swell,
- treatment of silt/clay with lime to mitigate the shrink/swell forces of the clay soils when sulfate content of the soils is generally less than 7,500 ppm,
- design of foundations that are resistant to shrink/swell forces of silt/clay soil.

3.6 Groundwater

Two (2) inch diameter piezometers were installed in Borings B-12 and B-15 to a depth of 20 feet at the project site. Groundwater was encountered in the piezometers at a depth of 8.4 and 9.5 feet on June 21, 2006, 7 days after placement of the piezometers. However, since the first 16 feet of native soils are clays we are not expected to encounter groundwater within this layer. We expect an increase in the groundwater level only if the sand layer encountered between 16 to 34 feet is penetrated. There is uncertainty in the accuracy of short-term water level measurements, particularly in fine-grained soil. Groundwater levels may fluctuate with precipitation, irrigation of adjacent properties, drainage, and site grading. The referenced groundwater level should not be interpreted to represent an accurate or permanent condition.

3.7 Liquefaction

Liquefaction occurs when granular soil below the water table is subjected to vibratory motions, such as produced by earthquakes. With strong ground shaking, an increase in pore water pressure develops as the soil tends to reduce in volume. If the increase in pore water pressure is sufficient to reduce the vertical effective stress (suspending the soil particles in water), the soil strength decreases and the soil behaves as a liquid (similar to quicksand). Liquefaction can produce excessive settlement, ground rupture, lateral spreading, or failure of shallow bearing foundations.

Four conditions are generally required for liquefaction to occur:

- (1) the soil must be saturated (relatively shallow groundwater);
- (2) the soil must be loosely packed (low to medium relative density);
- (3) the soil must be relatively cohesionless (not clayey); and
- (4) groundshaking of sufficient intensity must occur to function as a trigger mechanism.

All of these conditions exist to some degree at this site.

<u>Methods of Analysis:</u> Liquefaction potential at the project site was evaluated using the 1997 NCEER Liquefaction Workshop methods which utilize direct SPT blow counts or CPT cone readings from site exploration and earthquake magnitude/PGA estimates from the seismic hazard analysis. The resistance to liquefaction is plotted on a chart of cyclic shear stress ratio (CSR) versus a corrected blow count $N_{1(60)}$ or Qc_{1N} . A ground acceleration of 0.79g was used in the analysis with an 8.4-foot groundwater depth.

Liquefaction induced settlements have been estimated using the 1987 Tokimatsu and Seed method. Fines content of liquefiable sands and silt increase the liquefaction resistance in that more cycles of ground motions are required to fully develop pore pressures. The CPT tip pressures (Qc) were adjusted to an equivalent clean sand pressure (Q_{CINcs}). The adjusted tip pressures were converted to equivalent clean sand blow counts ($N_{1(60)cs}$) prior to calculating settlements. A computed factor of safety less than 1.0 indicates a liquefiable condition.

The soil encountered at the points of exploration included saturated silts and silty sands that could liquefy during a CBC Design Basis Earthquake (7M - 0.79g) for a 10% risk in 50 years. Liquefaction can occur within isolated sandy and silty layers (1 to 5 feet thick) between depths of 16 to 50 feet. The likely triggering mechanism for liquefaction appears to be strong groundshaking associated with the rupture of the Imperial Fault and the Superstition Hills Fault.

Boring Location	Depth To First Liquefiable Zone (ft)	Potential Induced Settlement (in)
CPT-1	17	21/2
CPT-2	17	21/2
CPT-3	17	21⁄4
CPT-4	16	23⁄4
CPT-5	17	1¼
CPT-6	17	2
CPT-7	17	1¾
B-10	17.5	2
B-11	25	21/2
B-12	20	1
B-13	25	1
B-14	17.5	1
B-15	25	2¾
B-17	20	2¾

SUMMARY OF LIQUEFACTION ANALYSES

Liquefaction Effects: Based on empirical relationships, total induced settlements are estimated to be about 1 to 2³/₄ inches should liquefaction occur. The minimum differential settlement could be estimated to be on the order of one-half of the total settlement be used in the design. Based on research from Ishihara (1985) and Youd and Garris (1995) ground rupture or sand boil formation is unlikely because of the thickness of the overlying unliquefiable soil.

Because of the depth of the liquefiable layer, wide area subsidence from soil overburden would be the expected effect of liquefaction rather than bearing capacity failure of the proposed structures. The relatively high fines content (>30%) within the potentially liquefiable layer will probably reduce pore water movement significantly, thereby stalling development of a "quick" soil condition.

Since the potentially liquefiable sandy soil are overlain by 16 feet of non-liquefying soil which resist groundwater movement, it is unlikely that the light structure loads planned are sufficient to result in liquefaction induced settlement greater than the surrounding land mass.

Mitigation: Means to mitigate liquefaction movement include either ground improvement techniques or a deep foundation system, rigid mat foundations and grade-beam reinforced foundations that can withstand some differential movement or tilting, but may not protect fracturing of buried utilities.

If the differential settlement caused by liquefaction is considered excessive for plant equipment tolerances, the designer may consider the following ground improvements or foundation designs to mitigate the liquefaction induced settlement.

- 1) Soil mixing to 20 feet (soil-cement)
- 2) Geopiers or stone columns to 20 feet
- 3) Deep foundations that are founded into non-liquefying soils;
- 4) Foundations that use grade-beam footings to tie floor slabs and isolated columns to continuous footings (conventional or post-tensioned).
- 5) Structural flat-plate mats, either conventionally reinforced or tied with post-tensioned tendons.

These alternatives reduce the potential effects of liquefaction-induced settlements by making the structures more able to withstand differential settlement. The structural engineer is directed to CDMG Special Publication 117 for design on liquefiable sites.

Section 4 RECOMMENDATIONS

4.1 Site Preparation

<u>Clearing and Grubbing</u>: All surface improvements, debris or vegetation including grass, trees, and weeds on the site at the time of construction should be removed from the construction area. Root balls should be completely excavated. Organic strippings should be hauled from the site and not used as fill. Any trash, construction debris, and buried obstructions such as subsurface tile drainage pipelines exposed during rough grading should be traced to the limits of the foreign material by the grading contractor and removed under our supervision. Any excavations resulting from site clearing should be dish-shaped to the lowest depth of disturbance and backfilled under the observation of the geotechnical engineer's representative.

Building Pad Preparation: After removal the existing piles of soil and soil-cement mixture, the existing surface soil within building pad areas should be removed to 36 inches below the building pad elevation or existing grade (whichever is lower) extending five feet beyond all exterior wall/column lines (including adjacent concreted areas). Exposed subgrade should be scarified to a depth of 8 inches, uniformly moisture conditioned to 5 to 10% above optimum moisture content and recompacted to 85 to 90% of the maximum density determined in accordance with ASTM D1557 methods. Prior to over-excavation of the surface soil, deep moisture penetration may be achieved by bordering the site and applying multiple floodings to allow water to permeate to a minimum depth of 3.5 feet (20% minimum moisture content) below existing natural surface.

The native soil is suitable for use as engineered fill provided it is free from concentrations of organic matter or other deleterious material. The fill soil should be uniformly moisture conditioned by discing and watering to the limits specified above, placed in maximum 8-inch lifts (loose), and compacted to the limits specified above. Clay soil should not be compacted greater than 90% relative compaction because highly compacted soil will result in increased swelling.

If foundation designs are to be utilized which do not include provisions for expansive soil, an engineered building support pad consisting of 3.0 feet of granular soil or lime treated soil, placed in maximum 8-inch lifts (loose), compacted to a minimum of 90% of ASTM D1557 maximum density at 2% below to 4% above optimum moisture, should be placed below the bottom of the slab. Lime content in soil (if used) shall be established by the Eads-Grim Method with a resulting maximum Expansion Index of 15 after lime addition.

Imported fill soil (for foundations designed for expansive soil conditions) should have a Plasticity Index less than 25 and sulfates (SO₄) less than 2,000 ppm. For foundations designed for expansive soil conditions, non-expansive, granular soil meeting the USCS classifications of SM, SP-SM, or SW-SM with a maximum rock size of 3 inches and 5 to 35% passing the No. 200 sieve shall be used. The geotechnical engineer should approve imported fill soil sources before hauling material to the site. Imported granular fill should be placed in lifts no greater than 8 inches in loose thickness and compacted to a minimum of 90% of ASTM D1557 maximum dry density at optimum moisture $\pm 2\%$.

In areas other than the building pad which are to receive area concrete slabs, the ground surface should be presaturated to a minimum depth of 36 inches and then scarified to 8 inches, moisture conditioned to a minimum of 5% over optimum, and recompacted to 83-87% of ASTM D1557 maximum density just prior to concrete placement.

<u>Trench Backfill:</u> Trench backfill should conform to San Diego Regional Standard Drawing S-4, using either Type A, B or C backfill.

Type A backfill for HDPE pipe consists of a 4 to 6 inch bed of ³/₄-inch crushed rock below the pipe and pipezone backfill (to 12" above top of pipe) that consists of crusher fines (sand). Sewer pipes (SDR-35), water mains, and stormdrain pipes of other that HDPE pipe may use crusher fines for bedding. The crusher fines shall be compaction to a minimum of 90% of ASTM D1557 maximum density. Pipe deflection should be checked to not exceed 2% of pipe diameter. Native clay/silt soils may be used to backfill the remainder of the trench. Clays shall be compacted to a minimum of 85% of ASTM D1557 maximum density and silts shall be compacted to a minimum of 87% of ASTM D1557 maximum density, except that the top 12 inches of the trench shall be compacted to at least 90% of ASTM D1557 maximum density. *Type B* backfill for HDPE pipe requires 6 inches of $\frac{1}{4}$ -inch crushed rock as bedding and to springline of the pipe. Thereafter, sand/cement slurry (3 sack cement factor) should be used to 12 inches above the top of the pipe. Native clay and silt soils may be used in the remainder of the trench backfill as specified above.

Type C backfill for HDPE pipe shall consist of a geotextile filter fabric encapsulating ³/₄-inch crushed rock. The crushed rock thickness shall be 6 inches below and to the sides of the pipe and shall extend to 12 inches above the top of the pipe. The filter fabric shall cover the trench bottom, sidewalls and over the top of the crushed rock. Native clay and silt soils may be used in the remainder of the trench backfill as specified above. Type C backfill must be used in wet soils and below groundwater for all buried utility pipelines unless dewatered to at least 12 inches below the trench bottom prior to excavation. Type A backfill may be used in the case of a dewatered trench condition.

On-site soil free of debris, vegetation, and other deleterious matter may be suitable for use as utility trench backfill above pipezone, but may be difficult to uniformly maintain at specified moistures and compact to the specified densities. Native backfill should only be placed and compacted after encapsulating buried pipes with suitable bedding and pipe envelope material.

Imported granular material is acceptable for backfill of utility trenches. Granular trench backfill used in building pad areas should be plugged with a solid (no clods or voids) 2-foot width of native clay soils at each end of the building foundation to prevent landscape water migration into the trench below the building.

Backfill soil within paved areas should be placed in layers not more that 6 inches in thickness and mechanically compacted to a minimum of 87% of the ASTM D1557 maximum dry density except for the top 12 inches of the trench which shall be compacted to at least 90%.

<u>Moisture Control and Drainage</u>: The moisture condition of the building pad should be maintained during trenching and utility installation until concrete is placed or should be rewetted before initiating delayed construction. If soil drying is noted, a 2 to 3 inch depth of water may be used in the bottom of footings to restore footing subgrade moisture and reduce potential edge lift.

Adequate site drainage is essential to future performance of the project. Infiltration of excess irrigation water and stormwaters can adversely affect the performance of the subsurface soil at the site. Positive drainage should be maintained away from all structures to prevent ponding and subsequent saturation of the native clay soil. If landscape irrigation is allowed next to the building, drip irrigation systems or lined planter boxes should be used. The subgrade soil should be maintained in a moist, but not saturated state, and not allowed to dry out. Drainage should be maintained without ponding.

Observation and Density Testing: All site preparation and fill placement should be continuously observed and tested by a representative of a qualified geotechnical engineering firm. Full-time observation services during the excavation and scarification process is necessary to detect undesirable materials or conditions and soft areas that may be encountered in the construction area. The geotechnical firm that provides observation and testing during construction shall assume the responsibility of "geotechnical engineer of record" and, as such, shall perform additional tests and investigation as necessary to satisfy themselves as to the site conditions and the recommendations for site development.

<u>Auxiliary Structures Foundation Preparation:</u> Auxiliary structures such as free standing or retaining walls should have the existing soil beneath the structure foundation prepared in the manner recommended for the building pad except the preparation needed only to extend 18 inches below and beyond the footing.

4.2 Spread Foundations and Settlements

Shallow spread footings and continuous wall footings are suitable to support the structures associates with the building for offices, warehouses, cooling towers, etc. Footings shall be founded on a layer of properly prepared and compacted soil as described in Section 4.1. The foundations may be designed using an allowable soil bearing pressure of 1,500 psf for compacted native clay soil and 2,000 psf when foundations are supported on imported sands (extending a minimum of 1.0 feet below footings). The allowable soil pressure may be increased by 20% for each foot of embedment depth in excess of 18 inches and by one-third for short term loads induced by winds or seismic events. The maximum allowable soil pressure at increased embedment depths shall not exceed 3,000 psf.

As an alternative to shallow spread foundations, flat plate structural mats or grade-beam reinforced foundations may be used to mitigate liquefaction related movement.

<u>Flat Plate Structural Mats</u>: Flat plate structural mats may be used to mitigate expansive soils at the project site. The structural mat shall have a double mat of steel (minimum No. 4's @ 16" O.C. each way – top and bottom) and a minimum thickness of 12 inches. Mat edges shall have a minimum edge footing of 12 inches width and 18 inches depth (below the building pad surface). Mats may be designed by UBC Section 1815 (Div. III) methods using an Effective Plasticity Index of 28.

Structural mats may be designed for a modulus of subgrade reaction (Ks) of 100 pci when placed on compacted clay or a subgrade modulus of 300 pci when placed on 3.0 feet of granular fill. Mats shall overlay 2 inches of sand and a 10-mil polyethylene vapor retarder. The building support pad shall be moisture conditioned and recompacted as specified in Section 4.1 of this report.

<u>Grade-beam Reinforced Foundations</u>: Specific soil data for structures with grade-beam reinforced foundations placed on the native clays (without removal of the surface clay or a minimum of 3.0 feet of underlying granular fill) are presented below in accordance with the design method given in CBC Chapter 18 (2001) - Division III, Section 1815:

- Weighted Plasticity Index (PI) = 35
- ► Slope Coefficient (C_s) = 1.0
- ► Strength Coefficient (C_o) = 0.8
- Climatic Rating $(C_w) = 15$
- ► Effective PI = 28
- ► 1-C Value = 0.14
- Maximum Grade-beam Spacing = 18 feet

<u>Post-tensioned Slabs</u>: If post-tensioned slabs are considered for this project, the following soil criteria shall be used in the Post Tensioning Institute (PTI) designs:

Edge Moisture Variation Distance, e _m	Center Lift: 5.3 ft. Edge Lift: 2.6 ft.
Depth to Constant Suction:	5.0 ft.
Constant Suction (pF):	3.6
Differential Swell, ym	Center Lift: 3.12 in.
	Edge Lift: 0.55 in.
Moisture Velocity	0.6 inches/month
Estimated Differential Settlement (swell):	1.0 in.
Bearing Capacity:	1,500 psf
Maximum Slab Deflection	1.0 in

Clamping devices and end anchors for post-tensioned tendons are susceptible to corrosion from aggressive soil and landscape water conditions. Therefore, a minimum concrete cover of 3.0 inches, a PVC end cap and epoxy coatings should be specified for the tendon ends with a positive bonding agent used with polymer modified cementitious material to patch the recessed anchor cup. A complete encapsulation system intended for corrosive environments is a suggested protection method for post-tensioning cables and anchoring/clamping devices.

All exterior foundations should be embedded a minimum of 18 inches below the building support pad or lowest adjacent final grade, whichever is deeper. Interior footings (bearing) should be a minimum of 12 inches deep. Continuous wall footings should have a minimum width of 12 inches. Spread footings should have a minimum width of 24 inches and should not be structurally isolated. Recommended concrete reinforcement and sizing for all footings should be provided by the structural engineer.

Resistance to horizontal loads will be developed by passive earth pressure on the sides of footings and frictional resistance developed along the bases of footings and concrete slabs. Passive resistance to lateral earth pressure may be calculated using an equivalent fluid pressure of 250 pcf (300 pcf for sands) to resist lateral loadings. The top one foot of embedment should not be considered in computing passive resistance unless the adjacent area is confined by a slab or pavement. An allowable friction coefficient of 0.25 (0.35 for sands) may also be used at the base of the footings to resist lateral loading.

Foundation movement under the estimated static (non-seismic) loadings and static site conditions are estimated to not exceed 1.0 inch with differential movement of about two-thirds of total movement for the loading assumptions stated above when the subgrade preparation guidelines given above are followed. Seismically induced liquefaction settlement may be on the order of 1 to 2³/₄ inches.

Settlement estimates developed for spread footings embedded a minimum of 2.0 feet into native soils and loaded to 2,000 psf follow:

	Size of Footing (ft.)	
2 x 2	5 x 5	10 x 10
0.30 in	0.70 in	1.20 in

4.3 Slabs-On-Grade

Concrete slabs and flatwork placed over native clay soil should be designed in accordance with Chapter 18, Division III of the 2001 CBC (using an Effective Plasticity Index of 28) and shall be a minimum of 5 inches thick due to expansive soil conditions. Concrete floor slabs shall be monolithically placed with the foundations unless placed on 3.0 feet of granular fill or lime treated soil. The concrete slabs should be underlain by a minimum of 4 inches of clean sand (Sand Equivalent SE>30) or aggregate base or may be placed directly on the 3.0-foot thick granular fill pad (if used) that has been moistened to approximately optimum moisture just before the concrete placement. A 10-mil polyethylene vapor retarder, properly lapped and sealed with a 2-inch sand cover and extended a minimum of 12 inches into the footing, should be placed as a capillary break to inhibit moisture migration into the slab section. Concrete slabs may be placed directly over a 15-mil vapor retarder if desired (Stego-Wrap or equivalent).

Concrete slab and flatwork reinforcement should consist of chaired rebar slab reinforcement (minimum of No. 3 bars at 18-inch centers, both horizontal directions) placed at slab mid-height to resist potential swell forces and cracking. Slab thickness and steel reinforcement are minimums only and should be verified by the structural engineer/designer knowing the actual project loadings. All steel components of the foundation system should be protected from corrosion by maintaining a 3-inch minimum concrete cover of densely consolidated concrete at footings (by use of a vibrator).

The construction joint between the foundation and any mowstrips/sidewalks placed adjacent to foundations should be sealed with a polyurethane based non-hardening sealant to prevent moisture migration between the joint. Epoxy coated embedded steel components or permanent waterproofing membranes placed at the exterior footing sidewall may also be used to mitigate the corrosion potential of concrete placed in contact with native soil.

Control joints should be provided in all concrete slabs-on-grade at a maximum spacing (in feet) of 2 to 3 times the slab thickness (in inches) as recommended by American Concrete Institute (ACI) guidelines. All joints should form approximately square patterns to reduce randomly oriented contraction cracks. Contraction joints in the slabs should be tooled at the time of the pour or sawcut (¼ of slab depth) within 6 to 8 hours of concrete placement.

Construction (cold) joints in foundations and area flatwork should either be thickened butt-joints with dowels or a thickened keyed-joint designed to resist vertical deflection at the joint. All joints in flatwork should be sealed to prevent moisture, vermin, or foreign material intrusion. Precautions should be taken to prevent curling of slabs in this arid desert region (refer to ACI guidelines).

All independent flatwork (sidewalks, housekeeping slabs) should be placed on a minimum of 2 inches of concrete sand or aggregate base, dowelled to the perimeter foundations where adjacent to the building and sloped 2% or more away from the building. A minimum of 24 inches of moisture conditioned (20% moisture content) and 8 inches of compacted subgrade (83 to 87%) and a 10-mil (minimum) polyethylene separation sheet should underlie the flatwork. All flatwork should be jointed in square patterns and at irregularities in shape at a maximum spacing of 10 feet or the least width of the sidewalk.

4.4 Deep Foundations

In order to reduce settlement to accepted limits, existing soft, compressible ground may be improved by soil improvement (soil mixing with cement, stone columns, geopiers, etc) or by placement a deep foundation system like drilled piers.

A. Soil-Cement Mixing

A technique to improve soft and compressible ground condition is through mixing of the subsurface soil with cement. Soil-cement mixing is accomplished by augering 36 to 48-inch diameter holes to a depth of about 20 feet below ground surface and mixing the soil with cement creating a soil-cement column. The deep soil mixing serves to reduce settlement by replacing the compressible clay soils below the structures with very stiff soil-cement columns, creating a stiffer composite soil matrix.

Soil-cement design should be provided by a licensed specialty contractor. Specialty contractor should also provide allowable soil bearing capacity and associated settlement.

B. Stone Columns

Stone columns consisting of gravel stones that are placed in underground columns by a vibroreplacement method are effective in mitigating the settlement hazard related to highly compressible soil layers. They have been used frequently in Southern California.

For preliminary design purposes, the stone columns should be extended to a dense, non-compressible layer, spaced on approximately 6-foot on centers, and have an effective diameter of approximately 30-36 inches. The vibro-replacement method densifies the soil around the column. Settlement potential of the soil is greatly reduced by densification, drainage, and increased stiffness of the soil within the treated area. The stone columns should extend to a depth determined by engineering design based on settlement risks, but should, as a minimum, be founded at depths greater than 20 feet.

A 24-inch thick aggregate base layer should overlie the stone column treated area beneath the foundation to act as a drainage layer and to spread transmitted loads to the stone columns.

The above data for stone columns is presented as preliminary information only. A specialty contractor should be consulted for the actual design and construction of stone columns. Specialty contract should also provide allowable soil bearing capacity and associated settlement.

All of the stone column installation operations should be conducted under the observation of the geotechnical engineer's representative.

C. Geopiers

Another technique to improve soft and compressible ground condition is through placement of geopiers. Geopiers are constructed by augering 30 to 36-inch diameter holes to depths of about 8 to 20 feet below the base of the footings and backfilling the holes with thin lifts of compacted aggregates. Compaction densifies the aggregate and increases lateral stress in the soil matrix. The system serves to reduce settlement by replacing the compressible clay soils below the structures with very stiff aggregate piers, creating a stiffer composite soil matrix.

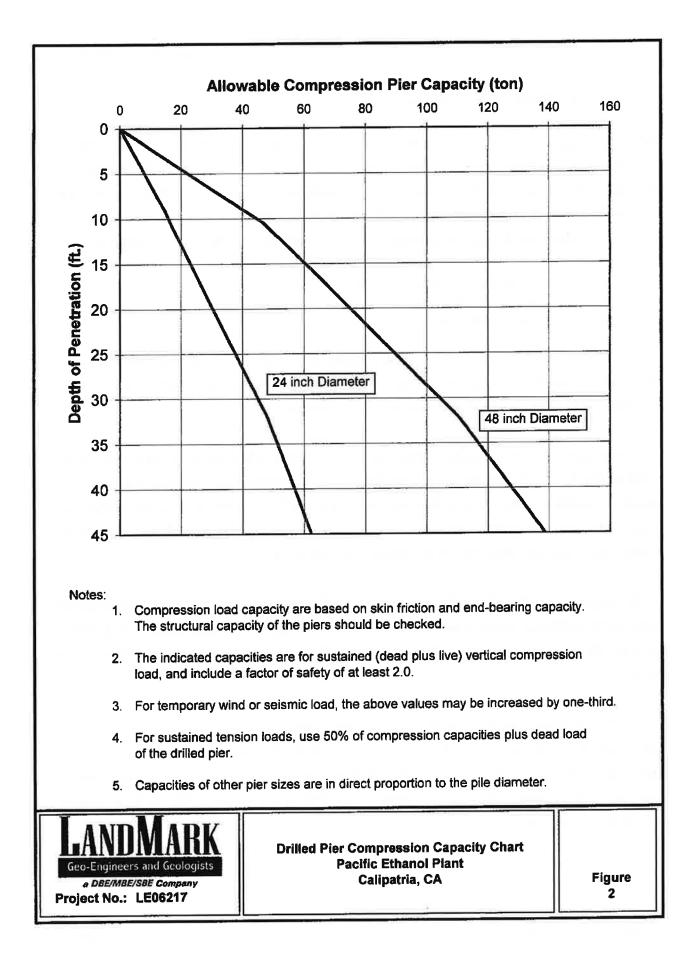
Geopier design should be provided by a licensed specialty contractor. Specialty contractor should also provide allowable soil bearing capacity and associated settlement. One demonstration pier should be installed with the contractor's standard procedures and then load –tested to determine the soil modulus. The load testing setup and procedures should be selected by the geopier contractor and submitted for review to the project geotechnical engineer. The demonstration pier should be installed at the foundation grade level.

All of the Geopier element installation operations should be conducted under the observation of the geotechnical engineer's representative.

D. Drilled Piers

Recommendations for 24 and 48 inch diameter cast-in place drilled piers are provided below.

<u>Vertical Capacity</u>: Vertical capacity for 24 and 48 inch diameter shafts are presented in Figure 2. Capacities for other shaft sizes can be determined in direct proportion to shaft diameters. End bearing and skin friction parameters have been used to determine the allowable shaft capacity. The allowable capacities include a factor of safety of 2.0. The allowable vertical compression capacities may be increased by 33 percent to accommodate temporary loads such as from wind or seismic forces. The allowable vertical shaft capacities are based on the supporting capacity of the soil. The structural capacity of the piers should be verified by the structural engineer.


Lateral Capacity: The allowable lateral capacity for 24 and 48 inch diameter shafts are given in the table shown below. The allowable horizontal deflection at the shaft head has been assumed to be one-half inch (0.50 inch).

Shaft Diameter (in.)	2	24	4	18
Head Condition	Free	Fixed	Free	Fixed
Allowable Head Deflection (in.)	0.5	0.5	0.5	0.5
Length (ft.)	15	15	15	15
Lateral Capacity (kips)	21.5	50.5	33.0	145
Maximum Moment (foot-kips)	73.5	328	108	1366
@Depth from Pier Head (ft.)	6	0	6	0
Length (ft.)	25	25	25	25
Lateral Capacity (kips)	29	61	76	205
Maximum Moment (foot-kips)	127.5	352	507	2192
@Depth from Pier Head (ft.)	8.4	0	12.5	0
Length (ft.)	35	35	35	35
Lateral Capacity (kips)	30.5	63	91	222
Maximum Moment (foot-kips)	132.5	355.5	716	2208
@Depth from Pier Head (ft.)	8.6	0	12.8	0

Lateral Pier Capacities

Uplift Capacity: Pier capacity in tension should be taken as 50% of the compression capacity.

Installation: The drilled pier shall be placed in conformance to ACI 336 guidelines. Excavation for piers should be inspected by the geotechnical consultant. The bottom of the excavation for piers should be reasonably free of loose or slough material. A tremie pipe should be used to pour concrete from the bottom up and to ensure less than five feet of free fall. The drilled piers should be cased if groundwater is encountered due the presence of saturated medium dense to very dense sandy soils at a depth below 16 feet.

4.5 Tank Foundations and Settlements

<u>Site Preparation and Grading</u>: The existing soils underlying the steel tanks should be removed to a depth of 36 inches below ground surface extending to a minimum of 5 feet beyond the perimeter of the tanks. The native soil at the subexcavation and footing excavation level should be compacted to 85 - 90 % of ASTM D1557 maximum density for a minimum depth of 8 inches. The area should then be brought to finish grade with engineered fill consisting of the following components:

- 24 inches of crushed aggregate base
- 8 inches of crushed rock
- 4 inches of oiled sand

As a minimum, a steel ring should be placed to contain the crushed rock subgrade below the tank. The rock fill should be placed to the top of the ring wall. The fill may be crowned about 2.5 inches to allow for differential movement between the tank perimeter and center.

The engineered fill should be placed in 8-inch maximum loose lifts and compacted to a minimum 90% of ASTM D1557 maximum density within 2% of optimum moisture. The crushed rock tank underlayment should meet the gradation requirements of ASTM C33, size 57 (1"x No. 4 rock). The proposed source of engineered fill and rock should be submitted to the geotechnical engineer for review and testing to verify conformance to these requirements.

<u>Tank Foundations</u>: Flexible steel tanks, which can withstand large settlements, generally require minimal foundations, allowing settlement to occur and using flexible connections to inlet/outlet piping. The tanks should have a perimeter ring wall foundation which supports the tank wall and roof.

The interior footings and the ringwall may be proportioned for a net load of 1,500 to 2,000 psf for dead load of roof weight (plus sustained live load) excluding the weight of the ethanol. This soil pressure can be increased by one third for transient and seismic loads. The minimum depth of the ring wall footing should be 18 inches below the finished ground surface. The minimum footing width should be 12 inches.

Estimated Tank Settlements: The subsurface clays are saturated and overconsolidated in their natural state. Imposed foundations loads can consolidate the soils by reducing the void ratio through pore water expulsion. The amount of vertical settlement that occurs as a result of soil compression varies with applied loads, foundation shape and width.

Moderately loaded structures, such as the flexible steel tanks which can withstand large settlements, will generally require minimal foundations, allowing settlement to occur and using flexible connections to inlet/outlet utility lines. The silts and clays will consolidate fairly slowly because of their low permeability. Flexible connections such a "Flex-Tend" expansion joints should be used to connect exterior piping with the tank. The tank should be preloaded and monitored for settlement prior to making piping connections. It may be necessary to readjust piping connections after the loading sequence.

Estimated settlements were calculated using the consolidation and field data test data for the silt and clay strata and Schmertman's analysis for the granular strata using the CPT engineering properties correlations. The soils to a depth of the diameter of the tanks (50 to 100 feet) may be significantly stressed so as to contribute to the overall settlement. The estimated settlements for different tanks heights and diameters are provided in the table below:

TT.1.1.4 64	Diameter, ft					
Height, ft	50	75	100			
20	3.50	4.30	4.90			
24	3.70	4.50	5.10			
28	3.90	4.80	5.40			
32	4.10	5.00	5.60			
36	4.30	5.40	6.30			

Estimated Center Settlements

The estimated settlements for the tanks are approximately 3.50 to 6.30 inches in the center of the tanks and about 1.90 to 3.10 inches at the edge of the tanks (depends on tank dimensions). Since the settlement is deep seated, little is gained by further excavation and replacement of compacted granular fill to reduce settlements.

4.6 Concrete Mixes and Corrosivity

Selected chemical analyses for corrosivity were conducted on bulk samples of the near surface soil from the project site (Plates C-9 and C-10). The native soils were found to have low to severe levels of sulfate ion concentration (928 to 6,094 ppm). Sulfate ions in high concentrations can attack the cementitious material in concrete, causing weakening of the cement matrix and eventual deterioration by raveling. The California Building Code recommends that increased quantities of Type II Portland Cement be used at a low water/cement ratio when concrete is subjected to moderate sulfate concentrations. Type V Portland Cement and/or Type II/V cement with 25% flyash replacement is recommended when the concrete is subjected to soil with severe sulfate concentration.

A minimum of 6.25 sacks per cubic yard of concrete (4,500 psi) of Type V Portland Cement with a maximum water/cement ratio of 0.45 (by weight) should be used for concrete placed in contact with native soil on this project (sitework including sidewalks, driveways, and foundations). Admixtures may be required to allow placement of this low water/cement ratio concrete.

The native soil has a very severe level of chloride ion concentration (2,920 to 4,060 ppm). Chloride ions can cause corrosion of reinforcing steel, anchor bolts and other buried metallic conduits. Resistivity determinations on the soil indicate very severe potential for metal loss because of electrochemical corrosion processes. Mitigation of the corrosion of steel can be achieved by using steel pipes coated with epoxy corrosion inhibitors, asphaltic and epoxy coatings, cathodic protection or by encapsulating the portion of the pipe lying above groundwater with a minimum of 3 inches of densely consolidated concrete. *No metallic pipes or conduits should be placed below foundations*.

Foundation designs shall provide a minimum concrete cover of three (3) inches around steel reinforcing or embedded components (anchor bolts, etc.) exposed to native soil or landscape water (to 18 inches above grade). If the 3-inch concrete edge distance cannot be achieved, all embedded steel components (anchor bolts, etc.) shall be epoxy dipped for corrosion protection or a corrosion inhibitor and a permanent waterproofing membrane shall be placed along the exterior face of the exterior footings. Additionally, the concrete should be thoroughly vibrated at footings during placement to decrease the permeability of the concrete.

4.7 Excavations

All site excavations should conform to CalOSHA requirements for Type B soil. The contractor is solely responsible for the safety of workers entering trenches. Temporary excavations with depths of 4 feet or less may be cut nearly vertical for short duration. Excavations deeper than 4 feet will require shoring or slope inclinations in conformance to CAL/OSHA regulations for Type B soil. Surcharge loads of stockpiled soil or construction materials should be set back from the top of the slope a minimum distance equal to the height of the slope. All permanent slopes should not be steeper than 3:1 to reduce wind and rain erosion. Protected slopes with ground cover may be as steep as 2:1. However, maintenance with motorized equipment may not be possible at this inclination.

4.8 Lateral Earth Pressures

Earth retaining structures, such as retaining walls, should be designed to resist the soil pressure imposed by the retained soil mass. Walls with granular drained backfill may be designed for an assumed static earth pressure equivalent to that exerted by a fluid weighing 55 pcf for unrestrained (active) conditions (able to rotate 0.1% of wall height), and 70 pcf for restrained (at-rest) conditions. These values should be verified at the actual wall locations during construction.

When applicable (walls retaining more than 6 feet of earth) seismic earth pressure on walls may be assumed to exert a uniform pressure distribution of 7.5H psf against the back of the wall, where H is the height of the backfill. The total seismic load is assumed to act as a point load at 0.6H above the base of the wall.

Surcharge loads should be considered if loads are applied within a zone between the face of the wall and a plane projected behind the wall 45 degrees upward from the base of the wall. The increase in lateral earth pressure acting uniformly against the back of the wall should be taken as 50% of the surcharge load within this zone. Areas of the retaining wall subjected to traffic loads should be designed for a uniform surcharge load equivalent to two feet of native soil. Walls should be provided with backdrains to reduce the potential for the buildup of hydrostatic pressure. The drainage system should consist of a composite HDPE drainage panel or a 2-foot wide zone of free draining crushed rock placed adjacent to the wall and extending 2/3 the height of the wall. The gravel should be completely enclosed in an approved filter fabric to separate the gravel and backfill soil. A perforated pipe should be placed perforations down at the base of the permeable material at least six inches below finished floor elevations. The pipe should be sloped to drain to an appropriate outlet that is protected against erosion. Walls should be properly waterproofed. The project geotechnical engineer should approve any alternative drain system.

4.9 Seismic Design

This site is located in the seismically active southern California area and the site structures are subject to strong ground shaking due to potential fault movements along the San Andreas Fault. Engineered design and earthquake-resistant construction are the common solutions to increase safety and development of seismic areas. Designs should comply with the latest edition of the CBC for Seismic Zone 4 using the seismic coefficients given in Section 3.4 of this report. This site lies approximately 4.5 km from a Type B fault and overlies S_p (stiff) soil.

4.10 Pavements

Pavements should be designed according to CALTRANS or other acceptable methods. Traffic indices were not provided by the project engineer or owner; therefore, we have provided structural sections for several traffic indices for comparative evaluation. The public agency or design engineer should decide the appropriate traffic index for the site. Maintenance of proper drainage is necessary to prolong the service life of the pavements. Based on the current State of California CALTRANS method, an estimated R-value of 5 for the subgrade soil and assumed traffic indices, the following table provides our estimates for asphaltic concrete (AC) pavement sections.

R-Value of Subgrade Soil - 5 (estimated) Design Method - CALTRAN							
	Flexible Pa	avements	(*) Flexible	Pavements	Rigid (PCC) Pavements		
Traffic Index (assum ed)	Asphaltic Concrete Thickness (in.)	Aggregate Base Thickness (in.)	Asphaltic Concrete Thickness (in.)	Aggregate Base Thickness (in.)	Concrete Thickness (in.)	Aggregate Base Thickness (in.)	
4.0	3.0	8.0	3.0	4.0	5.0	6.0	
5.0	3.0	9.0	3.0	4.0	5.5	6.0	
6.0	3.0	14.0	3.0	6.0	6.0	6.0	
6.5	4.0	14.0	4.0	8.0	7.0	8.0	
8.0	4.0	18.0	4.0	11.0	8.0	11.0	
10.0	4.5	26.0	4.5	16.0	9.0	13.0	
11.0	5.5	28.0	5.5	20.0	10.0	15.0	

RECOMMENDED PAVEMENTS SECTIONS

(*) Pavement structural section when used in conjunction with 9 inches of lime-treated subgrade soil (3-4% quicklime by weight) with minimum R-Value = 60 (Other pavements sections can be provided for varying depths of lime treatment).

Notes:

- Asphaltic concrete shall be Caltrans, Type B, 34 inch maximum (1/2 inch maximum for 1) parking areas), medium grading, compacted to a minimum of 95% of the 75-blow Marshall density (ASTM D1559).
- 2) Aggregate base shall conform to Caltrans Class 2 (3/4 in. maximum), compacted to a minimum of 95% of ASTM D1557 maximum dry density.
- Place pavements on 12 inches of moisture conditioned (minimum 4% above optimum if 3) clays) native clay soil compacted to a minimum of 90% (95% if sand subgrade) of the maximum dry density determined by ASTM D1557.
- Portland cement concrete for pavements should have Type V cement, a minimum 4) compressive strength of 4,500 psi at 28 days, and a maximum water-cement ratio of 0.45.
- Typical Street Classifications (Imperial County) 5)

)
)

4.11 Railroad Spur Line Subgrade Preparation:

Option No. 1:

The site preparation for the railroad spur line will consist of the removal of 1.5 feet of native soil (17.33 feet wide) along the spur route. The exposed subgrade soil will be scarified and compacted to a minimum of 90% of ASTM D1557 maximum density at a minimum of 4% above optimum moisture and a geotextile fabric placed over the subgrade as specified below.

Option No. 2:

If it is desired that an "above grade" ballast and sub-ballast be used, the surface 1.5 feet of native soil shall be removed to a width of 23.33 feet and recompacted to at least 90% (ASTM D1557) at a minimum of 4% above optimum moisture. A geotextile stabilization/separation fabric such as Mirafi "Geolon HP 370" or equivalent should be placed over the prepared native clay subgrade prior to placing sub-ballast.

An 18-inch layer of Caltrans Class 2 Aggregate Base (1½ inch grading) material shall be placed as sub-ballast and compacted in 6-inch lifts over the geotextile fabric. If placed above grade, the sub-ballast should be 23.33 feet wide and extend upward with 2:1 outer slopes to a top width of 17.33 feet wide. If no geotextile is used, an additional 6 inches of class 2 aggregate base should be used. The Class 2 base shall be moisture conditioned (\pm 2% of optimum moisture) and compacted to a minimum of 95% of ASTM D1557 maximum density.

After sub-ballast placement, a minimum of 8 inches of railroad ballast shall be placed below the railroad ties. The ballast shall be sloped no steeper than 3:1 giving a 13.33-foot wide surface to support the rail ties.

Section 5 LIMITATIONS AND ADDITIONAL SERVICES

5.1 Limitations

The recommendations and conclusions within this report are based on current information regarding the proposed Pacific Ethanol Plant located at the southeast corner of State Hwy 111 and Yocum Road south of Calipatria, California. The conclusions and recommendations of this report are invalid if:

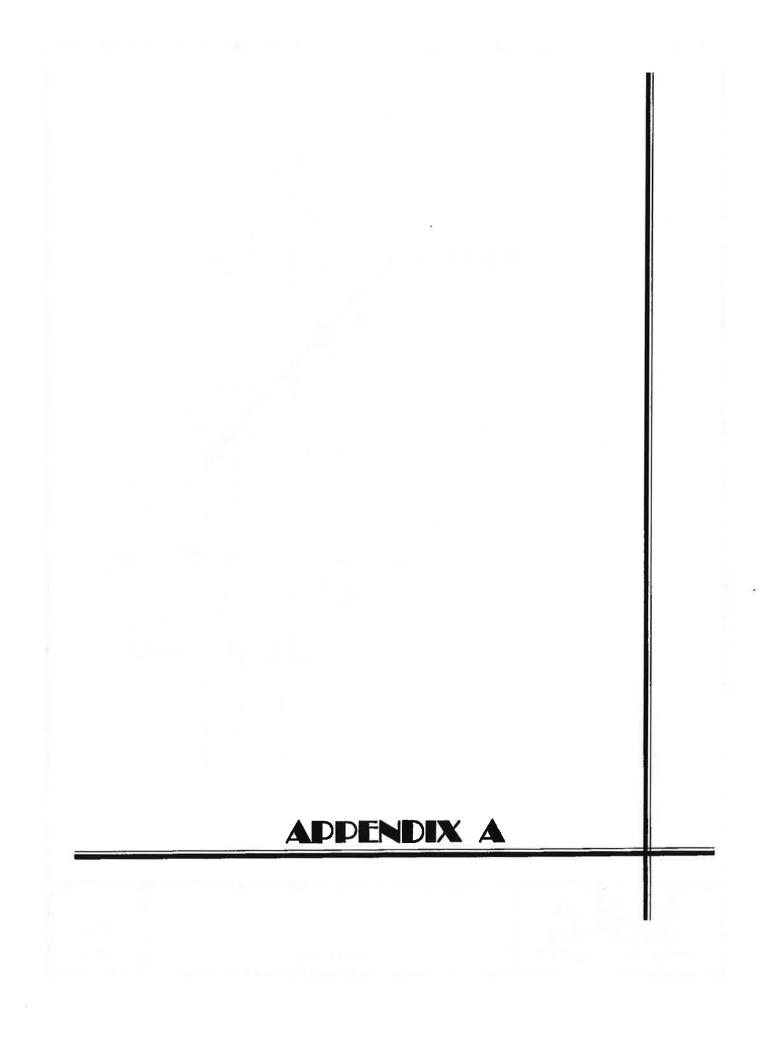
- Structural loads change from those stated or the structures are relocated.
- The Additional Services section of this report is not followed.
- ▶ This report is used for adjacent or other property.
- Changes of grade or groundwater occur between the issuance of this report and construction other than those anticipated in this report.
- Any other change that materially alters the project from that proposed at the time this report was prepared.

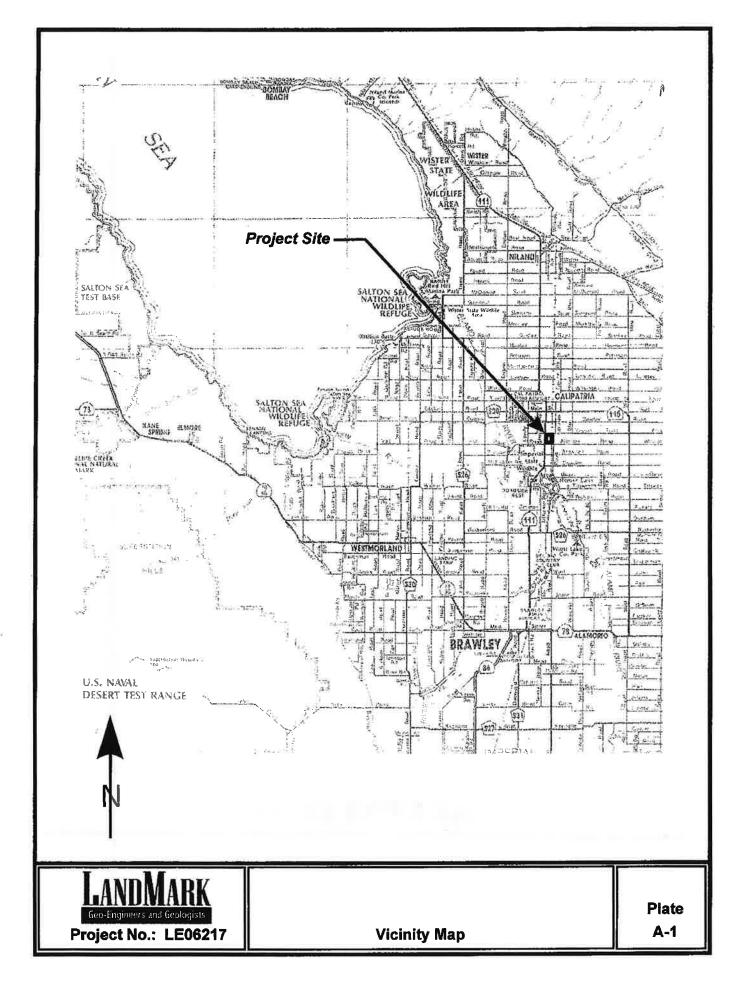
Findings and recommendations in this report are based on selected points of field exploration, geologic literature, laboratory testing, and our understanding of the proposed project. Our analysis of data and recommendations presented herein are based on the assumption that soil conditions do not vary significantly from those found at specific exploratory locations. Variations in soil conditions can exist between and beyond the exploration points or groundwater elevations may change. If detected, these conditions may require additional studies, consultation, and possible design revisions.

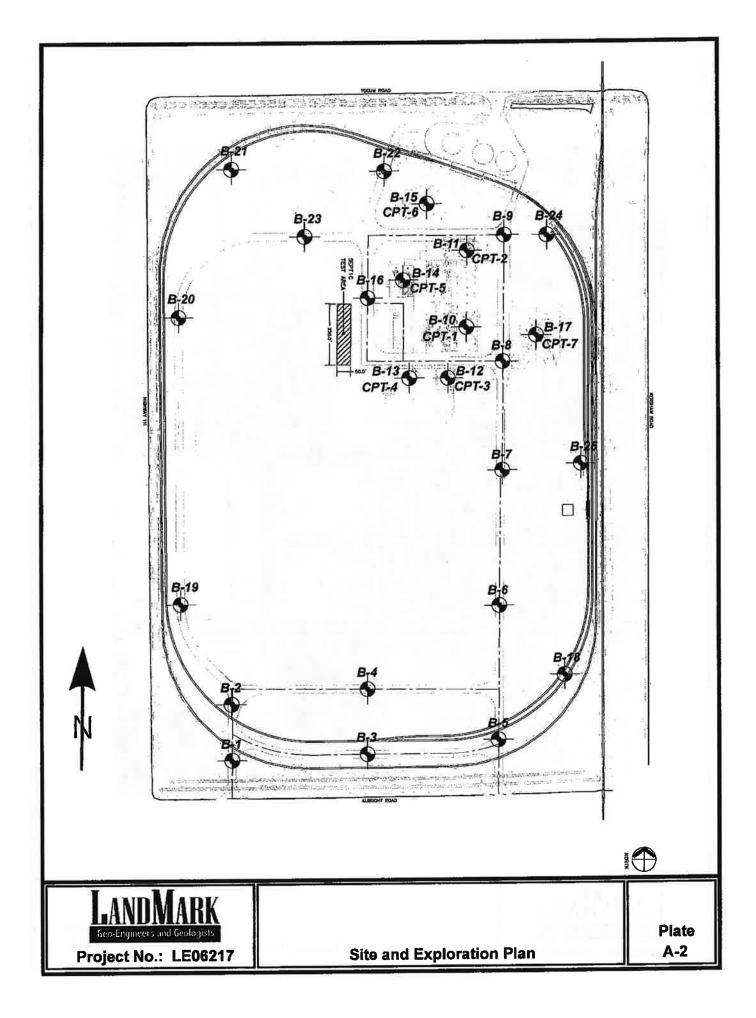
This report contains information that may be useful in the preparation of contract specifications. However, the report is not worded is such a manner that we recommend its use as a construction specification document without proper modification. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk.

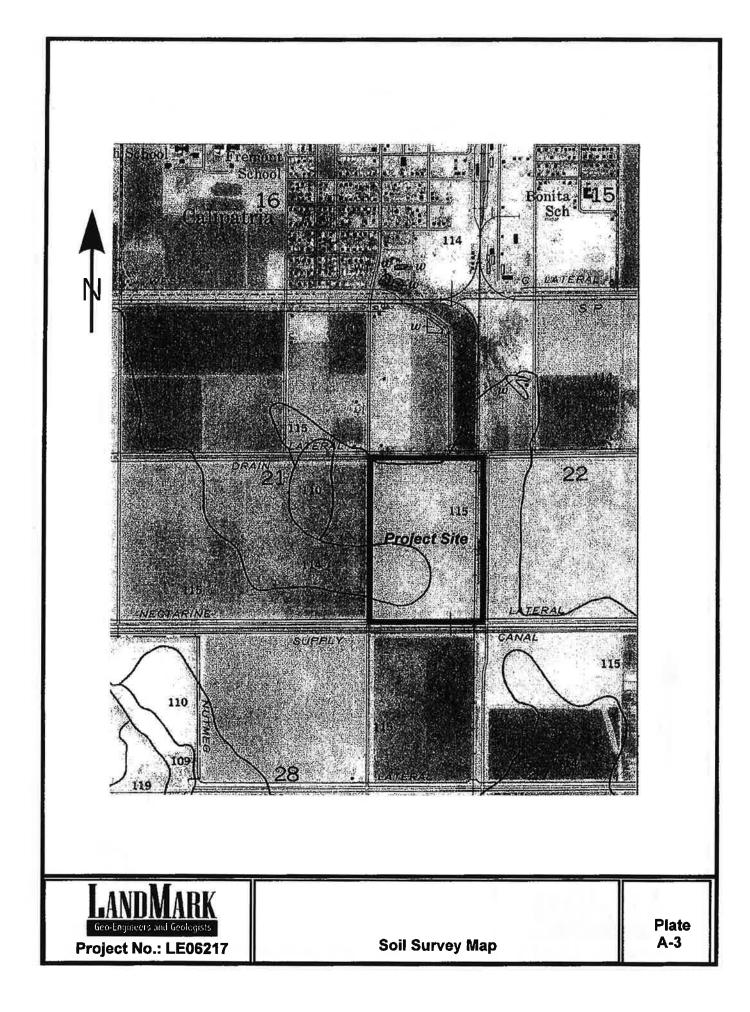
This report was prepared according to the generally accepted *geotechnical engineering standards of practice* that existed in Imperial County at the time the report was prepared. No express or implied warranties are made in connection with our services. This report should be considered invalid for periods after two years from the report date without a review of the validity of the findings and recommendations by our firm, because of potential changes in the Geotechnical Engineering Standards of Practice.

The client has responsibility to see that all parties to the project including, designer, contractor, and subcontractor are made aware of this entire report. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk.


5.2 Additional Services


We recommend that Landmark Consultants, Inc. be retained as the geotechnical consultant to provide the tests and observations services during construction. If Landmark Consultants does not provide such services then the geotechnical engineering firm providing such tests and observations shall become the geotechnical engineer of record and assume responsibility for the project.

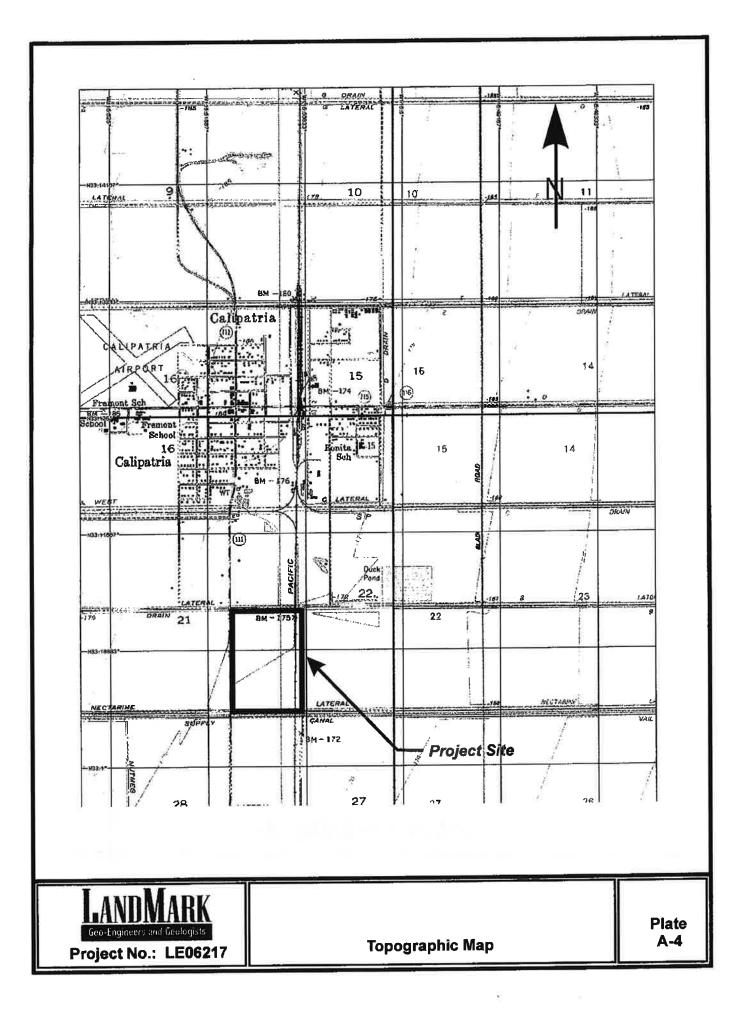

The recommendations presented in this report are based on the assumption that:

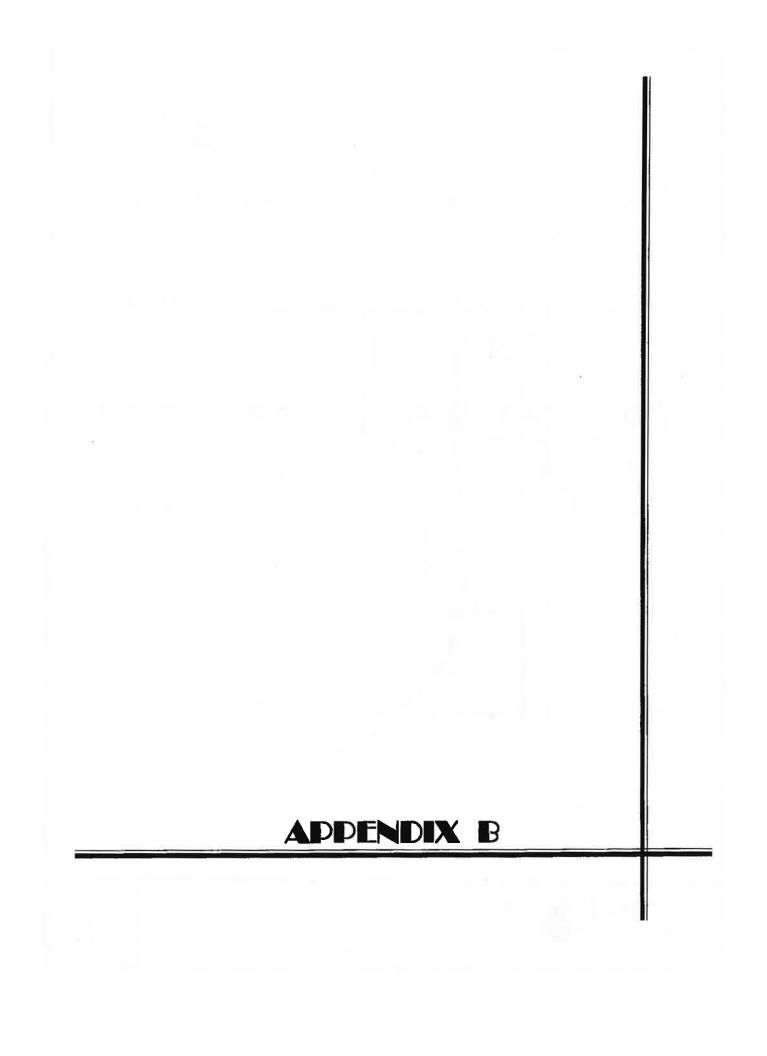

- Consultation during development of design and construction documents to check that the geotechnical recommendations are appropriate for the proposed project and that the geotechnical recommendations are properly interpreted and incorporated into the documents.
- Landmark Consultants will have the opportunity to review and comment on the plans and specifications for the project prior to the issuance of such for bidding.
- Continuous observation, inspection, and testing by the geotechnical consultant of record during site clearing, grading, excavation, placement of fills, building pad and subgrade preparation, and backfilling of utility trenches.
- Observation of foundation excavations and reinforcing steel before concrete placement.
- Other consultation as necessary during design and construction.

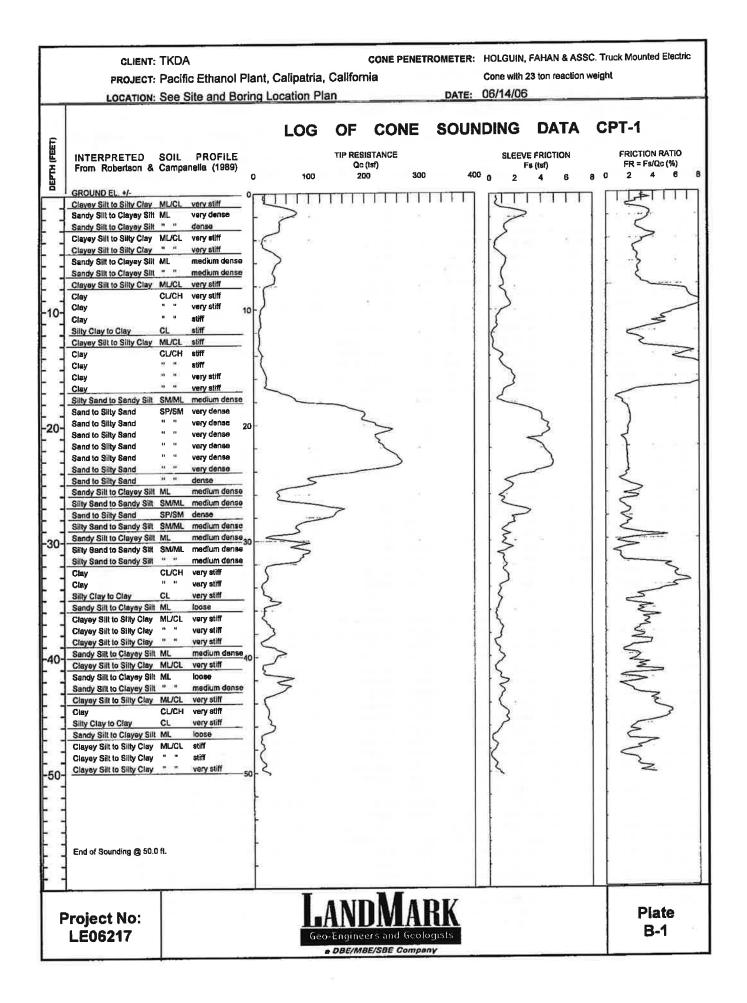
We emphasize our review of the project plans and specifications to check for compatibility with our recommendations and conclusions. Additional information concerning the scope and cost of these services can be obtained from our office.

Soil Survey of

IMPERIAL COUNTY CALIFORNIA IMPERIAL VALLEY AREA

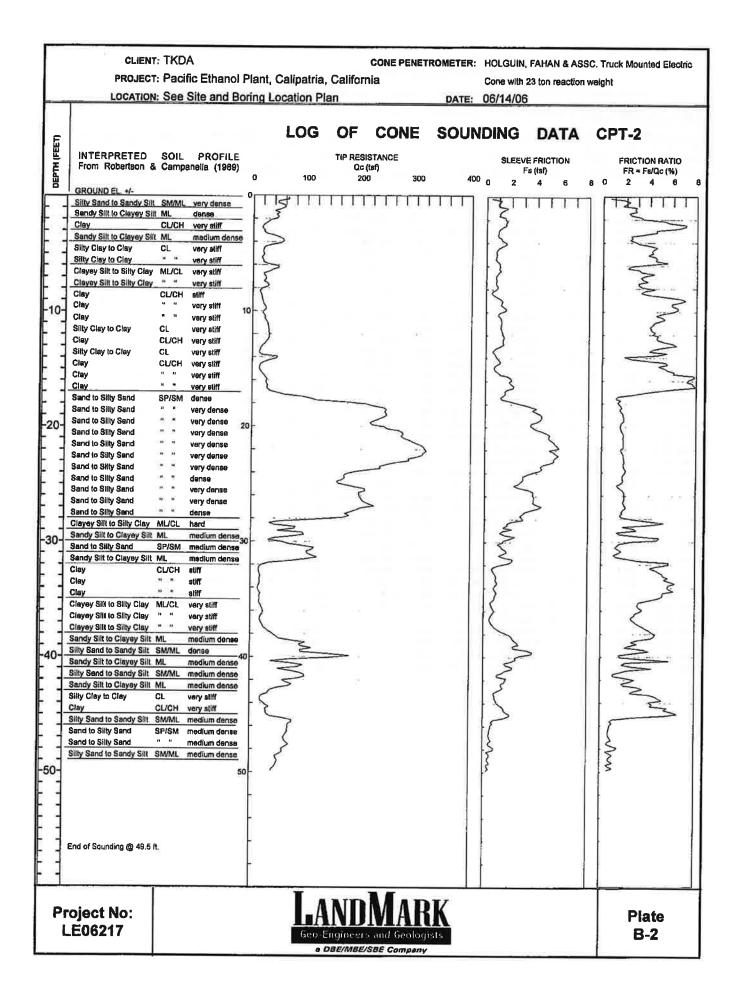

United States Department of Agriculture Soil Conservation Service in cooperation with University of California Agricultural Experiment Station and Imperial Irrigation District


IMPERIAL COUNTY, CALIFORNIA, IMPERIAL VALLEY AREA


TABLE 11.--ENGINEERING INDEX PROPERTIES--Continued

Soil name and	Depth	USDA texture	1	T	Frag-			number-		Liquid	Plas-
map symbol			Unified	AASHTO	linches	4	10	40	200	i	ticit
	In	[1	1	Pet	1	T	1	1	Pot	1
111*: Holtville	110-22	Silty clay loam Clay, silty clay Silt loam, very fine sandy loam.	ICL, CH	A-7 A-7 A-4	0 0 0	100 100 100	100 100 100	195-100	85-95 85-95 65-85	1 40-65	20-35 20-35 NP-10
Imperial		Silty clay loam Silty clay loam, silty clay, clay.		A-7 A-7	0	100 100	100 100	100 100	85-95 85-95	40-50 50-70	10-20 25-45
112 Imperial	0-12 12-60	Silty clay Silty clay loam, silty clay, clay.	СН	A-7 A-7	0	100 100	100		85-95 85-95	50-70 50-70	25-45 25-45
113 Imperial	0-12 12-60	Silty clay Silty clay, clay, silty clay loam.	сн Сн	A-7 A-7	°,	100 100	100 100		85-95 85-95	50-70 50-70	25-45 25-45
114 Imperial	12-60	Silty clay Silty clay loam, silty clay, clay.	сн Сн	A-7 A-7	0	100 100	100 100		85-95 85-95	50-70 50-70	25-45 25-45
115*: Imperial	12-60	Silty clay loam Silty clay loam, silty clay, clay.		A-7 A-7	0 0	100 100	100		85-95 85-95	40-50 50-70	10-20 25-45
Glenbar	13-60	Silty clay loam Clay loam, silty clay loam.	CL CL	A-6, A-7 A-6, A-7		100 100	100 100	90-100 90-100		35~45 35-45	15-25 15~25
16*: Imperial	13-60	Silty clay loam Silty clay loam, silty clay, clay.	CL CH	A-7 A-7	0	100 100	100 100		85-95 85-95	40→50 50-70	10-20 25-45
		Silty clay loam Clay loam, silty clay loam.		A-6, A-7 A-6	0	100 100		90-100 90-100		35-45 35-45	15-25 15-30
17, 118 Indio	0-12 12-72	Loam	ML ML	A-4 A-4	0 d	95-100 95-100	95-100 95-100	85-100 85-100	75-90 75-90	20-30 20-30	NP-5 NP-5
	12-72	Loam		A-4 A-4	0 0	95-100 95-100	95-100 95-100	85-100 85-100	75-90 75-90	20-30 20-30	NP-5 NP-5
Vint	10-60	Loamy fine sand Loamy sand, loamy fine sand.	SM SM	A-2 A-2	0	95-100 95-100	95-100 95-100	70-80 70-80	25-35 20-30		N.P N P
20* Laveen	12-60	Loam Loam, very fine sandy loam.	ML, CL-ML ML, CL-ML	A-4 A-4	0 0			75-85 70-80		20-30 15-25	NP-10 NP-10

See footnote at end of table.

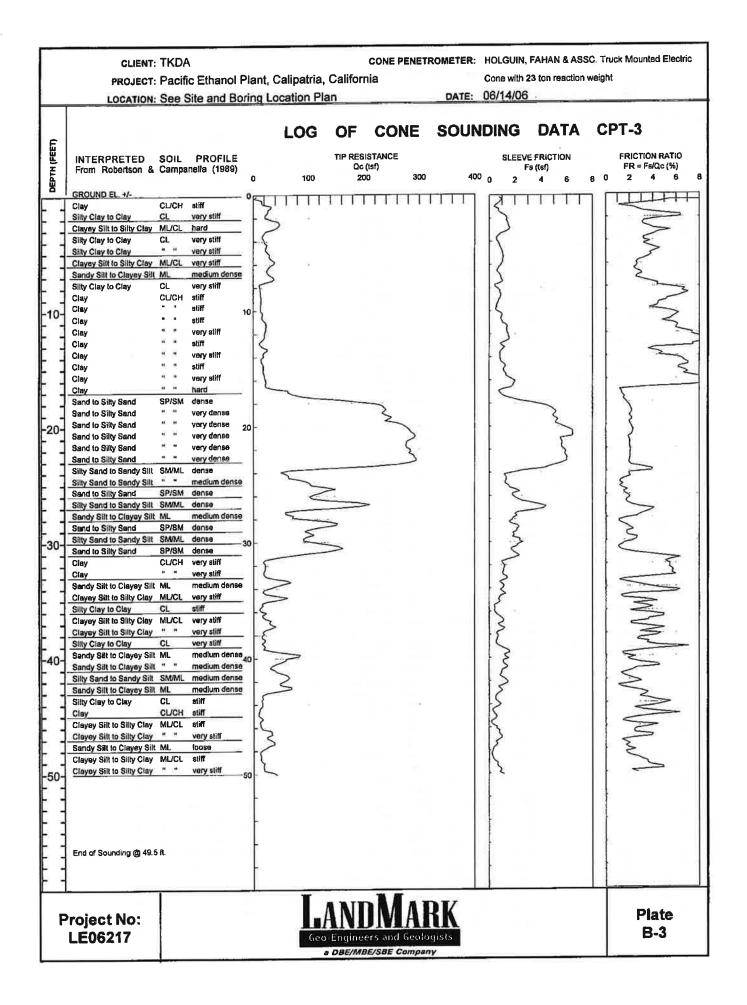


CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

		NDING:																
_		GWT (ft):			_						P	hi Cor	relation:	0	0-Schm	(78), 1-R&	C(83),2-F	PHT(74
lase	Base	Avg	Avg		1				Est.	Qc		Cn		Est.	Rel.	Nk:	17.0	
	Depth	Τίρ	Friction		Soil	Sall		Density or	Density	to	SPT	or	Norm.	%	Dens,	Phi	Su	
eters	feet	Qc, tsf	Ratio, %		Туре	Classification	USC	Consistency	(pcf)	N	N(60)	Cq	Qc1n	Fine	s Dr (%)	(deg.)	(tsf)	00
																		_
0.15	0.5	16.66	3.24	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	7	2.00		75			0.09	~
0.30	1.0	23.82	2.18		6	Sandy Silt to Clayey Silt	ML	dense	115	3.5	7	2.00	45.0		75	20	0.98	>'
0.45	1.5	63.59	2.62		6	Sandy Silt to Clayey Silt	ML	very dense	115	3.5	18	2.00				39		
0.60	2.0	74.29	3.65	•	6	Sandy Silt to Clayey Silt	ML,	very dense	115				120.2		97	42		
0.75	2.5	50.38	3.32	-	5	Clayey Silt to Silty Clay	ML/CL	hard		3.5	21	2.00	140.4		97	42		
0.93	3.0	46.80	2.49		6	Sandy Silt to Clayey Silt	MLCL		120	2.5	20	2.00		50	-		2.96	>
1.08	3.5	42.46	3.04		6	Sandy Slit to Clayey Slit	ML	dense	115	3.5	13	2.00	88.5		76	39		
1.23	4.0	19.18	3.89		4			dense	115	3.5		2.00	80.3		71	38		
1.38	4.5	15.86	2.92		5	Silty Clay to Clay	CL	very stiff	125	1.8		2.00		80			1.12	>
1.53	5.0	22.65				Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	6	2.00		75			0.92	>'
			2.28		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		1.95	41.7		47	35		
1.68	5.5	42.69	2.56		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	12	1.86	74.8	45	64	37		
1.83	6.0	46.06	2.73		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	13	1.77	77.2	45	65	37		
1.98	6.5	37.92	2.72		6	Sandy Silt to Clayey Sill	ML	medium dense	115	3.5	11	1.70	61.0	50	58	36		
2.13	7.0	35.19	2.87		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	10	1.64	54,5	50	55	36		
2.28	7.5	38.53	2.71		6	Sandy Silt to Clayey Silt	ML.	medium dense	115	3.5	11	1.58	57.6	50	56	36		
2.45	8.0	29.98	3.42		5	Clayey Silt to Silty Clay	ML/CL	very sliff	120	2.5	12	1.53		60			1.74	>
2.80	8.5	18.32	6.35	3	3	Clay	CL/CH	very stiff	125	1.3	15	1.48		95			1.05	>
2.75	9.0	19.01	7.12	3	3	Clay	СГ/СН	very stiff	125	1.3	15	1.43		100			1.09	>
2.90	9.5	20.09	8.03	3	3	Clay	CL/CH	very stiff	125	1.3	16	1.41		100			1.15	>
3.05	10.0	15.99	7.68	3	3	Clay	CL/CH	atiff	125	1.3		1.39		100			0.91	>
3.20	10.5	11.99	8.01	3	3	Clay	CL/CH	stiff	125	1.3		1.37		100			0.67	8.4
.35	11.0	11.77	4.86 3	3	3	Clay	CL/CH	stiff	125	1.3		1.35		100			0.66	7.7
.50	11.5	13,18	4,46 3	3	3	Clay	CL/CH	stiff	125	1.3		1.34		100			0.74	9.0
.65	12.0	10.00	2.91 4		4	Silty Clay to Clay	CL	stiff	125	1.8		1.32		100				
	12.5	10.37	2.08 8		5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5							0.55	6.6
	13.0	10.88	3.00 4		4	Silty Clay to Clay	CL	stiff				1.30		95			0.57	>1
	13.5	9.30	3.75 3		-	Clay			125	1.8		1.29		100			0.60	7.4
	14.0	13.52	7.02 3			•	CL/CH	stiff	125	1.3		1.27		100			0.51	4.1
	14.5					Clay	CL/CH	stiff		1.3		1.26		100			0.76	7.5
		14.28	8.09 3			Clay	CL/CH	stiff		1.3		1.24		100			0.80	8.0
	15.0	13.62	7.94 3			Clay	CL/CH	stiff		1.3		1.23		100			0.76	7.0
	15.5	18.37	8.96 3			Clay	CL/CH	very stiff	125	1.3	15	1.22		100			1.04	>1
	16.0	22.68	8.49 3			Clay	CL/CH	very sliff	125	1.3	18 '	1.20		100			1.29	>1
	16.5	22.52	8.18 3			Clay	CL/CH	very stiff	125	1.3	18 -	1.19		100			1.28	>1
	17.0	30,47	4.59 4			Silty Clay to Clay	CL	very stiff	125	1.8	17 1	1.18		85			1.75	>1
	17.5	61.26	1.58 7	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	14 1	1.17	67.5	40	61	37		
5.48	18.0	82.45	1.17 8	3	8	Sand to Silty Sand	SP/SM	medium dense	115	5.5	15 1	.16	90.1	30	69	38		
.65	18.5	182.54	1.63 8	3	8	Sand to Silty Sand	SP/SM	dense	115	5.5	30 1	.15	176.2	20	89	40		
.80	19.0	196.33	1.96 8)	6	Sand to Silty Sand	SP/SM	very dense		5.5		.14	211.1	25	95	41		
.95	19.5	197.73	2.08 7	,		Slity Sand to Sandy Silt	SM/ML	very dense		4.5		.13	210.9	25	95	41		
.10	20.0	217.17	2.07 7	,		Silty Sand to Sandy Silt	SM/ML	vary dense		4.5		1.12	229.9	25	97	42		
.25	20.5	244.40	1.89 8	3		Sand to Silty Sand	SP/SM	very dense		5.5		.11	256.7	20	100	42		
		224.42	1.67 8			Sand to Silty Sand	SP/SM	very dense				.10	233.9	20	98	42		
		226.45	1.51 8			Sand to Silty Sand	SP/SM	very dense		5.5		.09	234.3	20	98	42		
		235.49	1.78 8			Sand to Silty Sand	SP/SM	very dense				.09	234.3 241.8					
		249.33	1.80 8			Sand to Silty Sand	SP/SM	very dense						20	99 100	42		
		262.66	1.84 8			Sand to Silty Sand	SP/SM	-				.08	254.2	20	100	42		
		266.20	1.86 8			Sand to Silty Sand		very dense				.07	265.9	20	101	42		
33		221.85	1.90 8			Sand to Silty Sand	SP/SM	very dense				.06	267.5	20	102	42		
		144.29	1.83 8			•	SP/SM	very dense				.06	221.4	25	96	41		
						Sand to Silty Sand	SP/SM	dense				.05	143.0	30	83	40		
		104.57	1.39 8			Sand to Silty Sand	SP/SM	dense				.04	103.0	30	73	38		
78		84.87	2.18 7			Silty Sand to Sandy Silt	SM/ML	medium dense				.03	63.0	45	67	37		
	26.0	44.01	2.80 6			Sandy Silt to Clayey Silt	ML	medium dense	115 :	3.5	13 1	.03	42.8	65	47	35		
08		49.89	2.12 6			Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	14 1	.02	48.1	55	51	35		
23		118.22	1.35 8		8 5	Sand to Silty Sand	SP/SM	dense	115	5.5	21 1	.01	113.4	30	76	39		
36 3		155.57	1.97 7		7 5	Silly Sand to Sandy Silt	SM/ML	dense				.01	148.2		84	40		
53 3		139.07	1.57 8	1	8 5	Sand to Silty Sand	SP/SM	dense				.00		30	81	39		
68 2	28.5	93.69	1.94 7			Silly Sand to Sandy Silt	SM/ML	medium dense				.00		40	69	38		
85 2	29.0	78,12	1.53 7			Silty Sand to Sandy Silt		medium dense				.99		40	63	37		
	29.5	62.31	2.36 6			Sandy Silt to Clayey Silt	ML	medium dense				.98		55	56	36		
			-	-		Clayey Silt to Silty Clay					.v V			40		00		

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

_	Est C	GWT (ft):	9.0	_	_						F1		elation:		the second se	78),1-R&C	_	11(74)
3ase	Base	Avg	Avg		1				Est.	Qc		Сп		Est.	Rel.	Nk:	17.0	
epth	Depth	Tip	Friction		Soil	Sol		Density or	Density	to	SPT	or	Norm.	%	Dens.	Phi	Su	-272
eters	feet	Qc, tsf	Ratio, %	- 2	Type	Classification	USC	Consistency	(pcf)	N	N(60)	Cq	Qc1n	Fines	5 Dr (%)	(deg.)	(tsf)	OC
9.30	30.5	83.80	1.83	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	19	0.97	76.9	45	65	37		
9.45	31.0	96.01	1.20		8	Sand to Silty Sand	SP/SM	medium dense	115	5.5	17	0.97	87.6	30	69	38		
9.60	31.5	87.76	1.27		6	Sand to Silty Sand	SP/SM	medium dense	115	5.5	16	0.96	79.7	35	66	37		
9.75	32.0	65.93	2.20		7	Sifty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	15	0.95	59.5	55	57	36		
9.90	32.5	21.94	5.35		3	Clay	CL/CH	very stiff	125	1.3	18	0.95		100			1.22	6.5
10.05	33.0	23.36	5.99		3	Clay	CL/CH	very stiff	125	1.3	19	0.94		100			1,30	7.1
10.20	33.5	23.88	6.34		3	Clay	CL/CH	very stiff	125	1.3		0.94		100			1.33	7.2
10.38	34.0	14.81	6.32		3	Clay	CL/CH	atiff	125	1.3		0.93		100			0.80	3.3
10.53		16.88	5.20		3	Clay	CL/CH	stiff	125	1.3		0.92		100			0.92	4.0
10.68	35.0	25.86	3.20		5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.92		100			1.45	>1
10.83	35.5	40.41	2.26		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		0.91	34.9	70	41	34		
10.98	36.0	21.55	3.15		5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.91		100			1.19	>1
	36.5	17.23	3.15		4	Sity Clay to Clay	CL	stiff	125	1.8		0.90		100			0.94	4.8
11.13			3.41		5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.6		0.90		100			1.16	9.5
1.28	37.0	21.11			5		MUCL	very stiff	120	2.5		0.89		95			1.76	>1
11.43	37.5	31.26	3.28			Clayey Silt to Silty Clay		loose	115	3.5		0.89	30.5	80	37	33		
1.58	36.0	36.28	2.56		6	Sandy Silt to Clayey Silt	ML		120	2.5		0.88	50.5	100		00	1.37	>1
11.73	38.5	24.69	2.87			Clayey Silt to Silty Clay	ML/CL	very stiff		1.8		0.88		100			0.76	3,3
11.88	39.0	14.29	3.87		4	Silty Clay to Clay	CL	stiff	125				40.7		40	34	0.70	0,0
12.05	39.5	43.16	1.93		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		0.88	35.7	70	42	34		
12.20	40.0	48.03	2.37		6	Sandy Silt to Clayey Silt	ML	medium dense	116	3.5		0.87	39.5	70	45			
12.35	40.5	37.70	2.41			Sandy Silt to Clayay Silt	ML	loose	115	3.5		0.87	30,9	80	38	33	0.05	
12.50	41.0	15.91	3.27		4	Silty Clay to Clay	CL	sliff	125	1.8		0.86		100			0.85	3.7
12.65	41.5	18.86	4.08	4	4	Silty Clay to Clay	CL	very stiff	125	1.8		0.86		100			1.02	4.7
12.80	42.0	60.05	1.87	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5		0.85	4B.4	60	51	35		
12.95	42.5	52.27	2.41	6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		0.85	42.0	70	47	35		
13.10	43.0	56.51	1.99	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5		0.85	45.2		49	35		
3.25	43.5	32.34	3.26	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	13	0.84		95			1.81	>1
3.40	44.0	18.87	4.17	4	4	Silty Clay to Clay	CL	very stiff	125	1.8	11	0.84		100			1.02	4.3
13.58	44.5	23.43	4.23	4	4	Sility Clay to Clay	CL	very stiff	125	1.8	13	0.83		100			1.29	6.2
13.73	45.0	26.61	5.48	3	3	Clay	CL/CH	very stiff	125	1.3	21	0.83		100			1.47	5.8
13.88	45.5	26.84	5.28	3	3	Çiay	CL/CH	very stiff	125	1.3	21	0.83		100			1.49	5.7
4.03	46.0	32.74	3.61	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	13	0.82		100			1.83	>1
4.18	46.5	36.76	2.26			Sandy Silt to Clayey Silt	ML	loose	115	3.5	10	0.82	27.6	65	35	33		
4.33	47.0	15.33	2.17			Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	6	0.81		100			0.81	3.9
4.48	47.5	14.26	3.40			Silty Clay to Clay	CL	stiff	125	1.8		0.81		100			0.74	2.6
4.83	48.0	17.29	3.03			Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.81		100			0.92	4.5
4.78	48.5	10.95	1.56		-	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.80		100			0.55	2.2
4.75	49.0	14.40	2.33			Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.80		100			0.75	3.3
		19.76	2.33			Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	-	0.80		100			1.06	5.4
15.10	49.5 50.0	19.76 21.77	3.57		-	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.79		100			1.18	6.3



CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

			CPT-2	n, call	patria, California Pr		LE06217	*		Date:							
UNE		SWT (ft):	9.0							P	hi Corr	relation:	0	0-Schm(78),1-R&C		HT(74)
lase	Base	Avg	Avg	1				Est.	Qc		Cn		Est.	Rel.	Nk:	17.0	
	Depth	Tip	Friction	Soil	Soll		Density or	Density	to	SPT	01	Nom.	%	Dens.	Phi	Su	0202
eters	SK 1 (St. 1	Qc, tsf	Ratio, %	Туре	Classification	USC	Consistency	(pcf)	N	N(60)	Cq	Qc1n	Fines	Dr (%)	(deg.)	(tsf)	00
										42	2.00	109.7	30	118	45		
0.15	0.5	58.03	1.53 7		Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	13 15	2.00	100.9		100	42		
0.30	1.0	53.38	2.14 6		Sandy Silt to Clayey Silt	ML	very dense	115	3.5	13	2.00	86.9		88	40		
0.45	1.5	45.95	2.53 6		Sandy Silt to Clayey Silt	ML	dense	115	3.5 3.5	12	2.00	82.5		81	39		
0.60	2.0	43.65	2.97 6		Sandy Silt to Clayey Silt	ML	dense	115	3.3 1.3	21	2.00	02.5	80	÷.		1.53	>1
0.75	2.5	26.13	5,90 3		Clay	CL/CH	very stiff	125	1.3	16	2.00		95			1.06	>1
0.93	3.0	18.18	5.93 3		Clay	CL/CH	very sliff	125	2.5	11	2.00		65	12		1.66	>1
1.0B	3.5	28.43	3.46 5		Clayey Silt to Silty Clay	ML/CL	very sliff	120	3.5	15	2.00	99.5		75	38		-
1.23	4.0	52.63	2.47 6		Sandy Silt to Clayey Silt	ML	dense	115 120	2.5	14	2.00	54.4	60			2.03	>1
1.38	4.5	34.70	3.84 5	5	Clayey Silt to Silty Clay	ML/CL	hard	125	1.8	11	1.94		80			1,10	>1
1.53	5.0	19.06	4.21 4		Silty Clay to Clay	CL	very stiff		1.3	15	1.84		85			1.05	>1
1.68	5.5	18.23	4.31 3		Clay	CL/CH	very stiff	125	2.5	12	1.75		65			1.79	>1
1.83	6.0	30.83	3.86 5		Clayey Silt to Silty Clay	ML/CL	very stiff	120			1.68	60.7		58	36		
1.98	6.5	38.12	2.82 6		Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	11 12	1.65	30.7	75			1.26	>1
2.13	7.0	21.78	3.70 4		Silty Clay to Clay	CL	very stiff	125	1.8				70			1.34	>1
2.28	7.5	23,26	3.39 5		Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	9	1.56		70			1.41	5
2.45	8.0	24.40	3.57 5		Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	1.51		85			0.82	>1
2.60	8.5	14.36	3.55 4		Silty Clay to Clay	CL	stiff	125	1.8	8	1.46					0.99	>1
2.75	9.0	17,36	6.28 3	3	Clay	CL/CH	stiff	125	1.3	14	1.42		100			1.16	>1
2.90	9.5	20.31	6.10 3	3	Clay	CL/CH	very stiff	125	1.3	16	1.40		95			1.30	>1
3.05	10.0	22.68	6,26 3	3	Clay	CL/CH	very stiff	125	1.3	18	1.38		95				>1
3.20	10.5	21.23	4.88 3	3	Clay	CL/CH	very stiff	125	1.3	17	1.36		90			1.22	
3.35	11.0	25.34	4.83 3	3	Clay	CL/CH	very stiff	125	1.3	20	1.34		80			1.46	>1
3.50	11.5	28.60	4.12 4	4	Silty Clay to Clay	ĊL	very stiff	125	1.6	16	1.32		75			1.65	>1
3.65	12.0	30.24	4.27 4	4	Silty Clay to Clay	ÇL	very stiff	125	1.8	17	1.31		75			1.74	>1
3.80	12.5	29.41	4.67 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	17	1.29		80			1.69	>
3.95	13.0	22,35	5.82 3	3	Clay	CUCH	very stiff	125	1.3	18	1.28		95			1.28	>1
4.13		14.74	4.45 3		Clay	CL/CH	stiff	125	1.3	12	1.26		100			0.83	8.8
4.28		25.21	3.99 4		Silty Clay to Clay	CL	very stiff	125	1.8	14	1.25		80			1.44	>1
4.43		31.06	3,85 5		Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	12	1.23		75			1.79	>1
4.58		13.87	5.20 3		Clay	CL/CH	stiff	125	1.3	11	1.22		100			0.77	7.0
4.73		16.54	5.86 3		Clay	CL/CH	stiff	125	1.3	13	1.21		100			0.93	9.3
4.88		24.89	7.55 3		Clay	CL/CH	very stiff	125	1.3	20	1.19		100			1.42	>1
		27.12	7.80 3		Clay	CL/CH	very stiff	125	1.3	22	1.18		100			1.55	>1
5.03			4.77 4		Silty Clay to Clay	CL	very stiff	125	1.8	20	1.17		80			1.99	>1
	17.0	34.57			Slity Sand to Sandy Slit	SM/ML	dense	115	4.5	19	1.16	82.7	36	70	38		
5.33		84.69	1.68 7		Sand to Silty Sand	SP/SM	very dense	115	5.5		1.15	182.9		90	41		
5.48		168.47	1.45 8		Sand to Silty Sand	SP/SM	very dense	115	5.5		1.14	263.5		100	42		
5.65		235.43			•			115	5.5		1.13	261.1		101	42		
5.80		244.48	1.72 8		Sand to Silly Sand	SP/SM SP/SM	very dense very dense	115	5.5	42	1.12	244.7		99	42		
5.95		230.95			Sand to Silty Sand		•	115	5.5	41	1.12	237.6		98	42		
6.10		225.98	1.60 8		Sand to Silty Sand	SP/SM	very danse	115	5.5		1.10	274.4		102	42		
6.25		263.01	1.66 8		Sand to Silty Sand	SP/SM	very dense					285.6		103	42		
6.40		275.73			Sand to Silty Sand	SP/SM	very dense	115	5.5 5.5		1.10	302.1		105	43		
6.55		293.91			Sand to Silty Sand	SP/SM	very dense	115			1.09	320.4		107	43		
6.70		313.93			Sand to Silly Sand	SP/SM	very danse	115	5.5		1.05	319.1		107	43		
6.85	22.5	314.95			Sand to Silty Sand	SP/SM	very dense	115	5.5					107	43		
7.00	23.0	292.15			Sand to Silty Sand	SP/SM	very dense	115	5.5		1.06	293.9		104 99	43		
7,18	23.5	247.91			Sand to Silty Sand	SP/SM	very dense	115	5.5		1.06	247.7			⊕∠ 41		
7.33	24.0	210.60	1.96 8	8 8	Sand to Silty Sand	SP/SM	very dense	115	5.5		1.05	209.0		94			
7.48	24.5	170.57	1.79 8	38	Sand to Silty Sand	SP/SM	dense	115	5.5		1.04	168.1		88	40		
7.63	25.0	160.42	1.73 6	38	Sand to Silty Sand	SP/SM	dense	115	5.5		1.04	157.0		86	40		
7.78		191.25	1.44 6	8 8	Sand to Silty Sand	SP/SM	very dense	115	5.5		1.03	186.0		91	41		
7.93		200.32			Sand to Silty Sand	SP/SM	very dense	115	5.5		1.02	193.5		92	41		
8.08		201.99			Sand to Silty Sand	SP/SM	very dense	115	5.5		1.02	193.9		92	41		
8.23		213.36			Sand to Silty Sand	SP/SM	very dense	115	5.5		1.01	203.5		93	41		
8.38		181.69			Sand to Silty Sand	SP/SM	dense	115	5.5	33	1.00	172.2		89	40		
8.53		154.44			Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	34	1.00	145.5	5 30	84	40		
8.68		43.10			Silty Clay to Clay	CL	hard	125	1.8	25	0.99		85			2.47	>
Q,00					Sandy Silt to Clayey Silt	ML	medium dense		3.5	20	0.98	64.6	55	60	36		
8.85 9.00		69.55 88.77			Silty Sand to Sandy Silt	SM/ML		115	4.5	20	0.98	82.0) 45	67	37		

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

		NDING: SWT (ft):															
Base	Base	Avg	Avg	1						P	Sector Sector	relation:	-			C(83),2-P	HT(74)
	Depth	Tip	Friction	Sa	I Soll		Density as	Est.	Qc		Ċn		Est.	Rel.	Nk:	17.0	
neters	feet	Qc, taf	Ratio, %	Typ	NA 50"	1100	Density or	Density		SPT	or	Norm.	%	Dens.	Phi	Su	1200
IOIOI B	1001	40, 101	NGUU, 70	196	e Classification	USC	Consistency	(pcf)	N	N(60)	Cq	Qc1n	Fines	Dr (%)	(deg.)	(tsf)	00
9.30	30.5	92.69	1.37	8 8	Sand to Silty Sand	SP/SM	medium dense	115	5.5	17	0.97	84.8	35	68	37		
9.45	31.0	105.63	1.54	8 8	Sand to Silty Sand	SP/SM	dense	115	5.5		0.96	95.8	35	71	38		
9.60	31.5	111.61	1.50	8 8	Sand to Silty Sand	SP/SM	dense	115	5.5		0.95	100.7	35	73	38		
9.75	32.0	41.23	4.83	4 4	Silty Clay to Clay	CL	hard	125	1.8	24	0.95	100,1	80		00	2.36	>1
9.90	32.5	15.11	4.45	33	Clay	CL/CH	stiff	125	1.3	12	0.94		100			0.82	3.5
10.05	33.0	16.74	5.11	з з	Clay	CL/CH	stiff	125	1.3	13	0.94		100			0.91	
10.20	33.5	16.61	5.81		Clay	CL/CH	stiff	125	1.3	13	0.93		100				4.0
10.38	34.0	14.83	5.80		Clay	CL/CH	stiff	125	1.3	12	0.92					0.91	3.9
10.53	34.5	15.93	5.74 3		Clay	CL/CH	stiff	125					100			0.80	3.2
10.68	35.0	16.67	5.06 3		Clay	CL/CH	stiff		1.3	13	0.92		100			0.86	3.5
10.83	35.5	16.77	3.45 4		Silty Clay to Clay			125	1.3	13	0.91		100			0.91	3.7
10.98	36.0	21.48	3.27 8		Clayey Silt to Silty Clay	CL	stiff	125	1.B	10	0.91		100			0.91	4.7
11.13	36.5	20.70	2.89 5			ML/CL	very stiff	120	2.5	9	0.90		100			1.19	>1
11.28	37.0	19.37	2.09 2	-	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	8	0.90		100			1.14	9.0
1.43	37.5				Clayey Slit to Silty Clay	ML/CL	very stiff	120	2.5	8	0.89		100			1.06	7.8
	38.0	25.53	3.52 5		Clayey Sit to Silty Clay	ML/CL	very stiff	120	2.5	10	0.89		100			1.42	>1(
11.58	12	38.21	4.35 4		Silty Clay to Clay	ÇL	hard	125	1.8	22	0.88		95			2.17	>1(
1.73	38.5	59.17	3.97 6		Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	24	0.80		75			3.40	>1(
1.88	39.0	94.67	2.67 6	-	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	27	0.87	78.1	55	65	37		
2.05	39.5	98,75	3.24 6		Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	28	0.87	81.1	55	66	37		
2.20	40.0	155.64	1.96 7		Silly Sand to Sandy Silt	SM/ML	dense	115	4.5	35	0.87	127.2	35	80	39		
	40.5	60.95	3.84 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	24	0.86		75			3.50	>10
2.50	41.0	77.81	2.92 8	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	22	0.86	63.0	60	59	36		
	41.5	87.99	1.66 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5		0.85	70.9	45	62	37		
2.80	42.0	83.17	1.98 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	18	0.85	66.7	50	61	36		
2.95	42.5	71.01	2.10 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5		0.85	56.7	55	56	36		
3.10	43.0	40.61	3.18 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.84		85			2.30	>10
3.25	43.5	24.36	3.78 4	4	Silty Clay to Clay	CL	very stiff	125	1.8		0.84		100			1.34	6.65
3.40	44.0	21.61	4.74 3	3	Clay	CL/CH	very stiff	125	1.3		0.83		100			1.18	4.18
3.58	44.5	30.68	4.75 3	3	Clay	CL/CH	very stiff	125	1.3		D.83		100				
3.73	45.0	30.22	5.99 3		Clay	CL/CH	very stiff		1.3		0.82		100			1.71 1.69	7.27
3.88	45.5	57.65	3.05 6		Sandy Silt to Clayey Silt	ML	medium dense		3.5		0.82					1.69	7.00
	46.0	72.54	0.91 8		Sand to Silty Sand	SP/SM	medium dense					44.7	75	49	35		
-	46.5	69.32	0.79 8		Sand to Silty Sand	SP/SM	medium dense				D.82	56.0	40	56	36		
	47.0	64,18	0.77 8		Sand to Silty Sand						0.81		40	54	36		
	47.5	67.84	0.74 8		Sand to Silty Sand	SP/SM	medium dense				0.81	49.2	45	52	35		
	48.0	61.59	1.25 7	7		SP/SM	medium dense		5.5		0.81		40	53	35		
	48.5	53.24	0.81 8		Silty Sand to Sandy Silt	SM/ML	medium dense				08.0		55	50	35		
	48.0 49.0			8	Sand to Silty Sand	SP/SM	medium dense				08.6	40.3	50	46	34		
		49.46	0.79 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense		4.5	11 (0.80	37.3	50	43	34		
5.10	49.5	46.85	0.80 7	7	Silly Sand to Sandy Silt	SM/ML	medium dense	115	4.5	10 ().79	35.2	55	42	34		

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

Project: Pacific Ethanol Plant, Calipatria, California Project No: LE06217 Date: 06/14/06 CONE SOUNDING: CPT-3 Est GWT (ft): 9.0 Phi Correlation: 0 0-Schm(78), 1-R&C(83), 2-PHT(74) Rase Base Avg Avg Qc. Est. Cn Est. Rel. Nk: 17.0 Depth Depth Tip Friction Soil Density to Soil Density or SPT or Norm. % Dens. Phi Su Qc, tsf meters feet Ratio, % Туре Classification USC (pcf) N N(60) Consistency Cq Qc1n Fines Dr (%) (deg.) (tsf) OCR 0.15 0.5 7.21 36,79 1 Organic Material 1 OL/OH firm 120 1.0 7 2.00 100 0.42 >10 10 0.30 21.58 2.84 5 5 **Clayey Slit to Silty Clay** ML/CL very sliff 120 2.5 9 2.00 65 >10 1.27 0.45 1.5 28.06 2.72 5 5 Clayey Silt to Silty Clay ML/CL very sliff 120 2.5 11 2.00 55 1.65 >10 Clay 0.60 2.0 21.98 5.82 3 3 CL/CH very stiff 125 1.3 18 2.00 85 1.29 >10 0.75 2.5 40.78 3.57 5 5 Clayey Silt to Silty Clay ML/CL hard 120 2.5 16 2.00 55 2.39 >10 0.93 3.0 43.09 361 5 5 **Clayey Silt to Silty Clay** ML/CL hard 120 2.5 17 2.00 55 2.53 >10 1.08 3.5 20.21 Clay 4.68 3 3 CL/CH verv stiff 125 1.3 16 2.00 80 1.18 >10 1.23 4.0 17.75 3.31 5 very stiff 5 Clayey Silt to Silty Clay ML/CL 120 7 2.5 2.00 75 1.03 >10 1.38 4.5 22.73 3.50 5 5 Clayey Silt to Silty Clay ML/CL very stiff 120 2.5 9 2.00 70 1.32 >10 1.53 5.0 23.20 4.28 4 4 Silty Clay to Clay CL very stiff 125 1.8 13 1.92 75 1.35 >10 1 68 5.5 30.11 3.59 5 5 Clayey Silt to Silty Clay very stiff ML/CL 120 2.5 12 1.82 65 1.75 >10 Sandy Silt to Clayey Silt 1.83 6.0 38.01 2.61 6 6 M medium dense 115 3.5 10 1.74 59.3 50 57 36 1.98 6.5 25.68 2.49 6 6 Sandy Silt to Clayey Silt ML medium dense 115 3.5 7 41.0 1.68 60 48 34 2.13 7.0 29.68 2.87 5 5 Clayey Silt to Silty Clay ML/CL verv stiff 120 2.5 12 1.61 60 1.72 >10 2.28 7.5 31.12 3.15 5 5 **Clayey Silt to Silty Clay** ML/CL 120 very stiff 2.5 12 1.56 60 1.80 >10 4.82 3 2.45 8.0 11.04 3 Clay CL/CH stiff 125 1.3 9 1.51 100 0.62 >10 2.60 8.5 12.62 6.76 3 3 Clav CL/CH stiff 125 1.3 10 1.46 100 0.71 >10 2.75 9.0 13.80 5.97 3 3 Clav CL/CH atiff 125 1.3 11 1.41 100 0.78 >10 2.90 9.5 13.29 4.70 3 3 Clav CL/CH stiff 125 1.3 11 1.39 100 0.75 >10 3.05 10.0 12 85 4.34 3 Э Clay CL/CH stiff 125 1.3 10 1.37 100 9.59 0.72 3.20 10.5 Cley 16.33 5.99 3 3 CL/CH stiff 125 1.3 13 1.35 100 0.93 >10 3.35 11.0 18.63 5 31 3 3 Clay CL/CH 125 very stiff 1.3 15 1.34 95 1.06 >10 3 50 11.5 22.80 6.00 3 Э Clay CL/CH verv stiff 125 1.3 18 1.32 95 1.31 >10 3.65 12.0 21.23 6.69 3 3 Clay CL/CH very stiff 125 1.3 17 1.30 100 1.21 >10 3.80 12.5 19.23 7.96 3 3 Clay CL/CH 125 very stiff 1.3 15 1.29 100 1.09 >10 3.95 13.0 12.30 8 33 3 3 Clav CL/CH atiff 125 1.3 10 1.27 100 0.69 6.65 4.13 13.5 21.90 5.08 3 3 Clay CL/CH very stiff 125 1.3 18 1.26 95 1 26 >10 4.28 14.0 18.21 4.58 3 3 Clav CL/CH very stiff 125 1.3 15 1.24 100 1.03 >10 14.5 4.43 14.17 6.44 3 3 Clay CL/CH stifi 125 1.3 11 1.23 100 0.79 7.56 15.0 4.58 17.67 6.78 3 3 Clay CL/CH stiff 125 1.3 14 1 21 100 1.00 >10 4.73 15.5 18.12 6 63 3 3 Clay CL/CH very stiff 125 1.3 14 1.20 100 1.02 >10 4.88 16.0 21.00 7.90 3 3 Clay CL/CH very stiff 125 1.3 17 1 19 100 1.19 >10 5.03 16.5 22.15 8.20 3 3 very stiff Clav CL/CH 125 1.3 18 1.18 100 1.26 >10 5.18 17.0 53.30 1.90 7 7 Slity Sand to Sandy Silt SM/ML medium dense 115 4.5 12 58.7 57 1.17 45 36 5.33 17.5 89.34 1.47 7 7 Silty Sand to Sandy Silt SM/ML dense 115 4.5 20 1.16 97.6 30 72 38 5.48 18.0 189 45 1.64 8 ₿ Sand to Silty Sand SP/SM very dense 115 5.5 34 1.15 205.3 20 41 94 5.65 18.5 236.21 2.02 8 6 Sand to Silty Sand SP/SM very dense 115 5.5 43 1.14 253.9 20 100 42 5.80 19.0 236.30 2.14 8 8 Sand to Slity Sand SP/SM very dense 115 5.5 43 1.13 252.0 25 100 42 244.30 5.95 19.5 2.12 8 8 Sand to Silty Sand SP/SM very dense 115 5.5 44 1.12 258.5 20 101 42 6.10 20.0 267.18 2.03 8 R Sand to Silty Sand SP/SM very dense 115 5.5 49 1.11 280.5 20 103 42 6.25 20.5 282.55 2.24 8 8 Sand to Silty Sand SP/SM 115 55 51 verv dense 1.10 294.4 20 104 43 6.40 21.0 291.44 2.10 8 8 Sand to Silty Sand SP/SM very dense 5.5 53 115 1.09 301.4 20 105 43 6.55 21.5 279.32 2.00 8 8 Sand to Silty Sand SP/SM verv dense 115 5.5 51 1.09 286.7 20 104 43 6.70 22.0 278.52 2.03 8 Sand to Silly Sand 8 SP/SM very dense 115 5.5 51 1.08 283.9 20 103 42 6 85 22 5 285.41 2.06 8 8 Sand to Silty Sand SP/SM very dense 115 5.5 52 1.07 288.8 20 104 43 7.00 23.0 293.16 2.05 8 A Sand to Silty Sand SP/SM very dense 115 5.5 53 1.06 294.5 20 104 43 7.18 23.5 253.37 2.03 8 8 Sand to Silty Sand SP/SM verv dense 115 5.5 46 1.06 252.8 25 100 42 7.33 24.0 82.48 3.68 5 5 Clayey Silt to Silty Clay ML/CL hard 120 2.5 33 1.05 65 >10 4.79 7.48 24.5 62.75 2.01 7 7 Silty Sand to Sandy Silt SM/ML medium dense 115 4.5 14 1.04 61.7 50 58 36 7.63 25.0 94.67 1.35 8 8 Sand to Silty Sand SP/SM dense 115 5.5 17 1.03 92.5 30 70 38 7.78 25.5 128.37 1.35 8 8 Sand to Silty Sand SP/SM dense 115 23 5.5 1.03 124.6 25 79 39 7.93 26.0 119.98 1.67 7 7 Silty Sand to Sandy Silt SM/ML dense 115 4.5 27 1.02 115.7 30 77 39 8.08 28.5 134.07 1.87 7 7 Silty Sand to Sandy Silt 1.01 SM/ML dense 115 4.5 30 128.5 30 80 39 8 23 27 0 184 32 2.31 7 7 Silty Sand to Sandy Silt SM/ML dense 115 4.5 41 1.01 175.5 30 89 40 8.38 27.5 67.02 3.78 5 5 Clavey Silt to Silty Clav ML/CI hard 120 25 27 1.00 65 3.88 >10 8.53 28.0 2.45 6 81.94 6 Sandy Silt to Clayey Silt ML medium dense 115 3.5 23 0.99 77.0 50 65 37 6.68 28.5 146.69 1.24 8 8 Sand to Silty Sand SP/SM dense 115 5.5 27 0.99 137.0 25 82 39

8.85 29.0

9.15 30.0

9.00 29.5

107.14

103.05

97:07

2.08 7

1.81 7

2.54 7

7

7

7

Silty Sand to Sandy Silt

Silty Sand to Sandy Silt

Silty Sand to Sandy Silt

SM/ML

SM/ML

SM/ML

dense

dense

medium dense

115

115

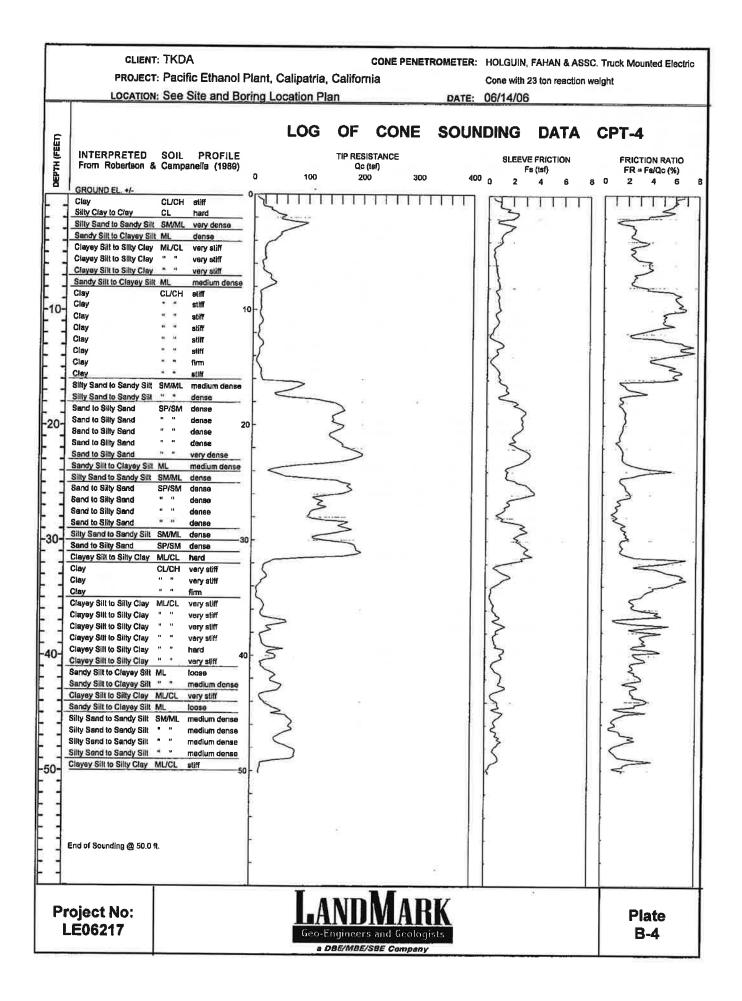
115

4.5 24 0.98

4.5 23 0.98

4.5 22 0.97 99.5 40 72

95.1 40 71

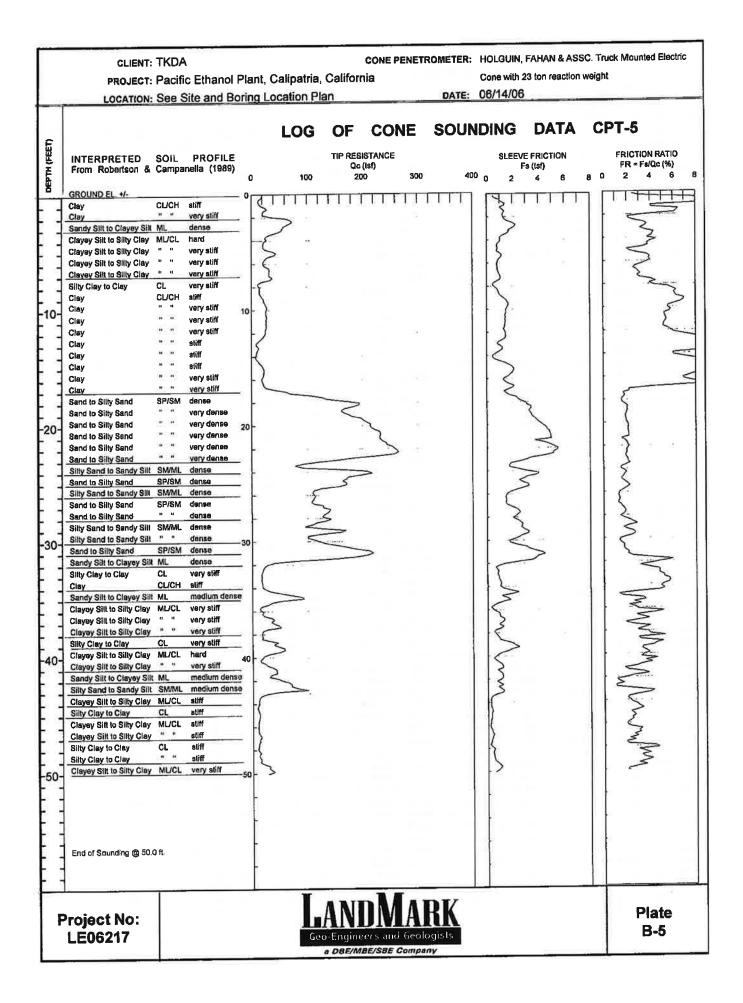

89.1 45 69 38

38

38

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

	Est C	GWT (ft):	9.0								P	ni Corr	elation:	0	0-Schm	78),1-R&C	(83),2-P	11(/9)
Base	Base	Avg	Avg	-	1				Est	Qc	i s ber de	Cn		Est.	Rei.	Nk:	17.0	
	Depth	Tip	Friction		Soil	Soil		Density or	Density	to	SPT	or	Norm.	%	Dens.	Phi	Su	
1 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	feet	Qc, tsf	Ratio, %		Турв	Classification	USC	Consistency	(pcf)	N	N(60)	Cq	Qc1n	Fines	Dr (%)	(deg.)	(tsf)	00
9.30	30.5	149.85	1.37		8	Sand to Silty Sand	SP/SM	dense	115	5.5	27	0.97	136,7	25	82	39		
9.45	31.0	124.15	1.65		8	Sand to Silty Sand	SP/SM	dense	115	5.5		0.96	112.6		76	39		
	31.5	42.79	4.96		4	Silty Clay to Clay	CL	hard	125	1.8		0.95	112.0	90			2.45	>1
9.60	31.5	42.79	4.90 5.35		3	Clay	CL/CH	very stiff	125	1.3	16	0.95		100			1.11	5.6
9.75	32.0	20.11			3	Clay	CL/CH	very stiff	125	1.3		0.94		100			1.14	5.7
9.90		-	5.54		3	· ·	CL/CH	very stiff	125	1.3	16	0.93		100			1.12	5.5
0.05	33.0	20.25	5.78		-	Clay		medium dense	115	3.5	16	0.93	49.1	60	51	35		0.0
0.20	33.5	55.90	2.19		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	12	0.92	35.2		42	34		
10.38	34.0	40.27	2.89		6	Sandy Slit to Clayey Silt	ML		115	3.5 1.3	12	0.92	35.2	100	42	34	1.05	4.6
10.53	34.5	19.09	5.63		3	Clay	CL/CH	very stiff					43.5		48	35	1.00	7.0
10.68	35.0	50.35	1.66		7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	11	0.91	43.0	35 100	40	35	1.04	8.1
10.83	35.5	19.02	3.41		5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	8	0.91						2.9
0.98	36.0	12.20	3,52		4	Silty Clay to Clay	CL	stiff	125	1.8	7	0.90		100			0.64	5.8
11.13	36.5	19.42	3.93		4	Silty Clay to Clay	CL	very stiff	125	1.8	11	0.90		100			1.06	
1.28	37.0	30.70	3.14		5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	12	0.89		95			1.73	>1
1.43	37.5	31.27	3.65	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	13	0.89		100			1.76	>1
1.58	38.0	17.15	3.83	4	4	Silty Clay to Clay	CL	stiff	125	1.8	10	0.88		100			0.93	4.4
1.73	38.5	18.69	3.27	5	5	Clayey Silt to Silty Clay	ML/CL	very sliff	120	2.5	8	0.88		100			1.03	7.0
1.88	39.0	18.42	3.86	4	4	Silty Clay to Clay	CL	very stiff	125	1.8	11	0.87		100			1.00	4.6
2.05	39.5	36.20	4.79	4	4	Silty Clay to Clay	CL	hard	125	1.8		0.87		100			2.05	>1
2.20	40.0	75.52	1.01	7	7	Silty Sand to Sandy Silt	SM/ML	medium denae	115	4.5		0.86	61.7		58	36		
2.35	40.5	49.85	2.31	6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	14	0.88	40.5	70	46	34		
2.50	41.0	33,55	3.87	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	13	0.86		100			1. 89	>1
2.65	41.5	53.00	1.78	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	12	0.85	42.7	60	47	35		
	42.0	61.06	2.07	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	14	0.85	49.0	60	51	35		
2.95	42.5	55.68	2.09	6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	16	0.84	44.4	85	49	35		
3.10	43.0	47.89	2.18		6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	14	0.84	38.1	70	44	34		
3.25	43.5	16.74	3.29		5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	7	0.84		100			0.90	4.6
3.40	44.0	15.67	4.54		3	Clay	CL/CH	stiff	125	1.3	13	0.83		100			0.83	2.6
3.58	44.5	12.82	3.78		4	Silty Clay to Clay	ÇL	stiff	125	1.8	7	0.83		100			0.66	2.4
3.73	45.0	9.41	4.64		3	Clay	CL/CH	firm	125	1.3	8	0.82		100			0.46	1.2
3,88	45.5	14.60	2.84		5	Clayey Silt to Silty Clay	ML/CL	etiff	120	2.5	6	0.82		100			0.77	3.6
4.03	46.0	12.82	2.73		5	Clayey Slit to Silty Clay	ML/CL	stiff	120	2.5		0.82		100			0.66	3.0
4.03	46.5	27.16	2.85		5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.81		100			1.50	>1
					5		ML/CL	very stiff	120	2.5		0.81		100			1.62	>1
	47.0	29.14	3.17			Clayey Silt to Silty Clay			115	3.5		0.81	26.6	80	33	33		
	47.5	34.66	1.71		6	Sandy Silt to Clayey Silt	ML			2.6		0.80	20.0	100	40	50	0.89	4.2
	48.0	16.85	2.06		5	Clayey Silt to Silty Clay	ML/CL	stiff		2.0		0.80		100			0.67	2.9
4.78	48.5	13.07	1.86		5	Clayey Silt to Silty Clay	ML/CL	stiff	120			0.80		100			0.85	3.9
4.93	49.0	16.11	3.13		5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5							1.00	
5.10	49.5	18.69	4.11		4	Silty Clay to Clay	CL	very stiff		1.8		0.79		100				3.6
5.25	50.0	33.12	3.29	5	5	Clayey Silt to Silty Clay	ML/ÇL	very stiff	120	2.5	13	0.79		100			1.85	>1

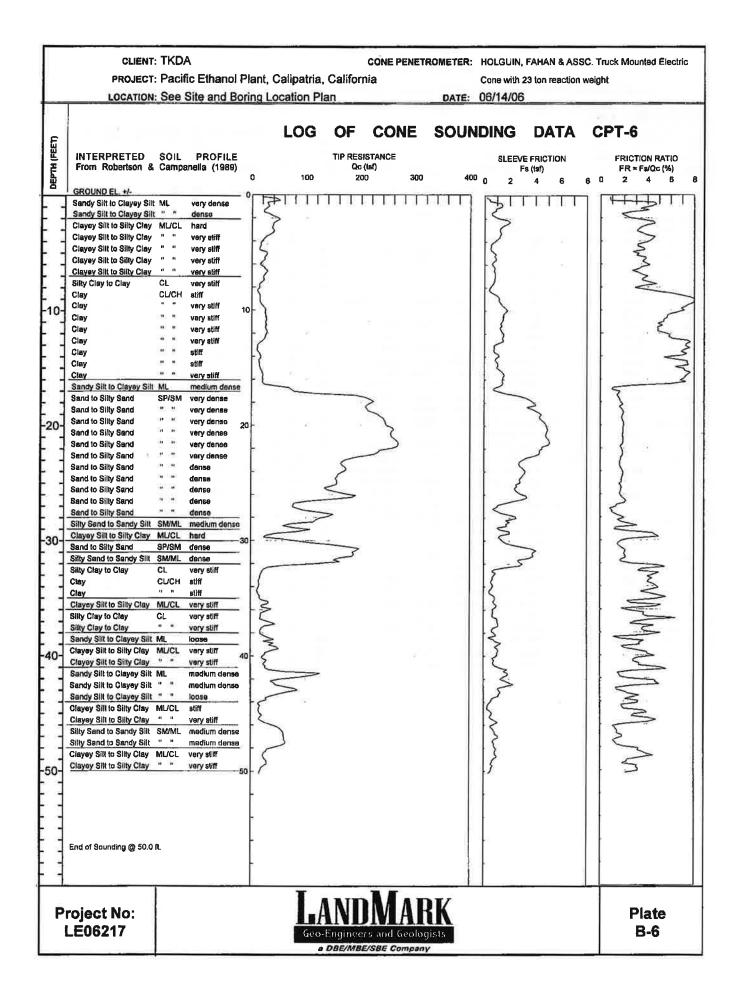

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

				nt, Cal	ipatria, California Pr	oject No:	LE06217			Date:	06/14	4/06	-				
	SOUN	NDING:	CPT-4								ni Con	elation:	0	0.Sohe	(78),1-R&(2(83) 2.0	HTITAN
		GWT (ft):						Est.	Qc	P	Cri	eladon:	Est.	Rel.	Nk:	17.0	
	Base	Avg	Avg	1	0.00		Density or	Density		SPT	ог	Norm.	%	Dens.	Phi	Su	
	Depth	Tip	Friction	Soil		USC	Consistency	(pcf)		N(60)				Dr (%)		(tsf)	00
eters	feet	Qc, tsf	Ratio, %	Туре	Classification	USC	Consistency	(pci)	14	14(00)	Uq	quenn	1 ares	0.1.01	(Contract		
0.15	0.5	10.70	6.25 3	3 3	Clay	СГСН	stiff	125	1.3	9	2.00		100			0.63	>1 >1
0.30	1.0	16.48	5.92 3	3 3	Clay	CL/CH	stiff	125	1.3	13	2,00		95			0.97	-
0.45	1.5	34.46	5.33 3	3	Clay	CL/CH	hard	125	1.3	28	2.00		70			2.02 3.01	5
0.60	2.0	51.32	4.26 5		Clayey Silt to Silty Clay	ML/ÇL	hard	120	2.5		2.00	497.9	55	01	41	3.01	
0.75	2.5	72.85	1.44 7	7	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	16	2.00	137.3	25	91 91	41 41		
0.93	3.0	70.77	2.45 6	6	Sandy Silt to Clayey Silt	ML	very dense	115	3.5		2.00	148.9		76	39		
1.08	3.5	52.00	2.42 £	36	Sandy Silt to Clayey Silt	ML	dense	115	3.5	15	2.00	98.3 80.2		68	38		
1.23	4.0	42.43	2.61 6		Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		2.00	QU.2	45 65	00	30	1.42	>
1.38	4.5	24.34	3.28 5	55	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	2.00		65			1.19	>
1.53	5.0	20.57	2.42 5	55	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		1.93					1.24	5
1.88	5.5	21.41	2,50 5	5 5	Clayey Slit to Silty Clay	ML/CL	very stiff	120	2.5		1.84		65			0.96	5
1.83	6.0	16.67	3.83 4	4	Silty Clay to Clay	CL	stiff	125	1.8		1.75		80			1.07	5
1.98	6.5	18.52	3.87 4	1 4	Silty Clay to Clay	ÇL	very stiff	125	1.8		1.68		80				5
2.13	7.0	28.79	2.88 5	55	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		1.61		60 50		25	1.67	
2.28	7.5	34.98	2.43 6	36	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		1.56	51.5		53	35	1 00	>
2.45	8.0	32.43	2.98 5	55	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		1.51		55			1.88	
2.60	8.5	14.68	5.15 3	3 3	Clay	CL/CH	stiff	125	1.3	12	1.46		95			0.83	>
2.75	9.0	14.25	6.23 3	3 3	Clay	CL/CH	stiff	125	1.3	11	1.42		100			0.81	>
2.90	9.5	14.02	6.46 3		Clay	CL/CH	stif	125	1.3	11	1.40		100			0.79	>
3.05	10.0	14.67	6.71 3	3 3	Clay	CL/CH	stiff	125	1.3	12	1.38		100			0.83	2
3.20	10.5	13.13	5.26 3	3 3	Clay	CL/CH	stiff	125	1.3	11	1.36		100			0.74	9
3.35	11.0	17.42	5.07 3		Clay	CL/CH	stiff	125	1.3	14	1.34		95			0.99	>
3.50	11.5	12.60	5.27		Clay	CL/CH	stiff	125	1.3	10	1.32		100			0.71	8.
3.85	12.0	11.29	3.45		Silty Clay to Clay	CL	aliff	125	1.8	6	1.31		100			0.63	8.
3.80	12.5	10.38	3.13 4		Silty Clay to Clay	CL	stiff	125	1.8	6	1.29		100			0.57	6.
3.95	13.0	18.33	6.21 3		Clay	CL/CH	very stiff	125	1.3	15	1.27		100			1.04	>
4.13	13.5	13.01	6.88		Clay	CL/CH	stiff	125	1.3	10	1.20		100			0.73	7.
	14.0	10.97	6.69		Clay	CL/CH	stiff	125	1.3	9	1.24		100			0.61	5
4.28	14.5	7.03	4.23		Clay	ÇL/CH	firm	125	1.3	6	1.23		100			0.37	2.
4.43			5.40		Clay	CL/CH	atiff	125	1.3	9	1.22		100			0.59	4.
4.58	15.0	10.75	6.18		Clay	CL/CH	stiff	125	1.3		1.20		100			68.0	8.
4.73	15.5	15.34			Сіву	CL/CH	stiff	125	1.3		1.19		100			0.94	9.
4.88	16.0	16.65	5.82		Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		1.18	97.8	30	72	38		
5.03	16.5	87.73	1.59 7		Sandy Silt to Clayey Silt	ML	medium dense		3.5		1.17	76.3	45	65	37		
5.18	17.0	69.05	2.39	-	Sandy Silt to Clayey Silt	ML.	medium dense		3.5		1.16	54.5		55	36		
5.33	17.5	49.71	2.44			SP/SM	dense	115	5.5		1.15	143.1		83	40		
5.48	18.0	131.66	1.82		Sand to Silty Sand	SP/SM	dense	115	5.5	_	1.14	174.5		89	40		
5.65	18.5	161.80	1.53		Sand to Silly Sand			115	4.5		1.13	171.9		88	40		
5.80	19.0	160.67	1.86		Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		1.12	155.8		86	40		
5.95	19.5	146.79	1.87		Silty Sand to Sandy Silt	SM/ML	dense				1.11	163.8		87	40		
8.10	20.0	155.54	1.60		Sand to Silty Sand	SP/SM	dense	115	5,5 5.5		1.11	165.2		87	40		
8.25	20.5	158.09	1.67		Sand to Silty Sand	SP/SM	dense	115						84	40		
6.40	21.0	141.49			Sand to Silty Sand	SP/SM	dense	115	5.5		1.10	146.7 160.2		86	40		
8.55	21.5	155.62			Sand to Silty Sand	SP/SM	dense	115	5.5		1.09			88	40		
6.70	22.0	168.09			Sand to Silty Sand	SP/SM	dense	115	5.5		1.08	171.8		92	41		
6.65	22.5	193.29			Sand to Silty Sand	SP/SM	very dense	115	5.5		1.07	196.1			41		
7.00	23.0	191.63	1.67	88	Send to Silty Sand	SP/SM	very dense	115	5.5		1.07	193.1		92			
7.18	23.5	126.37	2.04	77	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		1.06	126.4		79	39	2.30	;
7.33	24.0	40.05	4.29	4 4	Silty Clay to Clay	CL	hard	125	1.8		1.05		80		25	2 30	
7.48		51.21	3.17	66	Sandy Silt to Clayey Silt	ML	medium dense		3.5		1.04	50.5		52	35		
7.63		141.36			Sand to Slity Sand	SP/SM	dense	115	5.5		1.04	138.4		82	39		
7.78		178.84			Sand to Silty Sand	SP/SM	dense	115	5.5		1.03	172.0		BB	40		
7.93		174.71			Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		1.02			88	40		
8.0B		123.47			Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		1.02			77	39		
8.23		125.79			Sand to Silty Sand	SP/SM	dense	115	5.5	i 23	1.01	120.0		76	39		
8.38		112.66			Sand to Silty Sand	SP/SM	dense	115	5.5	20	1.00	106.6	3 25	74	38		
8.53		104.74			Sand to Silty Sand	SP/SM	dense	115	5.5	i 19	1.00	98.7	7 25	72	38		
		159.12			Sand to Silty Sand	SP/SM	dense	115	5.5		0.99	149.0	25	84	40		
		133.12	1.24		-			115	5.5		0.98			86	40		
8,68			4 70	g o	Sand to Silly Sand	SP/SM	dense	119	- Q.L	1 31	0.00						
	29.0	169.92 145.06			Sand to Silty Sand Silty Sand to Sandy Sill	SP/SM SM/ML	dense dense	115	4.5		0.98			81	39		

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

ONL	3001	NDING:	CPI-4														
	Est. C	SWT (ft):	9.0							P	hi Con	elation:	0	0-Schm	78),1-R&	C(83) 2-P	HT(74)
Base	Base	Avg	Avg	1		20		Est.	Qc		Çn		Est.	Rei.	NK:	17.0	
Dapth	101 102	Tip	Friction	So	il Sol		Density or	Density	to	SPT	or	Norm.	%	Dens.	Phi	Su	
neters	feet	Qc, Isf	Ratio, %	Typ	Classification	USC	Consistency	(pcf)	N	N(60)	Cq	Qc1n	Fines	Dr (%)	(deg.)	(tsf)	00
9.30	30.5	183.81	1.64 8	3 8	Road to Olify Read	CDICM	d										
9.45	31.0	193.72	1.60 6		Sand to Silty Sand	SP/SM	dense	115	5.5		0.97	168.0		88	40		
9.60	31.5	153.12		-	Sand to Slity Sand	SP/SM	dense	115	5.5		0.96	176.1		69	40		
9.75	32.0	33.45	2.19 7		Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		0.96	138.4	35	82	39		
9.90	32.5	21.77	6.14 3	-	Clay	CL/CH	very stiff	125	1.3		0.95		100			1.90	>1
9.90 10.05	33.0	24.99	3.52 5		Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.94		100			1.21	>1
10.05	33.5		5.08 3		Clay	CL/CH	very stiff	125	1.3	20	0.94		100			1.40	8.0
		23.13	6.87 3		Clay	CL/CH	very stiff	125	1.3	19	0.93		100			1.29	6.7
10.38	34.0	14.20	5.90 3		Clay	CL/CH	stiff	125	1.3	11	0.93		100			0.76	3.1
10.53	34.5	9.89	4.18 3	-	Clay	CL/CH	stiff	125	1.3	8	0,92		100			0.51	1.7
10.68	35.0	9.60	3.43 4		Silty Clay to Clay	CL	fim	125	1.8	5	0.91		100			0.49	2,1
10.83	35.5	20.16	2.42 5		Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	8	0.91		100			1.11	9.0
10.98	36.0	22.64	2.58 5	-	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	9	0.90		100			1.26	>1
11.13	36.5	19.13	4.39 3		Clay	CL/CH	very stiff	125	1.3	15	0.90		100			1.05	4.3
11.28	37.0	56.40	1.55 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	13	0.89	47.7	55	51	35		
1.43	37.5	35.94	4.07 5	5	Clayey Sift to Silty Clay	ML/CL	hard	120	2.5	14	0.89		95			2.04	>1
1.58	38.0	27.02	3.49 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	11	88.0		100			1.51	>1
11.73	38.5	18.17	3.43 5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	7	0.68		100			0.99	6.6
1.88	39.0	21.55	3.58 5	5	Clayey Slit to Silty Clay	ML/CL	very stiff	120	2.5		0.68		100			1.19	8.8
2.05	39.5	40.54	3.16 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.87		85			2.30	>1
2.20	40.0	39.15	3.44 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.87		90			2.22	>1
2.35	40.5	28.86	3.42 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.86		100			1.61	>1
2.50	41.0	20.62	2.49 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.86		100			1.13	7.5
2.65	41.5	34,58	2.55 6	6	Sandy Silt to Clayey Silt	ML	loose	115	3.5		0.85	27.9	85	35	33	1.14	7.0
2.80	42.0	40.43	3.08 5	5	Clayey Silt to Silty Clay	ML/CL	hard		2.5		0.85	21.3	85	30	33	2.00	
	42.5	46.78	2.47 6	8	Sandy Silt to Clayey Silt	ML	medium dense		3.5		0.85	37.4		42		2.29	>1
	43.0	51.82	2.75 6	6	Sandy Silt to Clayey Silt	ML							75	43	34		
	43.5	20.67	2.53 5	5	Clayey Silt to Silty Clay	ML/CL	medium dense		3.5 2.5		0.84	41.2	75	46	34		
	44.0	21.05	3.33 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff			-	0.84		100			1.13	7.0
	44.5	33.62	3.14 5	5			very stiff		2.5		0.83		100			1.15	7.1
	45.0	48.05	2.13 6	6	Clayey Silt to Silty Clay		very stiff		2.5		0.83		95			1.88	>1
	45.5 45.5	48.05 67.16			Sandy Silt to Clayey Silt	ML	medium dense		3.5		0.83	37.5	70	44	34		
	45.5 46.0		1.64 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense		4.5		0.82	52.2	55	53	35		
		74.08	0.98 8	8	Sand to Silty Sand	SP/SM	medium dense		5.5		0.82	57.4	40	56	36		
	46.5	73.12	0.85 8	8	Sand to Silty Sand	SP/SM	medium dense		5,5		0.62	56.4	40	56	36		
	47.0	52.37	1.84 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense		4.5		D.8 1	40.2	85	46	34		
	47.5	46.95	2.36 6	6	Sandy Silt to Clayey Silt	ML	medium dense		3.5	13 (D.81	35.9	75	42	34		
	48.0	70.37	1.19 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	16 (J.81	53.6	50	54	36		
	48.5	80.85	0.92 8	8	Sand to Silty Sand	SP/SM	medium dense	115	5.5	15 (08.0	61.4	40	58	36		
	49.0	65.23	1.72 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	14 (0.80	49.3	60	52	35		
5.10	49.5	18.98	2.85 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	8 (08.0		100			1.02	5.10
5 25	50.0	16.09	1.52 6	6	Sandy Silt to Clayey Silt	ML	very loose		3.5),79	12.1		10	29	10	

 ${\bf F} \in$

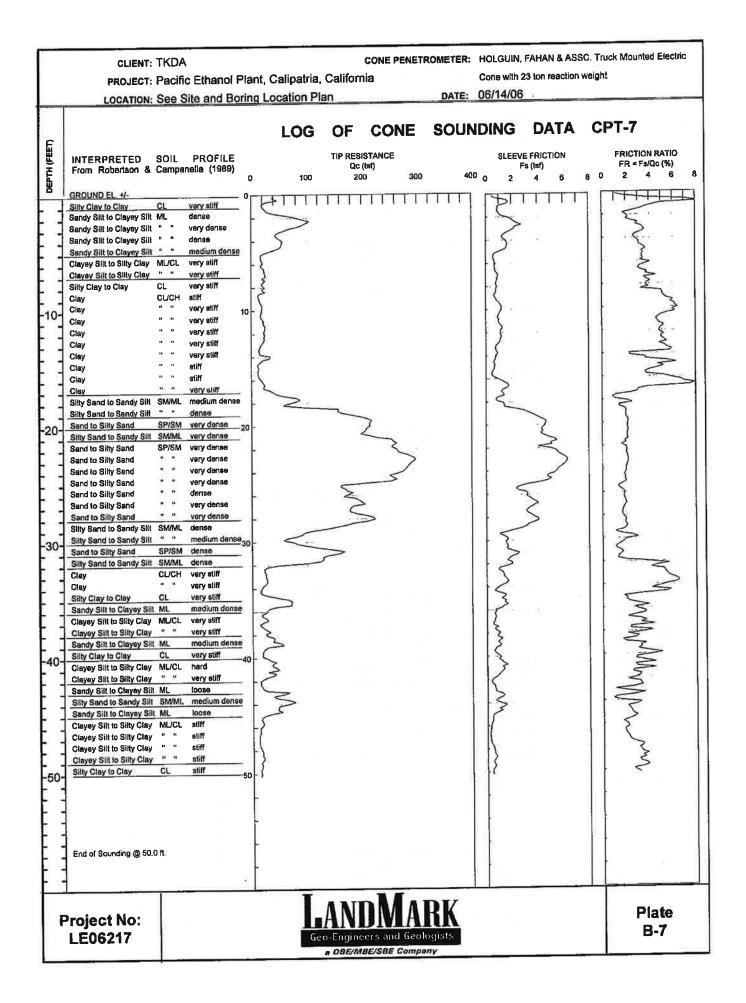


CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

	Est (GWT (ft):	9.0							P	hi Cor	relation:	0	0.Sehr	(78),1-R&	C/021 0 -	HITCH
ase	Base	Avg	Avg	1				Est.	Qc		Cn	Grauon.	Est.	Rel.	Nk:	17.0	111/14
epth	Depth	Tip	Friction	Soil	Soil		Density or	Density		SPT	or	Norm.	%	Dens.	Phi	Su	
aters	feet	Qc, Isf	Ratio, %	Туре	e Classification	USC	Consistency	(pcf)		N(60)				Dr (%)		(tsf)	00
0.15	0.5	16.67	4.39 3	3	Clay	CL/CH	stiff	125	1.3	13	2.00		85			0.98	>1
0.30	1.0	14.01	9.32 3	3	Clay	CL/CH	stiff	125	1.3	11	2.00		100			0.80	5
0.45	1.5	24.92	4.90 3	3	Clay	CL/CH	very stiff	125	1.3		2.00		75			1.46	5
0.60	2.0	25.58	5.34 3	3	Clay	CL/CH	very sliff	125	1.3	20	2.00		80			1.50	5
).75	2.5	69.44	2.31 7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	15	2.00	131.3	35	90	41	1.00	
0.93	3.0	59.67	3.57 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		2.00		45			3.50	>
80.1	3.5	45.88	3.68 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	18	2.00		55			2.69	>
.23	4.0	28.81	4.04 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	15	2.00		70			1.55	>
.38	4.5	21.72	4.08 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	12	2.00		75			1.26	>
1.53	5.0	27.99	3.06 5	5	Clayey Silt to Silty Clay	MUCL	very stiff	120	2.5	11	1.91		60			1.63	>'
.68	5.5	35.27	3,20 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	14	1.81		55			2.06	>
.83	6.0	21.74	3.85 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	12	1.73		75			1.26	>
.98	6.5	29.86	2.81 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	12	1.66		55			1.73	>
.13	7.0	32.22	2.99 5	5	Clayey Slit to Silty Clay	ML/CL	very stiff	120	2.5	13	1.60		55			1.87	>'
.28	7.5	29.93	3.34 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	12	1.55		60			1.73	>
.45	8.0	12.47	4.28 3	3	Clay	CL/CH	stiff	125	1.3	10	1.50		95			0.71	>
.60	8.5	14.69	5.95 3	3	Clay	CL/CH	stiff	125	1.3	12	1.45		100			0.83	>
.75	9.0	18.90	6 19 3	3	Clay	CL/CH	very stiff	125	1.3	15	1.41		95			1.08	>
.90	9.5	23.60	6,87 3	3	Clay	CL/CH	very stiff	125	1.3	19	1.39		95			1.36	>
	10,0	27.30	5.76 3	3	Clay	CL/CH	very stiff	125	1.3	22	1.37		85			1.57	>
	10.5	26.44	5,59 3	3	Clay	CL/CH	very stiff	125	1.3	21	1.35		85			1.52	>
	11.0	27.23	5.36 3	3	Clay	CL/CH	very stiff	125	1.3	22	1.33		85			1.57	>:
	11.5	26.95	5.27 3	3	Clay	CL/CH	very stiff	125	1.3	22	1.31		85			1.55	>1
	12.0	25.39	5.51 3	3	Clay	CL/CH	very stiff	125	1.3	20	1.30		90			1.46	>1
	12.5	21.30	6.93 3	3	Clay	CL/CH	very stiff	125	1.3	17	1.28		100			1.21	>1
	13.0	10.50	9.41 3	3	Clay	CL/CH	stiff	125	1.3	8	1.27		100			0.58	5.1
	13.5	11.66	10.01 3	3	Clay	CL/CH	stiff	125	1.3	9	1.25		100			0.65	5.7
	14.0	8.83	B.09 3	3	Clay	CL/CH	ficm	125	1.3	7	1.24		100			0.48	3.5
	14.5	9.50	6.96 3	3	Clay	CUCH	stiff	125	1.3	8	1.22		100			0.52	3.9
	15.0	18.05	9.50 3	3	Clay	CL/CH	very stiff	125	1.3	14	1.21		100			1.02	>1
	15.5	22.62	9.06 3	3	Clay	CL/CH	very stiff	125	1.3	18	1.20		100			1.29	>1
	16.0	20.21	7.64 3	3	Clay	CL/CH	very stiff	125	1.3		1.18		100			1.14	>1
	16.5	21.70	8.05 3	3	Clay	CL/CH	very stiff		1.3		1.17		100			1.23	>1
	17.0	43.48	4.58 4	4	Silty Clay to Clay	CL	hard	125	1.8		1.16		75			2.51	>1
		101.07	1.88 7	7	Silty Sand to Sandy Silt	SM/ML	dense		4.5		1.15	109.8	30	75	39		
		167.37	1.62 8	8	Sand to Silty Sand	SP/SM	dense		5.5		1.14	180.4	20	90	41		
		181. <u>2</u> 9	1.84 8	8	Sand to Silly Sand	SP/SM	very dense		5.5		1.13	193.8	25	92	41		
		187.57 194.18	2.00 7	7	Silty Sand to Sandy Silt	SM/ML	dense		4.5		1.12	177.8	25	89	41		
		184.18 212.54	1.89 8	8	Sand to Silty Sand	SP/SM	very dense		5.5		1.11	204.4	25	94	41		
		212.34	1.97 8 2.09 8	8	Sand to Silty Sand	SP/SM	very dense		5.5		1.11	222.0	25	96	41		
40 2		232.41	2.09 8	8 8	Sand to Silty Sand		very dense		5.5		1.10	231.9	25	97	42		
55 2		232.41 237.87	2,11 8 1.85 8	8	Sand to Silty Sand	SP/SM	very dense		5.5		.09	239.2		98	42		
70 2		252.82	2.05 8		Sand to Silty Sand	SP/SM	very dense		5.5		.08	243.0	20	89	42		
85 2		262.47	2.05 8		Sand to Silty Sand	SP/SM	very dense		5.5		.07		20	100	42		
00 2		191.07	2.00 a 1.93 B		Sand to Silty Sand Sand to Silty Sand	SP/SM	very dense		5.5		.07	264.3	20	101	42		
18 2		97.56	2.11 7		-	SP/SM	very dense		5.5		.06		25	92	41		
33 2		154.66	1.61 8		Silty Sand to Sandy Silt Sand to Silty Sand to Silty Sand	SM/ML	dense		4.5		.05		40	72	38		
8 2		197.10	1.85 8		Sand to Silty Sand	SP/SM SP/SM	dense versi dense		5.5 E E		.04		25	85	40		
33 2		169.19	1.60 8		Sand to Silty Sand		very dense dense				.04		25	92	41		
		151.94	2.04 7		Sand to Sandy Sand Silty Sand to Sandy Silt	SP/SM SM/MI	dense				.03	164.7		87	40		
3 2		111.70	1.71 7		Silty Sand to Sandy Silt	SM/ML SM/ML	dense				.02		30	84	40		
		111.71	1.33 8		Sand to Silty Sand		dense				.02		35	75	38		
		123.71	1.34 8		Sand to Silty Sand		dense				.01	106.6		74	38		
		139.76	1.34 8				dense				.00	117.4		77	39		
		134.01	1.65 6		Sand to Silty Sand		dense dense				.00	131.8		81	39		
		120.76	2.15 7		Sand to Silty Sand		dense				.99	125.6		79	39		
		129.60			Silty Sand to Sandy Silt		dense				.99		35	76	39		
	a.u '	128.00	2.23 7	7	Silly Sand to Sandy Silt	SM/ML	dense	115 4	4.5	29 0	.98	120.0	36	78	39		
		29.19	2.40 7		Silty Sand to Sandy Silt		dense				.97	118.9		78	39		

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

UNE	SOUN	SWT (ft):	9.0							P	hi Com	elation:	0	0-Schm(78),1-R&C	C(83),2-PI	HT(74)
				1				Est.	Qc	-	Cn		Est.	Rei.	NK:	17.0	-
Base	Base	Avg	Avg	Soil	Sail		Density or	Density		SPT	or	Norm.	%	Dens.	Phi	Su	
	Depth	Tip	Friction			USC	Consistency	(pcf)		N(80)	Cq			Dr (%)		(tsf)	00
noters	feet	Qc, tsf	Ratio, %	Туре	Classification	030	Consistency	(per/		HILDON	04	Cat III	1 11100		(
9.30	30.5	154.59	1.52 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5	28	0.9B	140.6	25	63	40		
9,45	31.0	207.45	1.79 8		Sand to Silty Sand	SP/SM	very dense	115	5.5	38	0.96	187.6	25	91	41		
9.60	31.5	185.55	2.21 7		Silty Sand to Sandy Silt	SM/ML	dense	115	4.5		0.95	166.9	30	88	40		
9.75	32.0	50.80	5.03 4		Silty Clay to Clay	CL	hard	125	1.8	29	0.95		85			2.92	>1
9.90	32.5	21.28	3.67 4		Silty Clay to Clay	CL	very stiff	125	1.8	12	0.94		100			1.18	8.0
10.05	33.0	17.47	4.77 3		Clay	CL/CH	stiff	125	1.3		0.93		100			0.96	4.2
10.00	33.5	17.42	5.33 3		Clay	CL/CH	stiff	125	1.3		0.93		100			0.95	4.1
10.38	34.0	18.97	5.47 3		Clay	CL/CH	very stiff	125	1.3		0.92		100			1.04	4.6
10.53	34.5	36.13	4.99 3		Clay	CL/CH	hard	125	1.3	29	0.92		100			2.05	>1
10.68	35.0	83.19	1.90 7		Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	18	0.91	71.6	45	63	37		
10.83	35.5	39.06	3.16 5		Clayey Slit to Silty Clay	ML/CL	hard	120	2.5	16	0.91		85			2.22	>1
		15.25	2.66 5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.90		100			0.82	5.4
10.98		23.97	3.77 4		Silty Clay to Clay	CL	very stiff	125	1.8		0.90		100			1.33	8.2
11.13		23.97	3.32 5		Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.89		85			2.16	>
	37.0 37.5	42.50	2.72 6		Sandy Silt to Clayey Silt	ML	medium dense		3.5		0.89	35.6	75	42	34		
11.43		17.85	3.33 5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.88		100			0.97	6.0
11.58	38.0	22.70	4.04 4	4	Silty Clay to Clay	CL	very stiff	125	1.8		0.88		100			1.25	7.
11.73			4.24 5		Clayey Slit to Silty Clay	ML/CL	hard	120	2.5		0.87		90			2.50	>
11.88	39.0	43.94	4.24 5 3.60 5		Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.87		75			3.15	>1
12.05		55.00			Clayey Sit to Silty Clay	MUCL	very stiff	120	2.5		0.86		100			1.29	>'
12.20		23.38	3.65 5		•••••••	CL	stiff	125	1.8		0.86		100			0.96	4.3
12.35		17.73	3.76 4		Silty Clay to Clay	ML/CL	very stiff	120	2.5		0.85		96			1.98	>
12.50		35.19	3,37 5		Clayey Silt to Silty Clay	ML	loose	115	3.5		0.85	33.0	75	40	34		
12.65		41.04	2.34 6		Sandy Silt to Clayey Silt	ML	medium dense		3.5		0.85	34.7	80	41	34		
12.80		43.42	2.79 6		Sandy Silt to Clayey Silt		medium dense		4.5		0.84	55.1	50	55	36		
12.95		69.17	1.35 7		Silty Sand to Sandy Silt	SM/ML	medium dense		4.5		0.84	60.5	50	58	36		
	43.0	76.28	1.56 7		Silty Sand to Sandy Silt	SM/ML		125	1.8		0.83	00.5	100	40		1.01	4.3
13.25		18.75	3.69 4		Silty Clay to Clay	CL	very stiff		2.5		0.83		100			0.57	2.
13.40		11.24	2,09 5		Clayey Silt to Silty Clay	ML/CL	stiff c	120 125	2.a 1.8		0.83		100			0.47	1.8
13.58		9.47	2.71 4		Silty Clay to Clay	CL	firm off	125			0.82		100			0.60	2.0
13.73		11.77	2.84 4		Silty Clay to Clay	CL	stiff		1.8 2.5		0.82		100			0.60	2.
	45.5	11.81	2.50 5		Clayey Silt to Silty Clay	ML/CL	stiff	120			0.82		100			0.50	2.
14.03		10.11	2.19 5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5				100			0.50	2.
	46.5	10.26	2,49 5		Clayey Silt to Silty Clay	ML/CL	sliff	120	2.5		0.81		100			0.71	3.3
	47.0	13.67	2.87 5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.81					0.59	2.4
14.48	47.5	11.74	2,21 .5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.80		100			0.59	1.2
14.63	48.0	10.25	3.71 3		Clay	CL/CH	stiff	125	1.3		0.80		100			0.65	2.1
14.78	48.5	12.75	3.46 4	4	Silty Clay to Clay	CL	stiff	125	1.8		0.60		100				2.
14.93	49.0	14.71	3.60 4	4	Silty Clay to Clay	CL	stiff	125	1.8		0.79		100			0.77	
15.10	49.5	27.48	3.38 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.79		100			1.52	9,8
15.25	50.0	33.65	2.31 6	6	Sandy Silt to Clayey Silt	ML	loose	115	3.5	10	0.79	25.0	90	32	32		



CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

NE		NDING:								P	hi Cor	relation:	0	n.Sehmi	78),1-R&0	183 2.0	HTTTA
0.00	-	GWT (ft):		1				Est.	Qc	P.	Cn	elation:	Eat	Rel.	78),1-R80 Nk:	17.0	11(/4
ase	Base	Avg Tip	Avg Friction	Şoil	Soll		Density or	Density	to	SPT	or	Norm.	%	Dens.	Phi	Su	
	Depth		Ratio, %	Туре		USC	Consistency	(pcf)		N(60)	Cq			Dr (%)		(tsf)	00
ters	feet	QC, ISI	Kato, %	туре	Classification	030	Consistency	(per/		14(00)	Uq	Gotti	1 11.00	<u>er trar</u>	1008.1	1007	_
0.15	0.6	38.41	0.86 7	7	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	9	2.00	72.6	30	106	43	4 70	
0,30	1.0	30.24	4.53 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	17	2.00		70			1.78	>'
0.45	1.5	23.84	3.35 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	2.00		65			1.40	>.
0.60	2.0	39.25	2.08 6	6	Sandy Silt to Clayey Silt		dense	115	3.5	11	2.00	74.2		77	39		
1.75	2.5	44,87	4.20 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	18	2.00		55			2.63	>
0.93	3.0	38.25	3.50 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	15	2.00		55			2.24	>
1.08	3.5	37.04	3.46 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	15	2.00		55			2.17	>
1.23	4.0	23,16	4.44 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	13	2.00		75			1.35	>
1.38	4.5	16.58	3 37 4	4	Silty Clay to Clay	CL	stiff	125	1.8	9	2.00		80			0.96	>
1.53	5.0	18.32	3.35 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	7	1.92		75			1.06	>
1.68	5.5	25.60	3.47 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	1.83		65			1.49	>
1.83	6.0	17.53	3.85 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	10	1.75		80			1.01	>
1.98	6.5	25.72	3.12 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	1.67		65			1.49	>
2.13	7.0	23.97	3.55 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	1.61		70			1.39	>
2,28	7.5	20.88	3.73 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	12	1.55		75			1.20	>
2,45	8.0	14.24	3.74 4	4	Silty Clay to Clay	CL	atiff	125	1.8	8	1.50		85			0.81	>
2,60	8.5	11.37	4.89 3	3	Clay	CL/CH	stiff	125	1.3	9	1.45		100			0.64	9.
2,75	9.0	15.04	7.49 3	3	Clay	CL/CH	stiff	125	1.3	12	1.41		100			0.85	>
2,90	9.5	16.78	7.86 3	3	Clay	CL/CH	stiff	125	1.3	13	1.39		100			0.95	>
3.05	10.0	24.36	7.09 3	3	City	CL/CH	very stiff	125	1.3	19	1.37		95			1.40	>
3.20	10.5	25.78	6.04 3	3	Clay	CL/CH	very stiff	125	1.3	21	1.35		90			1,48	>
35	11.0	26.61	5.48 3	3	Clay	CL/CH	very stiff	125	1.3	21	1.33		85			1.53	>
50	11.5	26 .13	4.99 3	3	Clay	CL/CH	very stiff	125	1.3	21	1.32		6 5			1.50	>
65	12.0	27.91	5.08 3	3	Clay	CL/CH	very stiff	126	1.3	22	1.30		85			1,60	>
60	12,5	25.23	5.94 3	3	Clay	CL/CH	very stiff	125	1.3	20	1.28		90			1.45	>
3.95	13.0	15.54	7.46 3	3	Clay	CL/CH	stiff	125	1.3	12	1.27		100			0.88	>
4.13	13.5	10.21	7.35 3	3	Clay	CL/CH	stiff	125	1.3	8	1.25		100			0.56	4.0
1.28	14.0	14.68	7.07 3	3	Clay	CL/CH	sliff	125	1.3	12	1.24		100			0.82	8.
4.43	14.5	14.55	6.38 3	3	Clay	CL/CH	stiff	125	1.3	12	1.23		100			0.81	7.8
1 58	15.0	14.58	7.11 3	3	Clay	CL/CH	stiff	125	1.3	12	1.21		100			0.82	7.
1.73	15.5	18.57	7.32 3	3	Clay	CT/CH	very stiff	125	1.3	15	1.20		100			1.05	>
4.88	16.0	20.94	7.17 3	3	Clay	CL/CH	very stiff	125	1.3	17	1.19		100			1,19	>
5.03	16.5	29.69	5.28 3	3	Clay	CL/CH	very stiff	125	1.3	24	1.17		90			1.70	>
5.18	17.0	74.17	1.25 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	16	1.16	81.6	30	66	37		
5.33	17.5	172.05	1.52 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	31	1.15	187.7	20	91	41		
5.48	18.0	218.92	1.71 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	40	1.14	236.9	20	98	42		
5.65	18.5	209.93	1.76 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	38	1.14	225.3	20	96	42		
5 80	19.0	221.86	1.92 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	40	1.13	236.2	20	98	42		
5 95	19.5	239.18	1.84 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	43	1.12	252.7		100	42		
3.10	20.0	245,50	1.95 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	45	1.11	257.4	_	100	42		
5.25	20.0 20.5	245.50	1.91 8	8	Sand to Silly Sand	SP/SM	very dense	115	5.5	47	1.10	268.0		102	42		
5.20 5.40		255.16	1.89 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	46	1.09	263.5		101	42		
	21.0	265,22	1.07 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	48	1.08	271.9		102	42		
5.55			1.91 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5		1.08	268.1		102	42		
3.70		263.42		8	Sand to Silty Sand	SP/SM	very dense	115	5.5	42	1.07	232.5		97	42		
6.85	22.5	230.11	1.88 8	8	•	SP/SM	very dense very dense	115	5.5	34	1.06	189.9		91	41		
.00		189.30	1.77 8		Sand to Silty Sand Sand to Silty Sand	SP/SM	dense	115	5.5	30	1.05	164.8		87	40		
7.18	23.5	185.39	1.66 8	8	-			115	5.5	31	1.05	170.7		88	40		
7.33	24.0	172.48	1.78 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5 4.5	35	1.04	156.6		86	40		
48	24.5	159,33	1.90 7	7	Silty Sand to Sandy Silt	SM/ML	dense		4.5 5.5	35 28	1.04	150.0		85	40		
7.63	25.0	155.49	1.81 8	8	Sand to Silty Sand	SP/SM	dense	115			1.03	141.0		83	40		
7.78	25.5	145.30	1.71 8	8	Sand to Silly Sand	SP/SM	dense	115	5.5	26				84	40		
7.93	26.0	154.82	1.71 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5	28	1.02	149.2			40		
3.08		155.61	1.93 7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	35	1.01	149.0		84 63	40 37		
3.23	27.0	77.50	1.60 7	7	Silty Sand to Sandy Silt	SM/ML	medium dense		4.5	17	1.01	73.7		63			
B.38	27.5	104.94	0.94 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5	19	1.00	99,2		72	38		
8.53	28.0	138.71	1.67 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5		0.99	130.3		80	39		
8.68	28.5	102.24	1.86 7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	23	0.99	95.5		71	38		
9.85	29.0	81.25	1.88 7	7	Silty Sand to Sandy Silt	SM/ML	medlum dense		4.5	18	0.98	75,4		64	37		
9.00	29.5	52.96	3.80 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	21	0.98		75			3.05	>
									3.5	15	0.97	49.0	65	51	35		

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

	Est C	GWT (ft):	9.0								P	hi Corr	relation:	0	0-Schm/	78),1-R&0	C(83) 2.P	HTCA
lase	Base	Avg	Avg	-	1				Est.	Qc		Cn	and a state of the	Est		Nk:	17.0	
	Depth	Tip	Friction		Soil	Soil		Density or	Density		SPT	or	Norm.	%	Dens.	Phi	Su	
neters		Qc, Isf	Ratio, %		Туре	Classification	USC	Consistency	(pcf)		N(60)	Cq			o Dr (%)		(tsf)	oc
		- The state		-	110	Chacomouton		Contraction	(poi)	-	14(00/	oq	- actin	1 11/01	10. (10]	Tack.	Tion	
9.30	30.5	144.23	1.57	8	8	Sand to Silty Sand	SP/SM	dense	115	5.5	26	0.96	131.5	30	81	39		
9.45	31.0	191.44	2.01	7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	43	0.96	173.5	30	69	40		
9.60	31.5	178.03	2.08	7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	40	0.95	160.5		86	40		
9.75	32.0	143.95	1.99	7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	32	0.95	129.0		80	39		
9.90	32.5	37.45	4.62	4	4	Silty Clay to Clay	CL	hard	125	1.8	21	0.94		95			2.13	>1
10.05	33.0	18.83	4.23	4	4	Silty Clay to Clay	ÇL	very stiff	125	1.8	11	0.94		100			1.04	6.3
10.20	33.5	15.53	4.18	3	3	Clay	CL/CH	stiff	125	1.3	12	0.93		100			0.84	3.5
10.38	34.0	14.72	4.44	3	3	Clay	CL/CH	stiff	125	1.3	12	0.92		100			0.79	3.2
10.53	34.5	11.83	4.21	3	3	Clay	CL/CH	stiff	125	1.3	9	0.92		100			0.62	2.34
89.01	35.0	14.90	4.90	3	3	Clay	CL/CH	stiff	125	1.3	12	0.91		100			0.80	3.2
68.01	35.5	27.75	3.11	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	11	0.91		95			1.56	>1
0.98	36.0	26.11	3.88	4	4	Silty Clay to Clay	CL	very stiff	125	1.8		0.90		100			1.46	>1
11.13	36.5	21.29	3.39	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	9	0.90		100			1.18	9.7
1.28	37.0	26.25	4.51	4	4	Silty Clay to Clay	CL	very stiff	125	1.8	15	0.89		100			1.47	9.7
1.43	37.5	30.12	3.57	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	12	0.69		100			1.69	>1
1.58	38.0	17.54	4.14	4	4	Silty Clay to Clay	CL	stiff	125	1.8	10	88.0		100			0.95	4.6
1.73	38.5	32.82	2.32	6	6	Sandy Silt to Clayey Silt	ML	loose	115	3.5	Ð	0.88	27.2	85	34	33		
1.88	39.0	33.08	3.47	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	13	0.87		95			1.87	>1
2.05	39.5	45.55	2.33	6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	13	0.87	37.4	70	43	34		
2.20	40.0	24.69	4.21	4		Silty Clay to Clay	CL	very stiff	125	1.8	14	0.86		100			1.37	7.7
2.35	40.5	25.75	2.91	5		Clayey Silt to Slity Clay	ML/CL	very stiff	120	2.5	10	0.86		100			1.43	>1
2.50	41.0	25.41	3.84	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	0.86		100			1.41	>1
2.65	41.6	73.19	3.26 (6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	21	0.65	58.9	65	57	36		
2.80	42.0	86.48	1.91	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	19	0.85	69.3	50	62	37		
2.95	42.5	41.92	4.81 4	4		Silty Clay to Clay	CL	hard	125	1.8		0.84		100			2.38	>1
3.10	43.0	76.14	1.80	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	17	0.84	60.4	50	58	36		
3.25	43.5	50.42	2.57 6	6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	14	0.84	39.8	75	45	34		
3.40	44.0	24.72	2.65 5	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	Q.83		100			1.36	9.5
3.58	44.5	15.21	2.27	5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	6	0.83		100			0.80	4.0
3.73	45.0	15.15	3.23	4	4	Silty Clay to Clay	CL	stiff	125	1.8	9	0.82		100			0.80	3.0
3.88	45.5	17.83	3.22	5		Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	7	0.82		100			0.96	5.1
4.03	46.0	27.82	3.65 5	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	11	0.82		100			1.54	>1
4.18	46.5	52.79	1.24 7	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	12	0.81	40.6	55	46	34		
4.33	47.0	60.52	1.65 7	7		Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	13	0.61	46.3	60	50	35		
	47.5	82.92	1.24 7	7		Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5		0.81	48.0	50	51	35		
4.63	48.0	44.02	2.21 6	8		Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		0.80	33.4	80	40	34		
4.78	48.5	25,54	3.56 5			Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.80		100			1.40	8.7
4.93	49.0	25.94	3.36 5	5		Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.80		100			1.43	6.8
5.10	49.5	27.58	2.40 6		-	Sandy Silt to Cleyey Silt	ML	loose	115	3.5		0.79	20.7		26	32		
	50.0	18.11	3.13 €			Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.79		100	,		0.97	4.57

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

		NDING: SWT (ft):	9.0							P	hi Con	relation:	0	0-Schm	78),1-R&	C(83).2-P	HT(74
Base	Base	Avg	Avg	1	1918			Est.	Qc		Cn		Est.	Rei.	Nk:	17.0	
	Depth	Tip	Friction	Soil	Soil		Density or	Density	to	SPT	or	Norm.	%	Dens.	Phi	Su	
	feet		Ratio, %	Туре		USC	Consistency	(pcf)		N(60)	Cq			Dr (%)		(tsf)	00
		Contemporta															_
0.15	0.5	40.95	2.12 8	6	Sandy Silt to Clayey Silt	ML	very dense	115	3.5	12	2.00	77.4	45	108	43		
0.30	1.0	21.30	6.74 3	3	Clay	CL/CH	very defiae	125	1.3	17	2.00	77.4	90	100	10	1.25	>
0.45	1.5	25.22	3.65 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	2.00		70			1.48	>
0.60	2.0	61.19	2.07 7	7	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	14	2.00	115.7		91	41		
0.75	2.5	97.82	2.20 7	7	Silty Send to Sandy Silt	SM/ML	very dense	115	4.5	22	2.00	184.9	30	101	42		
0.93	3.0	80.03	3.03 6	6	Sandy Silt to Clayey Silt	ML	very dense	115	3.5	23	2.00	151.3		92	41		
1.08	3.5	48.59	3.45 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	19	2.00		50			2.85	>
1.23	4.0	49.63	2.71 6	6	Sandy Silt to Clayey Silt	ML	dense	115	3.5	14	2,00	93.8	45	73	38		
1.38	4.5	54.50	2.99 6	6	Sandy Silt to Clayey Silt	ML.	dense	115	3.5	16	2.00	103.0	45	74	38		
1.53	5.0	39.79	3.50 5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5	16	1.95		55			2.32	>
1.68	5.5	17.92	3.38 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	7	1.85		75			1.04	>
1.83	6.0	18.93	3,59 4	4	Silty Clay to Clay	CL	vary stiff	125	1.8	11	1.77		75			1.09	>
1.98	6.5	21.44	3.27 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	9	1.69		70			1.24	>
2.13	7.0	24.51	3.58 5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	10	1. 63		70			1.42	>
2.28	7.5	21.66	3.97 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	12	1.57		75			1.25	>
2.45	8.0	20.82	3.84 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	12	1.51		75			1.20	>
2.60	8.5	19.36	4.07 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	11	1.46		80			1.11	>
2.75	9.0	13.17	5.17 3	3	Clay	CL/CH	stiff	125	1.3	11	1.42		100			0.74	>
2.90	9.5	16.99	5.80 3	3	Clay	CL/CH	stiff	125	1.3	14	1.40		100			0.97	>
3.05	10.0	19.06	6.29 3	3	Clay	CL/CH	very stiff	125	1.3	15	1.36		100			1.09	>
3.20	10.5	17.31	5.91 3	3	Clay	CL/CH	stiff	125	1.3	14	1.36		100			0.98	>
3.35	11.0	20.31	4.77 3	3	Clay	CL/CH	very stiff	125	1.3	16	1.34		90			1.16	>
3.50	11.5	23.44	4.91 3	3	Clay	CL/CH	very sliff	125	1.3	19	1.33		85			1.34	>
3.65	12.0	23.17	4.98 3	3	Clay	CL/CH	very stiff	125	1.3	19	1.31		90			1,33	>
3.80	12.5	23.30	5.05 3	3	Clay	CL/CH	very stiff	125	1.3	19	1.29		90 100			1.33 1.11	5
3.95	13.0 13.5	19.59	5.27 3	3 3	Clay	CL/CH	very stiff	125	1.3	16 12	1.28		100			0.82	8.
4.13 4.28	14.0	14.54 21.57	5.23 3 4.64 3	3	Clay	CL/CH CL/CH	stiff	125 125	1.3 1.3	17	1.26 1.25		90			1.23	>
4.43	14.5	22.90	3.21 5	5	Clay Clayey Silt to Silty Clay	ML/CL	very stiff very stiff	120	2.5	9	1.23		60			1.31	>
4.58	15.0	12.01	5.50 3	3	Clay	CL/CH	stiff	125	1.3	10	1.22		100			0,66	5.0
4.73	15.5	11.99	4.61 3	3	Clay	CL/CH	stiff	125	1.3	10	1.21		100			0.66	5.
4.88	16.0	15.33	4.61 3	3	Clay	CL/CH	stiff	125	1.3	12	1.19		100			0.86	7.
5.03	16.5	22.61	7.20 3	3	Clay	CL/CH	very stiff	125	1.3	18	1.18		100			1.29	>
5.18	17.0	31.70	4.80 4	4	Silty Clay to Clay	CL	very stiff	125	1.8	18	1.17		85			1.82	>
5.33	17.5	61.63	2.19 6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5	18	1.18	67.5	45	61	37		
5.48	18.0	76.96	1.36 7	7	Silty Sand to Sandy Silt	SWML	medium dense	115	4.5	17	1.15	83.6	30	67	37		
5.65	18.5	104.21	1.78 7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	23	1.14	112.3	30	76	39		
5.80	19.0	166.60	1.96 7	7	Silty Sand to Sandy Silt	SM/ML	dense	115	4.5	37	1.13	17 8 .1	25	90	41		
5.95	19.5	208.95	2.01 8	8	Sand to Silty Sand	SP/SM	very dense	115	6.5	36	1.12	221.6	25	96	41		
6.10	20.0	214.85	2.14 7	7	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	48	1:11	226.1	25	97	42		
6.25	20.5	206.81	2.11 7	7	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	46	1.10	216.0		95	41		
6.40	21.0	213.85	2.11 7	7	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	48	1.10	221.8	25	96	41		
	21.5	257.9 4	2.05 8	6	Sand to Silty Sand	SP/SM	very dense	115	5.5	47	1.09	265.3		101	42		
6.70	22.0	258.04	1.83 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	47	1.08	263.5		101	42		
6.85	22.5	271.92	2.04 6	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	49	1.07	275.7		102	42		
7.00	23.0	293.80	2.10 8	8	Sand to Silty Sand	SP/SM	very dense	115	5.5	53	1.07	295.8		105	43		
7.18	23.5	287.42	2.14 8		Sand to Silty Sand	SP/SM	very dense	115	5.5	52	1.06	287.3		104	43		
7.33	24.0	277.82	2.02 8		Sand to Silty Sand	SP/SM	very dense	115	5.5	51	1.05	275.8		102	42		
7.48	24.5	256.97	1.93 8		Sand to Silty Sand	SP/SM	very dense	115	5.5	47	1.04	253.4		100	42		
7.63	25.0	240.85	1.94 8		Sand to Silty Sand	SP/SM	very dense	115	5.5	44	1.04	235.7		98	42		
7.78	25.5	164.71	1.64 B		Sand to Silty Sand	SP/SM	dense	115	5.5	30 20	1.03	160.3		86	40		
7.93	28.0	177.07	1.65 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5	32	1.02	171.2		88	40		
8.08	26.5	188.32	1.84 8	8	Sand to Silty Sand	SP/SM	dense	115	5.5	34	1.02	160.9		90	41 41		
8.23	27.0	189.99	1.96 7 1 75 P	7 8	Silty Sand to Sandy Silt	SM/ML	very dense	115	4.5	42	1.01	101.3		90 89	41		
6.38 9.53	27.5 28.0	182.69	1.75 8	8	Sand to Silty Sand Sand to Silty Sand	SP/SM	dense vetu dense	115	5.5 5.5	33 40	1.00 1.00	173.3 205.0		69 94	40 41		
8.53 8.68	28.0 28.5	217.50	1.71 8 1 94 B			SP/SM	very dense dense	115 115	5.5	40 34	0.99	205.0		94 89	41 41		
8.68 8.85		188.91 133.68	1.94 8	7	Sand to Silty Sand	SP/SM			5.5 4.5	34 30	0.99	124.5		59 79	39		
8.85 9.00	29.0 29.5	133.68 88.39	2.02 7 1.46 7	7	Silty Sand to Sandy Silt Silty Sand to Sandy Silt	SM/ML SM/ML	dense medium danse	115 115	4.5 4.5	30 20	0.99	124.5 81.8		67	39		
	20.0	00.00	1.40 /	- F	and again to again and	CINIVIA	medium dense	110	4.0	<u>z</u> u	0.00	91.0	60				

CONE PENETROMETER INTERPRETATION (based on Robertson & Campanella, 1989, refer to Key to CPT logs)

			CPT-7	an	, Call	patria, California Pr	0/00/110.	LE06217	196.2			06/14						
ONE											P	hi Con	elation;	0	0-Schm(78),1-R&C	(83),2-P	HT(74)
_		SWT (ft):	9.0		1		1		Est.	Qc	-	Cn		Est.	Rel.	Nk:	17.0	
Base	Base	Avg	Avg		Sall	Soil		Density or	Density	to	SPT	or	Norm.	%	Dens.	Phi	Su	
	Depth	Tip	Friction			Classification	USC	Consistency	(pcf)		N(60)	Cq		Fines	Dr (%)	(deg.)	(tsf)	OC
neters	feet	Qc, tsf	Ratio, %		Туре	Crassification	030	Condistency	10017					100	and the second s			
9.30	30.5	102.38	1.59	7	7	Silty Sand to Sandy Silt	SM/ML	dense .	115	4.5	23	0.97	93.6	35	71	38		
9.45	31.0	158.13	1.30		8	Sand to Silty Sand	SP/SM	dense	115	5.5	29	0.96	143.8	25	83	40		
9,60		132.18	1.53		6	Sand to Silty Sand	SP/SM	dense	115	5.5	24	0.98	119.5	30	78	39		
9.75	32.0	92.49	2.42	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	21	0.95	83.2		67	37		
9.90	32.5	23.67	4.79	3	3	Clay	CL/CH	very sliff	125	1.3	19	0.95		100			1.32	7.4
10.05	33.0	24.31	5.32	3	3	Clay	CL/CH	very stiff	125	1.3		0.94		100			1.36	7.5
10.20	33.5	28.53	5.91	3	3	Clay	CL/CH	very stiff	125	1.3	21	0.93		100			1.49	8.7
10.3B	34.0	20.46	6.05	3	3	Clay	CL/CH	very stiff	125	1.3	16	0.93		100			1.13	5.4
10.53	34.5	15,66	4.92	3	3	Clay	CL/CH	stiff	125	1.3	13	0.92		100			0.85	3.5
10.68		45.13	3.48	5	5	Clayey Sllt to Silty Clay	ML/CL	hard	120	2.5	18	0.92		80			2.58	>1
10.83	35.5	70.85	2.13	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5	16	0.91	61.0	55	56	36		
10.98	36.0	32.61	3.22	5	5	Clayay Silt to Silty Clay	ML/CL	very stiff	120	2.5	13	0.91		90			1.84	>1
11.13		21.10	3.21	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	8	0.90		100			1.18	9.5
11.28	37.0	20.52	2.96	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	8	0,90		100			1.13	8.8
11.43	37.5	20.48	3.20	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.89		100			1.13	8.7
11.58	38.0	27.20	3.35	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5	11	0.89		100			1.52	>'
11.73	38.5	38.32	2.59	6	6	Sandy Slit to Clayey Silt	ML	loose	115	3.5		0.88	31.9	80	39	33		
11.88	39.0	45.38	2.40	6	6	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		0.88	37.6	70	44	34		
12.05	39.5	20,00	3.12	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.87		100			1.09	7.7
12.20		21.21	4.34	4	4	Silty Clay to Clay	CL	very stiff	125	1.8	12	0.87		100			1.16	6.1
12.35	40.5	36.43	3.05	5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.86		90			2.06	>1
12.50	41.0	42.35	3.32	5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.86		85			2.41	>1
12.65	41.5	35.92	3.18	5	5	Clayey Silt to Silty Clay	ML/CL	hard	120	2.5		0.86		90			2.03	>1
12.80	42.0	19.39	2.98	5	5	Clayey Silt to Silty Clay	ML/CL	very stiff	120	2.5		0.85		100			1.05	6.6
12.95	42.5	15.69	2.79	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.85		100			0.84	4.6
13.10	43.0	36.70	2.29	6	6	Sandy Silt to Clayey Silt	ML	00060	115	3.5		0.84	29.2		36	33		
13.25	43.5	45.63	2.73	6	8	Sandy Silt to Clayey Silt	ML	medium dense	115	3.5		0.84	36.2		42	34		
13.40	44.0	69.49	1.20	7	7	Silty Sand to Sandy Silt	SM/ML	medium dense	115	4.5		0.84	54.9		55	36		
13.58	44.5	46.27	2.68	6	6	Sandy Silt to Clayey Silt	ML	medium dense		3.5	13	0.83	36.4	80	43	34		
13.73	45.0	37.39	2.31	6	6	Sandy Silt to Clayey Silt	ML	loose	115	3.5		0,83	29.3		36	33		
13.88	45.5	16.23	2.62	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.82		100			0.86	4.4
14.03	46.0	17.24	1.90	6	6	Sandy Silt to Clayey Silt	ML	very loose	115	3.5		0.82	13.4		13	30		
14.18	46.5	12.61	2.01	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.82		100			0.66	3.0
14.33	47.0	11.30	1.99	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.81		100			0.57	2.4
14.48		11.74	2.43	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.61		100			0.60	2.9
14.63		15.21	3.22	4	4	Silty Clay to Clay	CL	stiff	125	1.8		0.81		100			0.80	2.
14.78		17.87	3.41	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.80		100			0.95	4.
14.93	49.0	17.16	3.29	5	5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5		0.80		100			0.01	4.:
15.10	49.5	16.09	3.54	4	4	Silty Clay to Clay	CL	stiff	125	1.8		0.80		100			0.85	3.
15.25		14.41	2.92		5	Clayey Silt to Silty Clay	ML/CL	stiff	120	2.5	6	0.79		100			0.75	3.3

		DN:S	ee Site	and Exploration Plan	T	LOGG	ED BY	J.R.	Aval	os
	CLASSIFICATION	SAMPLE TYPE	POCKET PEN. (15F)	LOG OF BORING B-1 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY INDEX	PASSING # 200
				SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist						
	//.			End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.						
-										
		ect N 621		LANDMARK Geo-Engineers and Geologists					Plate B-8	

CLIENT: TKD			METHOD				
	fic Ethanol Plant, Calipatria, CA	A				RVED	
CLASSIFICATION CLASSIFICATION SAMPLE TYPE BLOWS FOOT	Site and Exploration Plan LOG OF SHEET DESCRIPTION SURFACE FLEV 1/2	1 OF 1	3-2 TERIAL	Moksture Content (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	 PLASSING # 200
	SURFACE ELEV. +/- SILTY CLAY/CLAY(CL- medium to high plasticit wide and 1 to 3 feet dee Moist to very moist	y. Cracks about 1 to	ery stiff, dry. o 2 inches	<u>5</u>			L 2.
	End of Exploration @ 5 No groundwater encour	.0 ft. htered @ time of exp	oloration.				
Project N LE06217		ANDM eo-Engineers and a DBE/MBE/SBE C					ate 3-9

	CLASSIFICATION			POCKET PEN. (TSF)	AND EXPLORATION Plan LOG OF BORING B-3 SHEET 1 OF 1	H			SED BY		PLASTICITY INDEX	
DEPTH (FEET)	CLASSIF	SAMPLE TYPE	BLOWS/ FOOT	POCKET	DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE	CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICI	PASSING # 200
1					SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist High plasticity					56	35	
5					End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
1- 	roje	ct	No:	+	I.ANDMARK				_		late	

PROJ		Paci	ific Et	METHO hanol Plant, Calipatria, CA		TË	OBSE	ATION RVED ED BY	06/	14/06	
	CLASSIFICATION SAMPLE TYPE	See	POCKET PEN. (TSF)	AND EXPLORATION Plan LOG OF BORING B-4 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE	CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	קיואר אוויד	PLASTICITY INDEX	PASSING # 200
- 1				SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist							
- 5 - <u>-</u> - 6 - - 7 - - 8 - - 9 - - 10 - - 11 -				End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
	roje LE0			LANDMARK Geo-Engineers. and Geologists DBE/MBE/SBE Company						Plat B-1	

ż

LOC	ATIC	DN:	See	Site	and Exploration Plan	T	_	LOGG	ED BY	<u>'J.R.</u>	Aval	os
DEPTH (FEET)	CLASSIFICATION	SAMPLE TYPE	BLOWS/ FOOT	POCKET PEN. (TSF)	LOG OF BORING B-5 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE	CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY INDEX	PASSING # 200
					SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist							
5 - 4					End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
	roje LE0			:	LANDMARK Geo-Engineers and Geologists	Liene en					Plate 3-12	

PRO		: P	acif	ic Et	METHO hanol Plant, Calipatria, CA and Exploration Plan		TE	OBSE	ERVED	06/	14/06	
				POCKET PEN. (TSF)	LOG OF BORING B-6 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/- SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist	woisture	CONTENT (%)	DRY LINIT WT. (PCF)	RELATIVE COMPACTION (%)		PLASTICITY INDEX	
5 - 2 6 - 7 - 8 - 9 - 10 - 11 -					End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
F	Proje LEC):	LANDMARK Geo-Engineers and Geologists @ DBE/MBE/SBE Company						Plat B-13	

	Ethanol Plant, Calipatria, CA DATE OBSERVED te and Exploration Plan LOGGED BY	
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWS/ FOOT	LOG OF BORING B-7 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	LIQUID LIMIT PLASTICITY INDEX PLASTING # 200
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist	
5 - 6 - 7 - 8 - 9 - 10 -	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.	
Project No: LE06217	LANDMARK Geo-Engineers and Geologists # DBE/MBE/SBE Company	Plate B-14

CLIENT: TKDA	METHO						
PROJECT: Pacific Et	thanol Plant, Calipatria, CA			RVED			
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWSI FOOT POCKET PEN. (TSF)	LOG OF BORING B-8 SHEET 1 OF 1 DESCRIPTION OF MATERIAL	MONSTURE CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	רומתום רוואוב	PLASTICITY INDEX	PASSING # 200
	SURFACE ELEV. +/-	88	H K	₩ 8 ₩ 8	Ĕ	ह	4
1 - 2 -	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist						
	*						
- 5	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.						
Project No: LE06217	LANDMARK Geo-Engineers and Geologists DBE/MBE/SBE Company		<u> </u>	I		Plate B-15	

	METHO Ethanol Plant, Calipatria, CA		OBSE	RVED	06/	14/06	3
LOCATION: See Sitts	LOG OF BORING B-9 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/- SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist	MOISTURE CONTENT (%)	DRY UNIT WT.			PLASTICITY RDEX	S OOZ # SNISSEd
4	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.						
8 - 9 - 10 - 11 -							
Project No: LE06217	Geo-Engineers and Geologists a DBE/MBE/SBE Company					late 8-16	

CLASSIFICATION	SAMPLE TYPE	BLOWS/FOOT **	POCKET PEN. (T'SF)	LOG OF BORING B-10 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	UNCONFINED COMPRESSION (TSF)		PLASTICITY INDEX	PASSING #200
	•			SILTY CLAY (CL): Light brown, dry, medium plasticity Cracks about 1 to 2 inches wide and 1 to 3 feet deep				41	23	
		31	3.00	SILTY CLAY/CLAY (CL-CH): Brown, moist, very stiff consistency and medium to high plasticity						
		16	3.00	Very moist						
		17	2.50		23.8	97.4				
										26
		13		SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand						20
		17								
		17								39
		9		CLAY (CH): Olive brown, very moist, stiff consistency and high plasticity				66	46	
		8						-		
				End of Boring at 39.0 ft						
				** Blows not corrected for overburden pressure, sampler size or increase drive energy for automatic hammers.						

				thanol Plant, Calipatria, CA and Exploration Plan		OBSE OGGE				
DEPTH	CLASSIFICATION	BLOWS/FOOT	POCKET PEN. (TSF)	LOG OF BORING B-11 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	UNCONFINED COMPRESSION (TSF)		PLASTICITY INDEX	DA CONC. #200
		23	1.00	CLAY (CH): Light brown, dry, high plasticity Cracks about 1 to 2 inches wide and 1 to 3 feet deep Brown, moist, stiff consistency				55	21	
		24	2.50	Very moist	28.0	95.9				
5-] 31	2.50	Very stiff consistency				51	15	
		29		SILT SAND (SM): Brown, saturated, medium dense, fine grained sand						
		18								18
		12								
		22		CLAYEY SILT (ML): Brown, saturated, medium dense, medium plasticity, some fine grained sand				30	18	
		17								
-				End of Boring at 41.5 ft ** Blows not corrected for overburden pressure, sampler size or increase drive energy for automatic hammers.						
		t No 217	:	LANDMARK Geo-Engineers and Geologista					Plate 3-18	

PRO.		Paci	ific Et	METHOD OF DRILLING: hanol Plant, Calipatria, CA and Exploration Plan	DATE	55 w/a OBSE DGGEI	RVED	06/	14/06	
DEPTH	SAMPLE TYPE	BLOWS/FOOT **	POCKET PEN. (15F)	LOG OF BORING B-12 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	UNCONFINED COMPRESSION (TSF)		PLASTICITY INDEX	PASSING #200
				SILTY CLAY (CL): Light brown, dry, medium plasticity Cracks about 1 to 2 inches wide and 1 to 3 feet deep				46	29	
- 5 -		10	2.00	Brown, moist, stiff consistency				36	16	
		35	3.00	CLAY (CH): Brown, moist, very stiff consistency and high plasticity	19.5	104.6				
-15-		19	3.00	Very moist	25.4	97.3				
-20-		21		SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand						4
25-11		32		Dense						
		21		Medium dense						3
-35-		16		SANDY SILT (ML): Brown, saturated, medium dense, with fine grained sand				29		
 -40-				End of Boring at 37.5 ft Groundwater Encountered at 8.4 feet (06-21-06)						
				** Blows not corrected for overburden pressure, sampler size or increase drive energy for automatic hammers.						
	roje LE0			LANDMARK Geo-Engineers and Geologists <i>DBE/MBE/SBE Company</i>					Plat B-1	

P	ROJ	ECI		ific E	METHOD OF DRILLING thanol Plant, Calipatria, CA and Exploration Plan	DATE	55 w/a OBSE OGGEI	RVE	06/	14/0	
DEPTH	CLASSIFICATION	SAMPLE TYPE	BLOWS/FOOT	POCKET PEN. (TSF)	LOG OF BORING B-13 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	UNCONFINED COMPRESSION (TSF)		PLASTICITY NDEX	PASSING #200
			21	3.00	SILTY CLAY (CL): Light brown, dry, medium plasticity Cracks about 1 to 2 inches wide and 1 to 3 feet deep Brown, very moist, very stiff consistency	23.3	89.6		41	22	
 - 10-				2.50	CLAY (CH): Reddish brown, very moist, very stiff		103.5				
 -15-			29	3.00	consistency and high plasticity	21.1	103.5				
20-			29		SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand						
25-			19		SANDY SILT/SILTY SAND (ML/SM): Brown, saturated, medium dense and fine grained sand						52
30-			31		Dense						
35-		Ν	10		SILTY CLAY (CL): Brown, very moist, stiff consistency and low to medium plasticity						
40-					End of Boring at 37.5 ft						
1					** Blows not corrected for overburden pressure, sampler size or increase drive energy for automatic hammers.						
F			No 217	:	LANDMARK Geo-Engineers and Geologists a DBE/MBE/SBE Company					Plate 3-20	

J.R. A	PLASTICITY MDEX
58 4	42
	2
	3
60 3	38
	_
	_
	P

					hanol Plant, Calipatria, CA and Exploration Plan		OBSE				-
DEPTH	CLASSIFICATION	SAMPLE TYPE	BLOWS/FOOT **	POCKET PEN. (TSF)	LOG OF BORING B-15 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	UNCONFINED COMPRESSION (TSF)	רומתום האונו	PLASTICITY INDEX	
5		•			CLAY (CH): Light brown, dry, high plasticity Cracks about 1 to 2 inches wide and 1 to 3 feet deep				53	34	
			7	0.75	Brown, moist, medium stiff consistency						
44444			19	2.50	Reddish brown, very moist, stiff consistency	26.4	81.6				
			>50	2.75	hard	25.2	95.8	- 11//			
			32		SILTY SAND (SM): Brown, saturated, dense, fine grained sand						
			14		Medium dense						22
			13								
			10		SILT/CLAYEY SILT (ML): Brown, saturated, medium dens some fine grained sand	э,					
-			18		End of Paring at 44 5 4				26		
					End of Boring at 41.5 ft Groundwater Encountered at 9.5 feet (06-21-06) ** Blows not corrected for overburden pressure, sampler size or increase drive energy for automatic hammers.						
			: No 217	:	LANDMARK Geo-Engineers and Geologists					Plate B-22	

÷

CLIENT: TKDA	METHO Manol Plant, Calipatria, CA	d of Da	ΤE	OBS	ERVED	06/1	4/06	
LOCATION: See Site a	nd Exploration Plan		1	.0GG	ED BY	J.R.	Avalo	os
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWS/ FOOT POCKET PEN. (TSF)	LOG OF BORING B-16 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE	CONTENT (%)	DRY UNIT MT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY NUDEX	PASSING # 200
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist High plasticity					58	39	
- 4	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
- 8 - - 9 - - 10 - - 11 -								
Project No: LE06217	Geo-Engineers and Geologists a DBE/MBE/SBE Company						Plat B-2	

	PI		EÇ1	Pac	cific Et	METHOD OF DRILLING: thanol Plant, Calipatria, CA and Exploration Plan	DATE	55 w/a OBSE OGGE	RVE	06/	14/0	
10 12 3.00 Cracks about 1 to 2 inches wide and 1 to 3 feet deep 35 19 10 12 3.00 Brown, moist, stiff consistency 28.2 93.5 93.5 19 10 12 3.00 Brown, moist, stiff consistency 28.2 93.5 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 11 10 <td< td=""><td>DEPTH</td><td>CLASSIFICATION</td><td>SAMPLE TYPE</td><td>BLOWS/FOOT **</td><td>POCKET PEN. (TSF)</td><td>SHEET 1 OF 1 DESCRIPTION OF MATERIAL</td><td>MOISTURE CONTENT (%)</td><td>DRY UNIT WT. (PCF)</td><td></td><td>LIQUID LIMIT</td><td>PLASTICITY INDEX</td><td>PASSING #200</td></td<>	DEPTH	CLASSIFICATION	SAMPLE TYPE	BLOWS/FOOT **	POCKET PEN. (TSF)	SHEET 1 OF 1 DESCRIPTION OF MATERIAL	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)		LIQUID LIMIT	PLASTICITY INDEX	PASSING #200
33 3.50 CLAY (CH): Reddish brown, very moist, very stiff consistency and high plasticity 15 30 4.00 16 SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand 20 23 23 10 30 10 31 SILT/CLAYEY SILT (ML): Brown, saturated, medium dense, some fine grained sand 40 9 40 9			•	12	3.00	Cracks about 1 to 2 inches wide and 1 to 3 feet deep	28.2	93.5		35	19	
30 4.00 30.0 95.8 20 16 SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand 1 25 23 11 10 SILT/CLAYEY SILT (ML): Brown, saturated, medium dense, some fine grained sand 30 30 10 SILT/CLAYEY SILT (ML): Brown, saturated, medium dense, some fine grained sand 30 40 9 End of Boring at 41.5 ft 10 End of Boring at 41.5 ft 10	 - 10- 			33	3.50							
16 SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand 23 23 30 11 35 10 35 10 9 End of Boring at 41.5 ft	-15-			30	4.00		30.0	95.8				
30- 11 35- 10 35- 10 36- 10 SILT/CLAYEY SILT (ML): Brown, saturated, medium dense, some fine grained sand 30 40- 9 End of Boring at 41.5 ft	20-			16		SILTY SAND (SM): Brown, saturated, medium dense, fine grained sand						21
35 10 SILT/CLAYEY SILT (ML): Brown, saturated, medium dense, some fine grained sand 30 40 9 End of Boring at 41.5 ft 50	25-			23								
40- 9 End of Boring at 41.5 ft	30-			11					_			38
End of Boring at 41.5 ft	35-		2	10			9,			30		
** Blows not corrected for overburden pressure, sampler	40-		Ν	9		End of Boring at 41.5 ft						
Project No: IANDMARK Plate	-	 Pro	iect	t No		** Blows not corrected for overburden pressure, sampler					Plate	

PRO		T:	Paci	fic Et	METHO hanol Plant, Calipatria, CA and Exploration Plan		TE	OB	SE	RVED ED BY	06/	14/06	3
DEPTH (FEET)	z	SAMPLE TYPE	BLOWS FOOT	POCKET PEN. (TSF)	LOG OF BORING B-18 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE	CONTENT (%)	NT WT.	(PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY INDEX	
1 - 2					SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep								
2 - - 3 - 4 -		•			Moist to very moist								
5 - 6 -					End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.								
7 - - B -													
- 9 - -													
-													
	Proj LE		t No 217		LANDMARK Geo-Engineers and Geologists <i>DBE/MBE/SBE Company</i>							Plat B-2	

	CT:	Pac	ific E	METHC thanol Plant, Calipatria, CA and Exploration Plan		E OBS	ATION ERVED	06/	14/06	
CLASSIFICATION	SAMPLE TYPE	BLOWS/ FOOT	POCKET PEN. (TSF)	LOG OF BORING B-19 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE Content (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY INDEX	PASSING # 200
				SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep						
	•			Moist to very moist						
				End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.						1000 C
					×					
Proje LE(LANDMARK Geo-Engineers and Geologists # DBE/MBE/SBE Company					late -26	

	Pacif	ic Etl	METHO hanol Plant, Calipatria, CA and Exploration Plan		TE	OBS	/ATIO ERVE GED B	D 06/	14/06	;
DEPTH (FEET) CLASSIFICATION CLASSIFICATION SAMPLE TYPE	BLOWS/ FOOT	POCKET PEN. (TSF)	LOG OF BORING B-20 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE		DRY UNIT WT. (PCF)	IIVE ACTION (%)		PLASTICITY INDEX	PASSING # 200
			SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist							
5 6 - 7 - 8 - 9 - 10 - 11 -			End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
Proje	ct No 6217		LANDMARK Geo Engineers and Geologists a DBE/MBE/SBE Company	_					Plat B-2	

CLIENT: TKDA PROJECT: Pacific Ethan	ATION						
LOCATION:See Site and				ED BY			- U
<u> 5 4 5 6 7 </u>	LOG OF BORING B-21 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY INDEX	PASSING # 200
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist						
	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.						
Project No: LE06217	LANDMARK Geo-Engineers and Geologists <i>DBE/MBE/SBE Company</i>					Plate B-28	

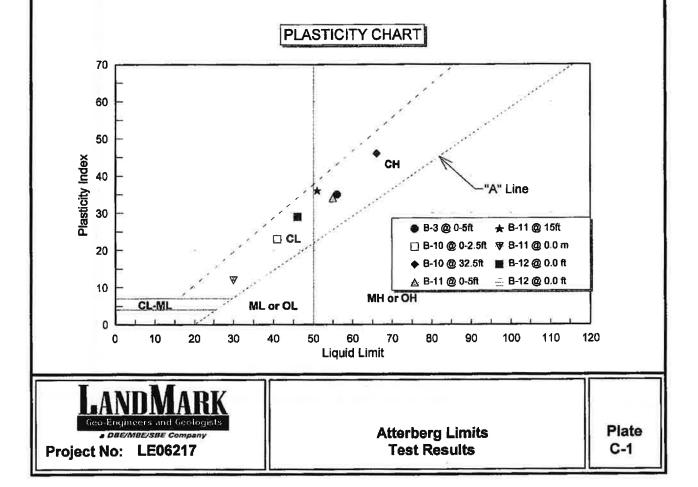

.

CLIENT: TKDA METHOD OF EXCAVATION Mec PROJECT: Pacific Ethanol Plant, Calipatria, CA DATE OBSERVED 06/									
LOCATION: See Site a			LOGG	ED BY	J.R.	Avalo	os		
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWS/ FOOT POCKET PEN. (TSF)	LOG OF BORING B-22 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)		PLASTICITY INDEX	PASSING # 200		
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist								
- 5 - 2224 	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.								
Project No: LE06217					Plate B-29				

CLIENT: TKDA	METHOD OF EXCAVATION Ethanol Plant, Calipatria, CA DATE OBSERVED	
		YJ.R. Avalos
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWS/ FOOT POCKET PEN. (TSF)	LOG OF BORING B-23 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	LIQUID LIMIT PLASTICITY INDEX PASSING # 200
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist	
- 5	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.	
Project No: LE06217	LANDMARK Geo-Engineers and Geologists • DBE/MBE/SBE Company	Plate B-30

CLIENT: TKDA METHOD OF EXCAVATIONMe PROJECT: Pacific Ethanol Plant, Calipatria, CA DATE OBSERVED 00								
LOCATION: See Site a			LOGG					
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWS! FOOT POCKET PEN. (TSF)	LOG OF BORING B-24 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE Content (%)	DRY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	דפאט טעסט,	PLASTICITY INDEX	PASSING # 200	
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep Moist to very moist							
- 5	End of Exploration @ 5.0 ft. No groundwater encountered @ time of exploration.							
Project No: LE06217	LANDMARK Geo Engineers and Geologists DBE/MBE/SBE Company					Plate B-31		

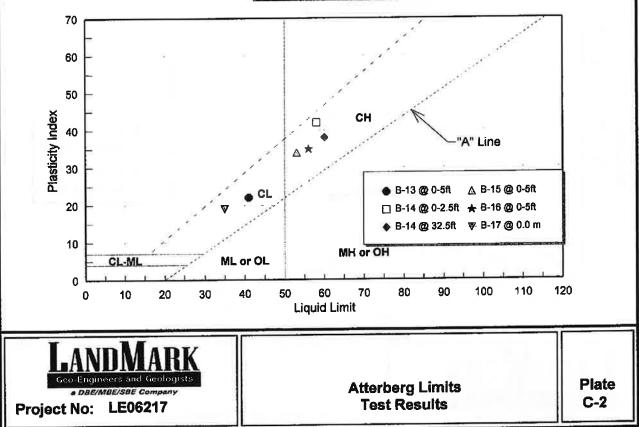
	METHO Ethanol Plant, Calipatria, CA a and Exploration Plan		E OBSI	ATION	06/	14/06	
DEPTH (FEET) CLASSIFICATION SAMPLE TYPE BLOWS/ FOOT POCKET PEN. (TSF)	LOG OF BORING B-25 SHEET 1 OF 1 DESCRIPTION OF MATERIAL SURFACE ELEV. +/-	MOISTURE CONTENT (%)	ORY UNIT WT. (PCF)	RELATIVE COMPACTION (%)	LIQUID LIMIT	PLASTICITY INDEX	PASSING # 200
	SILTY CLAY/CLAY(CL-CH): Light brown, very stiff, dry, medium to high plasticity. Cracks about 1 to 2 inches wide and 1 to 3 feet deep						
	Moist to very moist						
- 4 - - 5 -	End of Exploration @ 5.0 ft.						
- 6	No groundwater encountered @ time of exploration.						
- 8 -							
- 10 - 11							
Project No: LE06217	LANDMARK Geo-Engineers and Geologists a DBE/MBE/SBE Company		1			Plate 3-32	

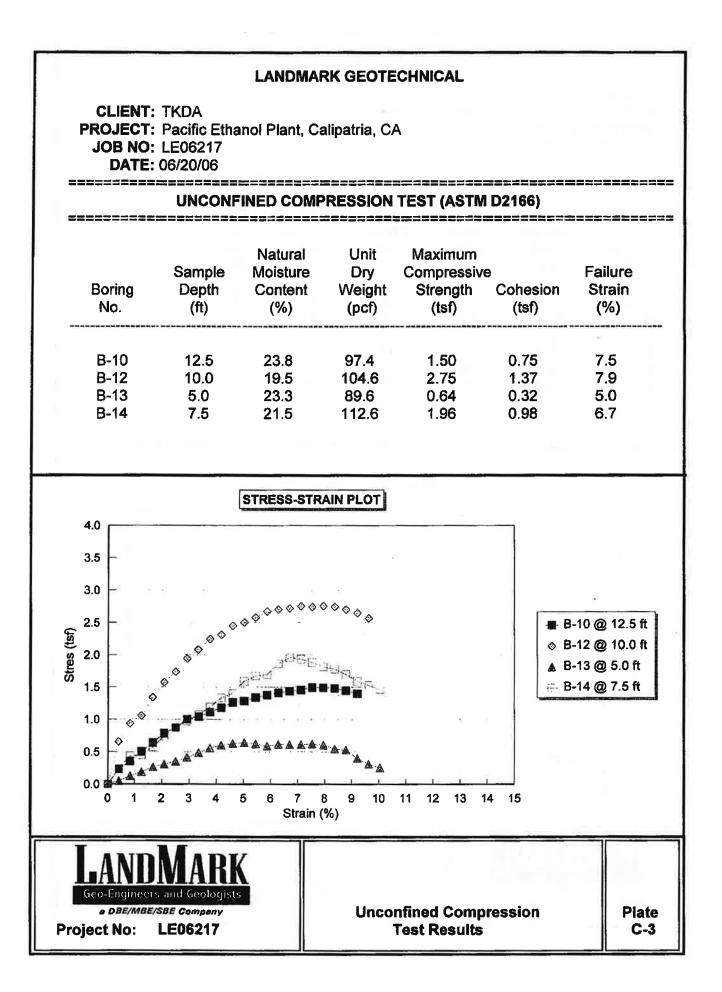

	IMARY DIVISION	NS.		ABOLS	FION OF TERMS SECONDARY DI	VISIONS			
	Gravels					() () () () () () () () () () () () () (lter.		
	More than half	Clean	0.0.0	GW	Well graded gravels, gravel-sand mix	tures, nue or no n	ines		
	of	gravels (less than 5% fines)		ĜP	Poorly graded gravels, or gravel-sand	mixtures, little or	no fines		
Coarse grained soils		Gravel		GM	Silty gravels, gravel-sand-silt mixtures	, non-plastic fines	6		
More than half of	larger than No. 4 sieve	with fines	11	GC Clayey gravels, gravel-sand-clay mixtures, plastic fines					
material is larger	Sands	Clean sands (less		8W	Well graded sands, gravelly sands, lit	Well graded sands, gravely sands, little or no fines			
than No. 200 sieve	More than half	than 5% fines)		SP	Poonly graded sands or gravelly sands	s, little or no fines			
	of coarse fraction	Sands		aw	Silty sands, sand-silt mixtures, non-pl	astic fines			
	is smaller than No. 4 sleve	with fines		\$C	Clayey sands, sand-clay mixtures, plastic fines				
	Silts a	ind clays		ML	Inorganic silts, clayey silts with slight	asticity			
Fine grained soils	Liqui	d limit is		CL	inorganic clays of low to medium plas	licity, gravely, san	idy, or lean clay		
More than half of	less t	han 50%		OL	Organic silts and organic clays of low plasticity				
material is smaller	Silts a	nd clays		MH	Inorganic silts, micaceous or diatomat	ceous silty soils, e	lastic silts		
than No. 200 sieve				СН	Inorganic clays of high plasticity, fat cl	ays			
	more than 50%			ОН	Organic clays of medium to high plast	icity, organic silts			
HI	ghly organic soils	5		РТ	Peat and other highly organic soils	10			
				G	RAIN SIZES	v			
Silts and (Silts and Clays Sar				Gravel	Cobbles	Bouiders		
		Fine Mediu	m	Coarse	B Fine Coarse				
	0-4				Soft	0.25-0.5	2-4 4-8		
Very Loose Loose Medium Dense Dense	4-10 10-30 30-50				Firm Stiff Very Stiff	0.5-1.0 1.0-2.0 2.0-4.0	8-16 16-32		
Loose Medium Dense Dense Very Dense	10-30 30-50 Over 50				Stiff Very Stiff Hard	1.0-2.0 2.0-4.0 Over 4.0	8-16		
Loose Medium Dense Dense Very Dense * Number of blows o * Unconfined compo Penetration Test (/ Type of Samples:	10-30 30-50 Over 50 f 140 lb. hamme assive strength in	n tons/s.f. as deterr	nined I Ir, Torv	by labo ane, o	Stiff Very Stiff <u>Hard</u> ch O.D. (1 3/8 in. I.D.) split spoon (ASTM tratory testing or approximated by the St r visual observation.	1.0-2.0 2.0-4.0 Over 4.0	8-16 16-32		
Loose Medium Dense Dense Very Dense * Number of blows o * Unconfined compo Penetration Test (/ Type of Samples:	10-30 30-50 Over 50 f 140 lb. hamme assive strength in ASTM D1586), P	n tons/s.f. as deten ocket Penetromsta	nined I Ir, Torv	by labo ane, o	Stiff Very Stiff <u>Hard</u> ch O.D. (1 3/8 in. I.D.) split spoon (ASTM tratory testing or approximated by the St r visual observation.	1.0-2.0 2.0-4.0 Over 4.0 1 D1586). anderd	8-16 16-32		
Loose Medium Dense Dense Very Dense * Unconfined compo Penetration Test (/ Type of Samples; Drilling Notes:	10-30 30-50 Over 50 f 140 lb. hamme assive strength in ASTM D1586), P Ring Sample 1. Sampling and 2. P. P. = Pocke 3. NR = No reco	n tons/s.f. as deterr ocket Penetromate Standard Per Blow Counts Ring Sampler - Nur Standard Penetratio Shelby Tube - Threat Penetrometer (too	mined I Ir, Torv netratio mber of on Tes ie (3) in ns/s.f.)	by labo ane, of on Test f blows t - Num hch nor	Stiff Very Stiff Hard Ch O.D. (1 3/6 in. i.D.) split spoon (ASTM reatory testing or approximated by the St r visual observation. t	1.0-2.0 2.0-4.0 Over 4.0 101566). andard g) Sample	8-16 16-32		
Loose Medium Dense Dense Very Dense * Unconfined compo Penetration Test (/ Type of Samples; Drilling Notes:	10-30 30-50 Over 50 f 140 lb. hamme assive strength in ASTM D1586), P Ring Sample 1. Sampling and 2. P. P. = Pocket 3. NR = No race 4. GWT = = CARRK 0 Geologiets Company	n tons/s.f. as deterr ocket Penetromate Standard Pen I Blow Counts Ring Sampler - Nur Standard Penetrati Shelby Tube - Thre t Penetrometer (to very.	mined I Ir, Torv netratio mber of on Tes ie (3) in ns/s.f.)	by labo ane, of on Test f blows t - Num hch nor	Stiff Very Stiff Hard Ch O.D. (1 3/6 in. i.D.) split spoon (ASTM reatory testing or approximated by the St r visual observation. t	1.0-2.0 2.0-4.0 Over 4.0 101566). andard g) Sample	8-16 16-32		

APPENDIX C

LANDMARK CONSULTANTS, INC.

CLIENT: TKDA PROJECT: Pacific Ethanol Plant, Calipatria, CA JOB NO: LE06217 DATE: 06/24/06


ATTERBERG LIMITS (ASTM D4318)							
Sample Location	Sample Depth (ft)	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	USCS Classif- ation		
B-3	0-5	56	21	35	СН		
B-10	0-2.5	41	18	23	CL		
B-10	32.5	66	20	46	СН		
B-11	0-5	55	21	34	СН		
B-11	15	51	15	36	CH		
B-11	35	30	18	12	CL		
B-12	0-5	46	17	29	CL		
B-12	5	36	20	16	CL		

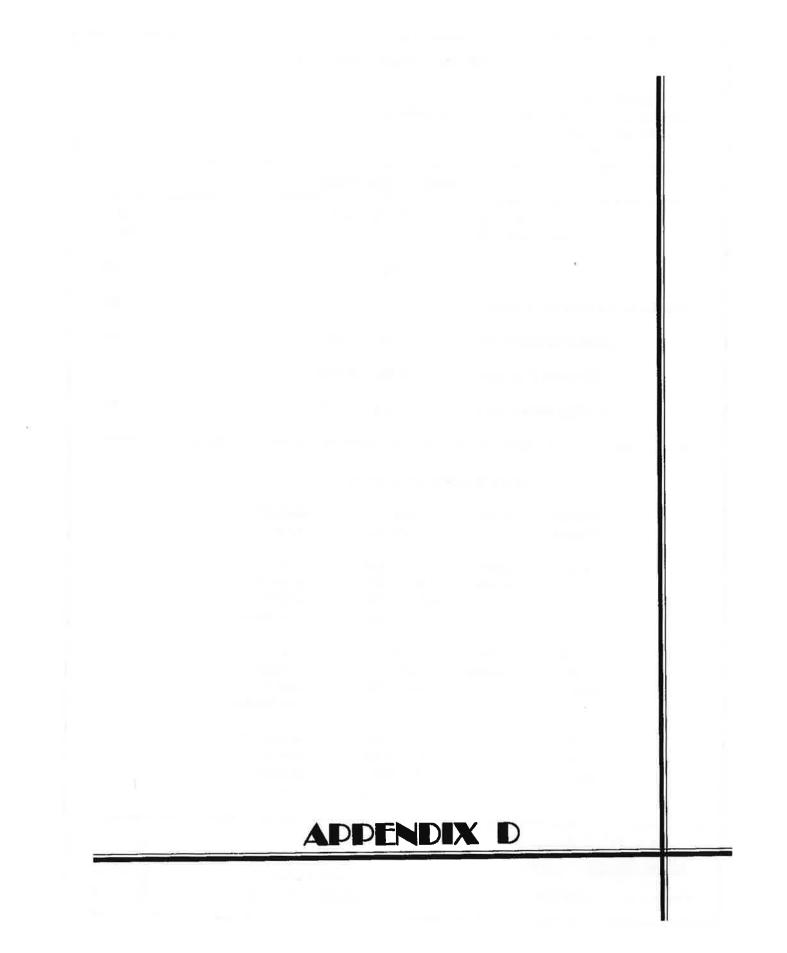


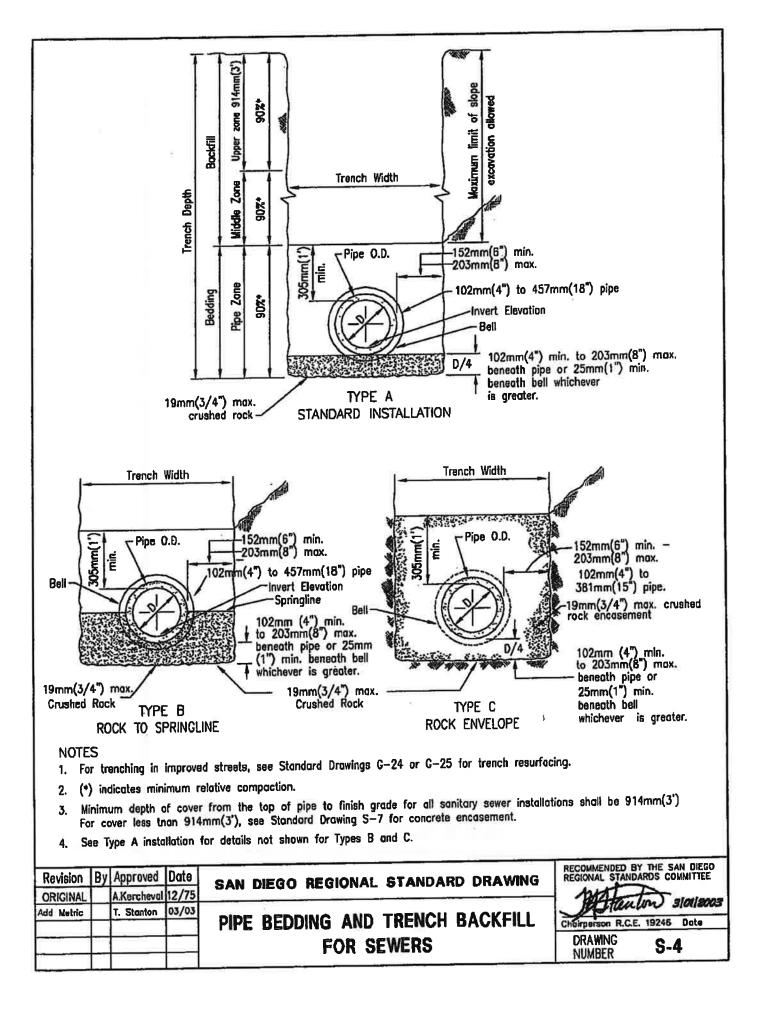
LANDMARK CONSULTANTS, INC.

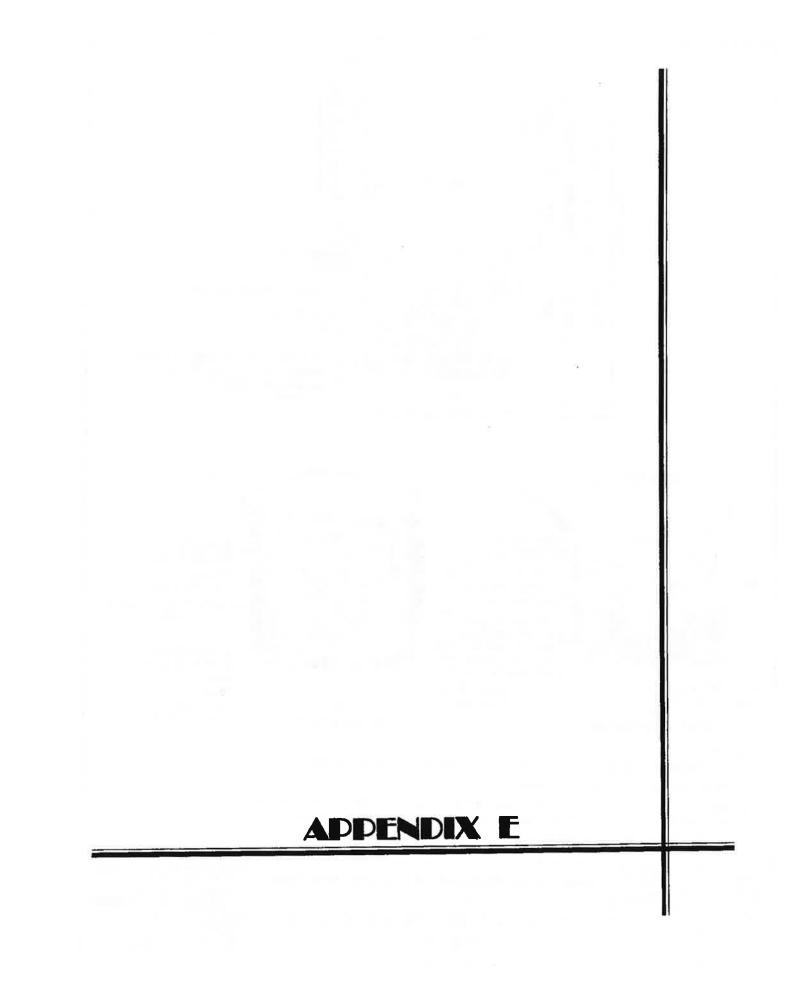
CLIENT: TKDA PROJECT: Pacific Ethanol Plant, Calipatria, CA JOB NO: LE06217 DATE: 06/24/06

Sample	Sample Depth (ft)	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	USCS Classif- ation	
B-13	0-5	41	19	22	CL	
B-14	0-2.5	58	16	42	СН	
B-14	32.5	60	22	38	СН	
B-15	0-5	53	19	34	СН	
B-16	0-5	56	21	35	СН	
B-17	0-5	35	16	19	CL	
				1.21200313		

		LANDMAR	K CONSUL	TANTS, INC.		2	
JOB NO:	TKDA Pacific Ethar LE06217 07/06/06	nol Plant, Cal	ipatria, CA		322232 4 23		;==28
	EXPANSIC	ON INDEX TE	EST (UBC 29	9-2 & ASTM [)4829)		
Sample Location & Depth (ft)	Initial Moisture (%)	Compacted Dry Density (pcf)	Final Moisture (%)	Volumetric Swell (%)	Expansion Index (EI)	Expansiv Potentia	
B-11 0-5 ft.	11.6	104.1	29.6	12.0	120	High	
					UBC CLAS	SIFICATIO	N
					0-20 20-50 50-90 90-130 130+	Very Low Low Medium High Very Higl	
	Note: * Th	e measured saturation in a	El have beer accordance v	adjusted to f with Section 1	the estimate 0.1.2 of AST	d El at 50% M D4829.	6
LAN Geo-Engine Project No:	DMAR Cers and Geolog LE06217	K ists	E	xpansion Inc Test Result			Plate C-4


LANDMARK CONSULTANTS, INC.


CLIENT: TKDA PROJECT: Pacific Ethanol Plant, Calipatria, CA JOB NO: LE06217 DATE: 06/30/06


	E: 06/30/06 =========							22222222
		СН	EMICAL ANA	LYSES				
	Sample	Boring: Depth, ft:	B-10 0-2.5	B-11 0-5	B-12 0-5	B-13 0-5	B-14 0-2.5	CalTrans Method
		pH:	9.2	9.2	9.2	9.2	9.3	643
Electrical	Conductivity	(mmhos):	3.3	3.4	2.9	2.7	3.1	424
	Resistivity (ohm-cm):	220	180	250	190	170	643
	Chloride	(Cl), ppm:	2,920	4,060	3,100	3,640	3,880	422
	Sulfate (So	0 4), ppm :	6,094	6,077	4,625	3,348	928	417
		:C;;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	:=====================================					22288722
		General Guide	elines for Soil Cor	rosivity		=:		
	Material Affected			Amount in <u>Soil (ppm)</u>		Degree of Corrosivity		
	Concrete	Soluble Sulfates	0 -1,000 1,000 - 2,000 2,000 - 20,000 > 20,000		Low Moderate Severe Very Sev			
	Normal Grade Steel	Soluble Chlorides	0 - 200 200 - 700 700 - 1,500 > 1,500		Low Moderate Severe Very Sev			
	Normal Grade Steel	Resistivity	1-1,000 1,000-2,000 2,000-10,000 > 10,000		Very Sev Severe Moderate Low			
	MARK ESANG GOODOGUES USBE Company LE06217				l Chemic es Resul			Plate C-5

		LANDMA	RK CONSUL	TANTS,	INC.	
JOB NO:	Pacific Eth	anol Plant, (Calipatria, CA			
=#2997=22238 	223322 2 2	CH	EMICAL ANA	LYSES		
	Sample	Boring: Depth, ft:	B-15 0-5	B-17 0-5		CalTrans Method
		pH:	9.2	9.3		643
Electrical Co	onductivity (mmhos):	3.2	1.8		424
F	Resistivity (ohm-cm):	230	240		643
	Chloride (Cl), ppm:	3,700	3,040		422
	Sulfate (SC	04), ppm:	5,501	1,975		417
	Material Affected Concrete Normal Grade Steel	General Guide Chemical Agent Soluble Sulfates Soluble Chlorides	Amount in 	n)	Degree of Corrosivity Low Moderate Severe Very Severe Low Moderate Severe Very Severe	
	Normal Grade Steel	Resistivity	1-1,000 1,000-2,000 2,000-10,000 > 10,000)	Very Severe Severe Moderate Low	
	MARK Anni Geologieles Bee Compiliny LE06217				d Chemical es Results	Plate C-6

æ.

REFERENCES

- Arango I., 1996, Magnitude Scaling Factors for Soil Liquefaction Evaluations: ASCE Geotechnical Journal, Vol. 122, No. 11.
- Blake, T. F., 2000, FRISKSP A computer program for the probabilistic estimation of seismic hazard using faults as earthquake sources.
- Boore, D. M., Joyner, W. B., and Fumal, T. E., 1997, Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra: Seismological Research Letters, Vol. 68, No. 1, p. 154-179.
- Bray, J. D., Sancio, R. B., Riemer, M. F. and Durgunoglu, T., (2004) Liquefaction Susceptibility of Fine-Grained Soils: Proc. 11th Inter. Conf. in Soil Dynamics and Earthquake Engineering and 3rd Inter. Conf. on Earthquake Geotechnical Engineering., Doolin, Kammerer, Nogami, Seed, and Towhata, Eds., Berkeley, CA, Jan. 7-9, V.1, pp. 655-662.
- California Division of Mines and Geology (CDMG), 1996, California Fault Parameters: available at http://www.consrv.ca.gov/dmg/shezp/fltindex.html.
- California Division of Mines and Geology (CDMG), 1962, Geologic Map of California San Diego-El Centro Sheet: California Division of Mines and Geology, Scale 1:250,000.
- Cao, T., Bryant, W. A., Rowshandel, B., Branum, D., and Wills, C. J., 2003, The revised 2002 California probabilistic seismic hazards maps: California Geological Survey: <u>http://www.conservation.ca.gov/cgs/rghm/psha</u>.
- Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder, L. F., Jr., Kayen, R. E., and Moss, R. E. S., 2004, Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential: ASCE JGGE, Vol., 130, No. 12, p. 1314-1340.
- Ishihara, K. (1985), Stability of natural deposits during earthquakes, Proc. 11th Int. Conf. On Soil Mech. And Found. Engrg., Vol. 1, A. A. Balkema, Rotterdam, The Netherlands, 321-376.
- Jennings, C. W., 1994, Fault activity map of California and Adjacent Areas: California Division of Mines and Geology, DMG Geologic Map No. 6.
- Morton, P. K., 1977, Geology and mineral resources of Imperial County, California: California Division of Mines and Geology, County Report No. 7, 104 p.

- Robertson, P. K. and Wride, C. E., 1996, Cyclic Liquefaction and its Evaluation based on the SPT and CPT, Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, NCEER Technical Report 97-0022, p. 41-88.
- Seed, H. B., Idriss, I. M., and Arango I., 1983, Evaluation of liquefaction potential using field performance data: ASCE Geotechnical Journal, Vol. 109, No. 3.
- Seed, H. B., et al, 1985, Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations: ASCE Geotechnical Journal, Vol. 113, No. 8.
- Seed, R. B., Cetin, K. O., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M. Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E., and Faris, A, 2003, Recent advances in soil liquefaction engineering: a unified and consistent framework: University of California, Earthquake Engineering Research Center Report 2003-06, 71 p.
- Sylvester, A. G., 1979, Earthquake damage in Imperial Valley, California May 18, 1940, as reported by T. A. Clark: BSSA, v. 69, no. 2, p. 547-568.
- Tokimatsu, K. and Seed H. B., 1987, Evaluation of settlements in sands due to earthquake shaking: ASCE Geotechnical Journal, v. 113, no. 8.
- U.S. Geological Survey (USGS), 1982, The Imperial Valley California Earthquake of October 15, 1979: Professional Paper 1254, 451 p.
- U.S. Geological Survey (USGS), 1996, National Seismic Hazard Maps: available at http://gldage.cr.usgs.gov
- Working Group on California Earthquake Probabilities (WGCEP), 1992, Future seismic hazards in southern California, Phase I Report: California Division of Mines and Geology.
- Working Group on California Earthquake Probabilities (WGCEP), 1995, Seismic hazards in southern California, Probable Earthquakes, 1994-2014, Phase II Report: Southern California Earthquake Center.
- Youd, T. Leslie and Garris, C. T., 1995, Liquefaction induced ground surface disruption: ASCE JGGE, Vol. 121, No. 11.
- Youd, T. L., Hansen, C. M., and Bartlett, S. F., 1995, Revised Multilinear Regression Equations of Prediction of Lateral Spread Displacement: Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 12, p. 1007-1017.
- Youd, T. L. et. al., 2001, Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils: JGGE, Vol. 127, No. 10, p. 817-833.

LINSCOTT LAW & GREENSPAN

engineers

TRANSPORTATION IMPACT ANALYSIS

ALL AMERICAN GRAIN County of Imperial, California July 3, 2018

LLG Ref. 3-18-2924

Prepared by: Jose Nunez Transportation Planner II

÷

Under the Supervision of: John A. Boarman Principal

Linscott, Law & Greenspan, Engineers 4542 Ruffner Street Suite 100 San Diego, CA 92111

858.300.8800 т 858.300.8810 ғ www.llgengineers.com

TABLE OF CON	TENTS
---------------------	-------

SECT	ION	P.	AGE
Арр	oendi	ces	ii
List	of Fi	gures	. iii
List	of Ta	ıbles	. iv
1.0	Intr	oduction	5
2.0	Pro	ject Description	6
	2.1	Project Location	
	2.2	Project Description	
3.0	Exis	ting Conditions	10
	3.1	Existing Street Network	10
	3.2	Existing Traffic Volumes	
4.0	Апа	lysis Approach and Methodology	14
	4.1	Unsignalized Intersections	15
	4.2	Street Segments	
5.0	Sign	ificance Criteria	18
6.0	Ana	lysis of Existing Conditions	19
	6.1	Peak Hour Intersection Levels of Service	19
	6.2	Daily Street Segment Levels of Service	20
7.0	Trip	Generation/Distribution/Assignment	21
	7.1	Trip Generation	21
	7.2	Trip Distribution	22
	7.3	Trip Assignment	22
8.0	Cun	nulative	29
	8.1	Description of Projects	29
	8.2	Existing + Project Analysis	29
		8.2.1 Intersection Operations	
		8.2.2 Segment Analysis	
	8.3	Existing + Project + Cumulative Analysis	29
		8.3.1 Intersection Analysis8.3.2 Segment Analysis	
		8.3.2 Segment Analysis	29
9.0	Proj	ect Access	34

10.0	Conclusions	& Recommendations	5
------	--------------------	-------------------	---

APPENDICES

APPENDIX

A. Intersection Count Sheets & Caltrans Traffic Volumes

B. Peak Hour Intersection Analysis Worksheets

.

í4

LIST OF FIGURES

SECTION—FIGURE #		
Figure 2–1	Vicinity Map	7
Figure 2–2	Project Area Map	
Figure 2–3	Site Layout	9
Figure 3–1	Existing Conditions Diagram	
Figure 3–2	Existing Traffic Volumes	
Figure 7–1	Project Distribution – Truck Trips	
Figure 7–2	Project Distribution – Employee/Miscellaneous Trips	
Figure 7–3	Project Traffic Volumes – Truck Trips	
Figure 7–4	Project Traffic Volumes – Employee/Miscellaneous Trips	
Figure 7–5	Project Traffic Volumes – Total Trips	
Figure 7–6	Existing + Total Project Traffic Volumes	
Figure 8–1	Cumulative Traffic Volumes	
Figure 8–2	Existing + Project + Cumulative Traffic Volumes	

LIST OF	TABLES
---------	--------

SECTION—TABLE #	PAGE
Table 3–1 Existing Traffic Volumes	
Table 4-1 Intersection Level of Service Descriptions	15
Table 4–2 Intersection LOS & Delay Ranges	16
Table 4-3 Imperial County Standard Street Classification Average Daily Vehicle Trips	17
Table 5-1 Traffic Impact Significant Thresholds	
Table 6–1 Existing Intersection Operations	19
Table 6-2 Existing Street Segment Operations	20
Table 7–1 Trip Generation	21
Table 8–1 Near-Term Intersection Operations	
Table 8–2 Near-Term Street Segment Operations	

TRANSPORTATION IMPACT ANALYSIS

ALL AMERICAN GRAIN County of Imperial, California

July 3, 2018

1.0 INTRODUCTION

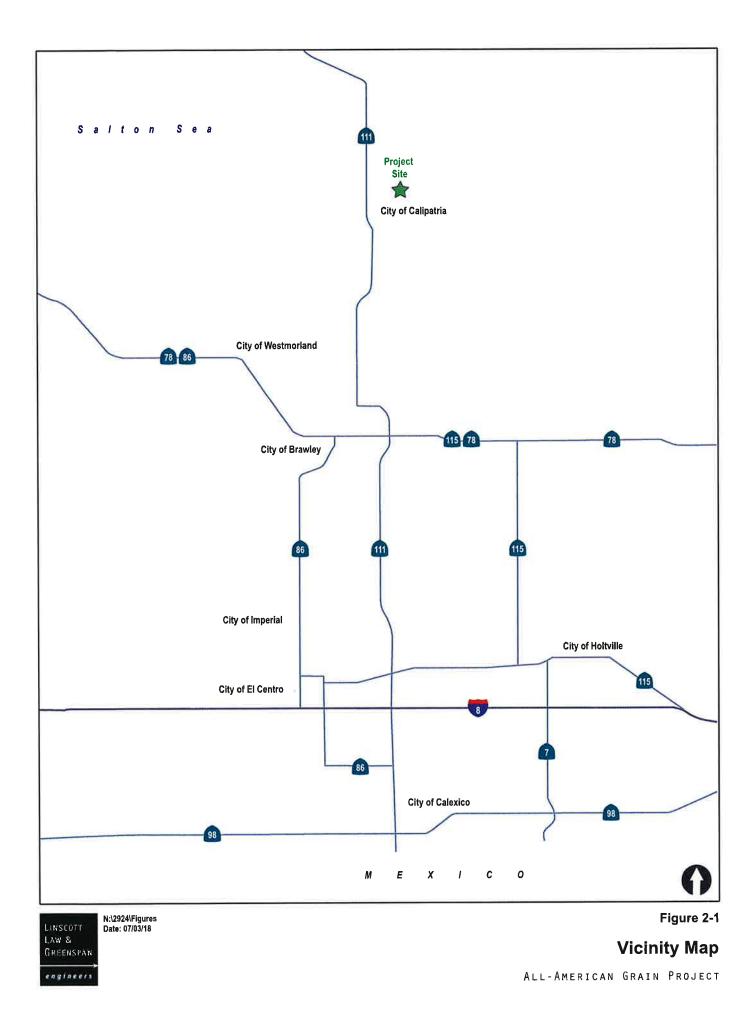
The following traffic impact analysis has been prepared to determine the potential impacts to the local circulation system due to truck and employee traffic related to the proposed All American Grain project in the County of Imperial, California. This report includes the following sections:

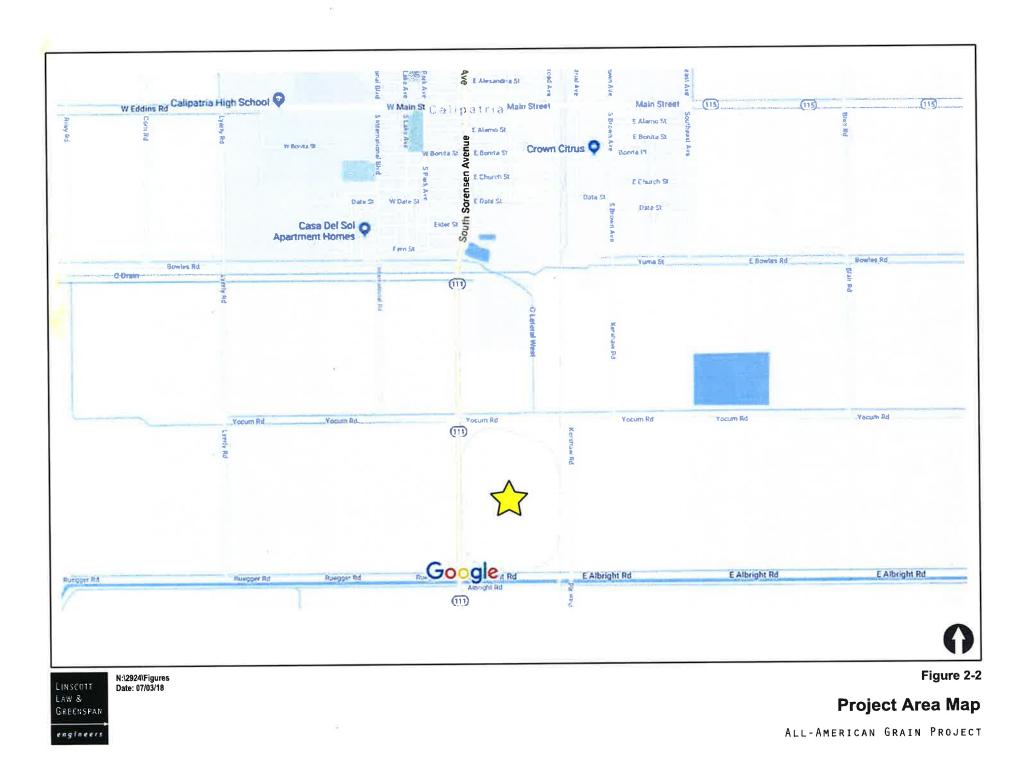
- Project Description
- Existing Conditions
- Analysis Approach and Methodology
- Significance Criteria
- Analysis of Existing Conditions
- Trip Generation / Distribution / Assignment
- Near-Term / Roadway Capacity Analysis
- Project Access discussion
- Conclusions and Recommendations

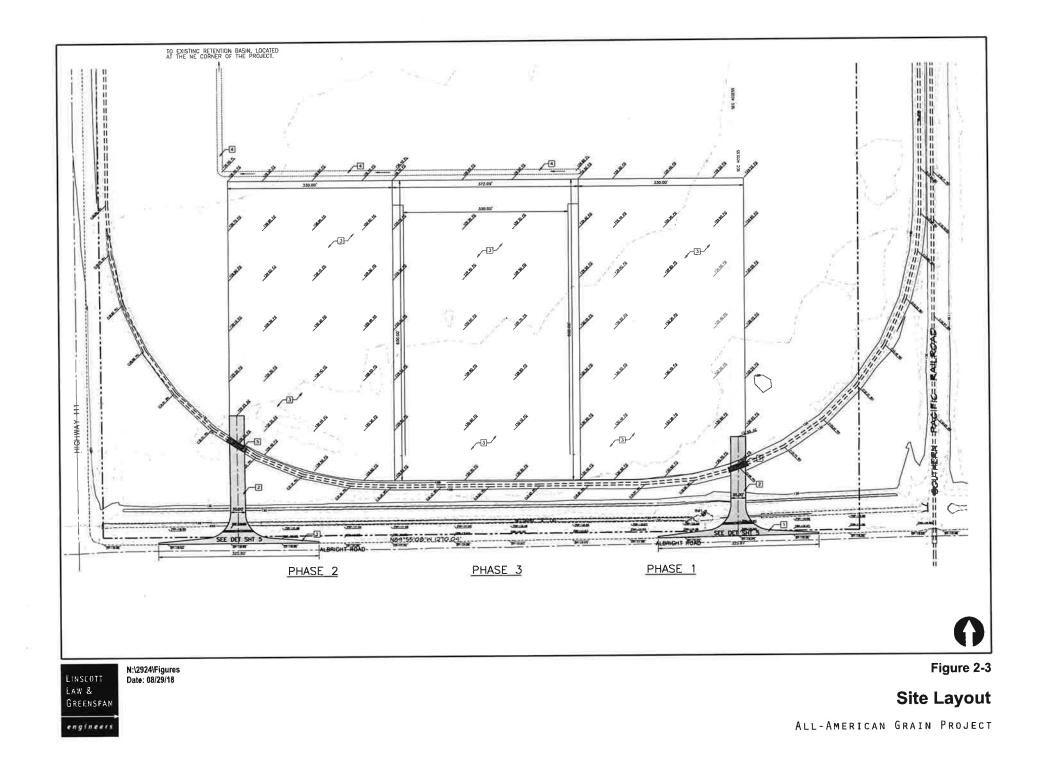
2.0 **PROJECT DESCRIPTION**

All American Grain Company, LLC (the "Applicant") is seeking a Zone change and General Plan Amendment to the west half of parcel #024-260-032 in order to expand more acreage under the M-2 zone (Medium Industrial) and under the Industrial land use. The expanded acreage will allow the applicant more available space to establish a Container Yard and Rail Spur for loading and distribution.

2.1 Project Location


The Project site is located in the unincorporated area of Imperial County. The project site is bound by SR 111, Yocum Road, Kershaw Road and Albright Road. The site is located just south of the City of Calipatria.


Figure 2-1 depicts the project vicinity. Figure 2-2 shows a more detailed project area map. Figure 2-3 shows the site layout.


2.2 **Project Description**

The applicant wishes to add to the current use by relying more heavily on the unit train cars rather than trucks for distribution from the Imperial Valley. The method of receiving and transporting the hay from locally harvested fields to the storage facility will remain via trucks. However, once the hay containers are stored and are ready to be reloaded, individual unit train cars will be the primary method of distribution to the Port of Long Beach. Ultimately, the applicant's goal is to become more efficient with the delivery of out-going hay products that leave the valley via truck to these unit trains, and reducing the amount of trip miles made by trucks. This addition of one additional unit train of 105 well cars which is 210 containers will be needed to maximize the reduction of trip miles made by trucks. Once operations are in-motion, the empty storage facility will utilize their inner circle railway as a systematic method of off-loading containers from the train and then reloading the containers that were loaded at the source. Access to the container yard will come off of E. Albright Rd., at the south/east corner of the property. The distance between the entrance to the facility and the turn-off from Hwy 111 will provide enough space if numerous trucks show up all at once. Additionally, the exit location will be located at the south/west corner of the property, allowing the option to either turn right or left depending on logistical reasons. When the train unit cars are loaded and ready for distribution, they will leave the inner circle railway on their way to the Port of Long Beach utilizing the Union Pacific Rail Road.

The current operations of the facility act as a grain transfer and storage station for locally grown containered agricultural commodities. These operations include the receiving of the agricultural commodities such as hay, and other types of locally grown rufage in storage containers, transported via trucks to the facility. Once these containers are received and stored for a short period of time, they are then reloaded on to unit trains for distribution outside of the Imperial Valley. Additionally, incorporated in the original operations of the facility was receiving corn via unit train cars that would then be distributed to various Feed mills in the Imperial Valley via truck that will continue.

3.0 EXISTING CONDITIONS

3.1 Existing Street Network

Following is a brief description of the street segments within the project area. *Figure 3–1* illustrates the existing conditions, including the lane geometry, for the key intersections in the study area.

State Route 111 (SR-111) is classified as a State Highway in the Imperial County Circulation Element. SR 111 is a north-south facility located adjacent to and west of the project site. In the vicinity of the project, SR-111 is a two-lane undivided roadway with a posted speed limit of 40 mph. No bike lanes or bus stops are provided and curbside parking is prohibited. It should be noted that SR-111 is constructed as a four-lane undivided roadway for a small portion between SR-115 and Yocum Road.

Main Street (SR- 115) is classified as a State Highway in the Imperial County Circulation Element. Main Street is an East-West facility located north of the project site and within the central business district of the City of Calipatria. No bike lanes or bus stops are provided.

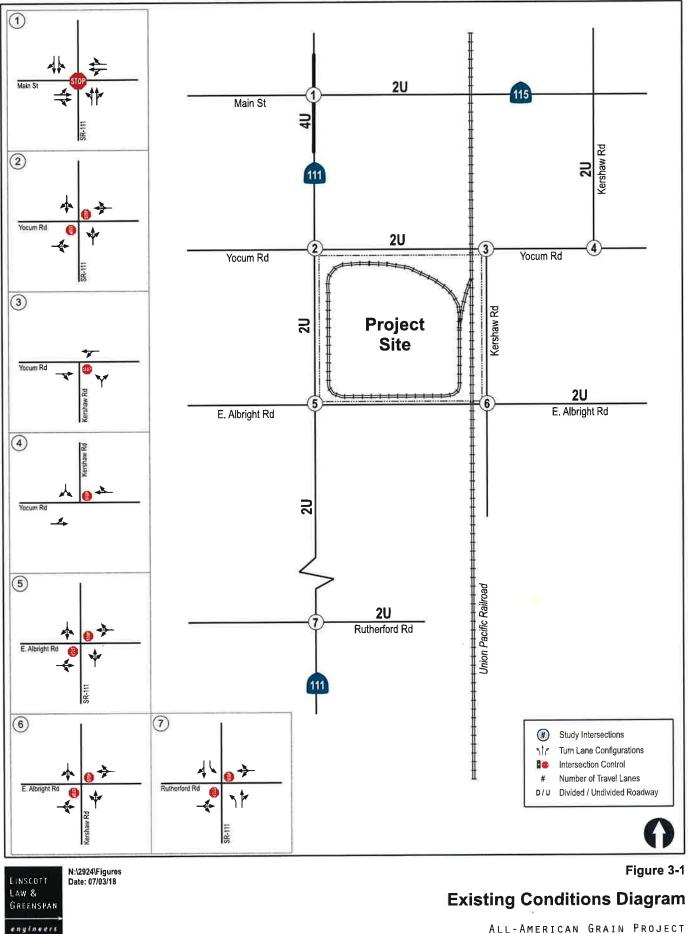
Yocum Road is classified as a minor collector in the Imperial County Circulation Element. Yocum Road is an East-West facility located adjacent to the project site. In the vicinity of the project, Yocum Road is a two lane undivided roadway. No bike lanes or bus stops are provided.

Albright Road is classified as a minor collector in the Imperial County Circulation Element. Albright Road is an East-West facility located adjacent to the project site. In the vicinity of the project, Albright Road is a two lane undivided roadway. No bike lanes or bus stops are provided.

Rutherford Road is an East-West facility classified as a Major Collector Street in the Imperial County Circulation Element. In the vicinity of the project, Rutherford Road is a two lane undivided roadway. No bike lanes or bus stops are provided.

Kershaw Road is an unclassified local road. Kershaw Road is a North-South facility located adjacent to the project site. In the vicinity of the project, Kershaw Road is a two lane undivided roadway. No bike lanes or bus stops are provided.

3.2 Existing Traffic Volumes


Daily traffic (ADT) volumes on study area segments along SR-111 and SR-115 were obtained from the Caltrans Traffic Census Program for Year 2016, the latest available as of the date of this report. To be conservative, a 10% growth was applied to update the counts to Year 2018 conditions. AM and PM peak hour intersection turning movement volume counts at study area intersections were commissioned by LLG Engineers on June 5th,2018. *Table 3–1* summarizes the segment ADT volumes on all the study area segments.

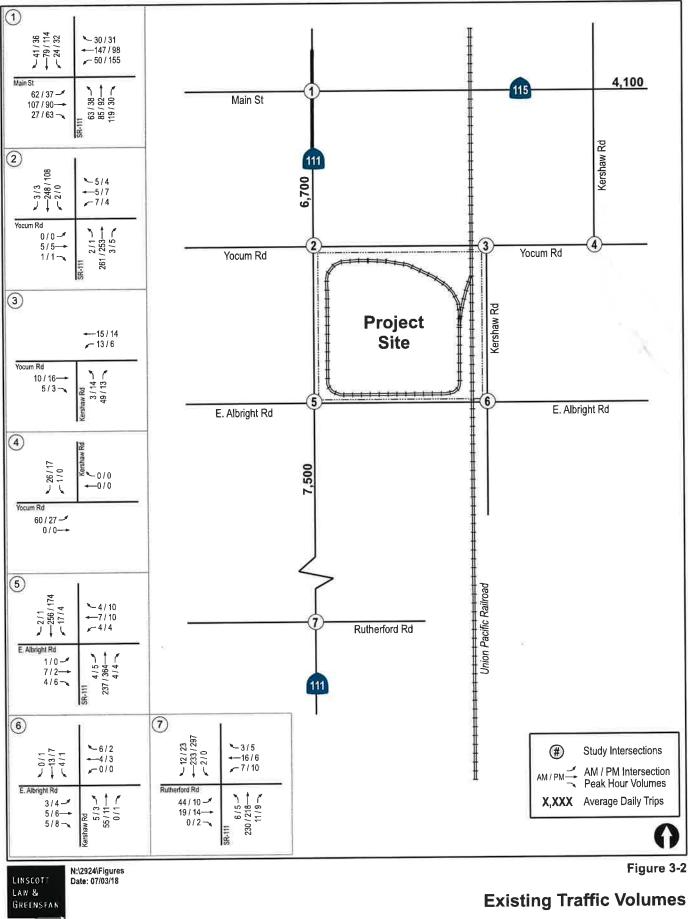

Figure 3–2 depicts the existing traffic volumes on both an ADT and peak hour basis. *Appendix A* contains the manual intersection count sheets and latest Caltrans traffic volumes.

TABLE 3–1 EXISTING TRAFFIC VOLUMES

Footnotes:

a. Average Daily Traffic Volume.

ALL AMERICAN GRAIN PROJECT

4.0 ANALYSIS APPROACH AND METHODOLOGY

Based on the anticipated distribution/assignment of project traffic, the intersections included in the study area are listed below.

Intersections

- 1. SR-111/ Main Street
- 2. SR-111/ Yocum Road
- 3. Kershaw Road/ Yocum Road (West Side)
- 4. Kershaw Road/ Yocum Road (East Side)
- 5. SR-111/ Albright Road
- 6. Kershaw Road/ Albright Road
- 7. SR-111/ Rutherford Road

Segments

SR-111: SR-115 to Yocum Road; SR-111: Albright Road to Rutherford Road; and SR-115: East of Kershaw Road.

This report takes into account the effects of the heavy vehicle traffic associated with the project since this type of traffic is more impactful to the local circulation system than passenger cars.

Cumulative project traffic and a growth factor was also analyzed.

- Existing
- Existing + Project
- Existing + Project + Cumulative

The operations of the project area intersections and segments are characterized using the concept of "Level of Service" (LOS). LOS is the term used to denote the different operating conditions which occur on a given roadway segment under various traffic volume loads. It is a qualitative measure used to describe a quantitative analysis taking into account factors such as roadway geometries, signal phasing, speed, travel delay, freedom to maneuver, and safety. LOS provides an index to the operational qualities of a roadway segment or an intersection. LOS designations range from A through F, with LOS A representing the best operating conditions and LOS F representing the worst operating conditions. LOS designation is reported differently for signalized and unsignalized intersections, as well as for roadway segments.

Table 4–1 summaries the description for each level of service.

Table 4-2 summarizes the delay in seconds per vehicle associated with each level of service.

4.1 Unsignalized Intersections

All study area intersections are unsignalized, and level of service is determined by the computed or measured control delay and is defined for each minor movement. Level of service is not defined for the intersection as a whole.

Level of Service F exists when there are insufficient gaps of suitable size to allow a side street demand to safely cross through a major street traffic stream. This level of service is generally evident from extremely long control delays experienced by side-street traffic and by queuing on the minor-street approaches. The method, however, is based on a constant critical gap size; that is, the critical gap remains constant no matter how long the side-street motorist waits.

LOS F may also appear in the form of side-street vehicles selecting smaller-than-usual gaps. In such cases, safety may be a problem, and some disruption to the major traffic stream may result. It is important to note that LOS F may not always result in long queues but may result in adjustments to normal gap acceptance behavior, which are more difficult to observe in the field than queuing.

Appendix B contains the peak hour intersection worksheets.

Level of Service	Description
A	Occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
В	Generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay.
С	Generally results when there is fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Generally results in noticeable congestion. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume-to-capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high volume-to-capacity ratios. Individual cycle failures are frequent occurrences.
F	Considered to be unacceptable to most drivers. This condition often occurs with over saturation i.e. when arrival flow rates exceed the capacity of the intersection. It may also occur at high volume-to-capacity ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

TABLE 4–1 INTERSECTION LEVEL OF SERVICE DESCRIPTIONS

LOS A B C D E	Delay (seconds/vehicle)					
	Signalized Intersections	Unsignalized Intersections				
A	≤ 10.0	≤ 10.0				
В	10.1 to 20.0	10.1 to 15.0				
С	20.1 to 35.0	15.1 to 25.0				
D	35.1 to 55.0	25.1 to 35.0				
Е	55.1 to 80.0	35.1 to 50.0				
F	≥ 80.1	≥ 50.1				

TABLE 4–2 INTERSECTION LOS & DELAY RANGES

Source: 2010 Highway Capacity Manual

4.2 Street Segments

Street segments were analyzed based upon the comparison of ADT to the County of Imperial *Roadway Classifications, Levels of Service (LOS) and Average Daily Traffic (ADT)* table (see **Table 4–3** below). Table 4–3 provides segment capacities for different street classifications, based on traffic volumes and roadway characteristics. Segment analysis is a comparison of ADT volumes and an approximate daily capacity on the subject roadway.

Road			Level of Service W/ADT*							
Class	X-Section	А	В	С	D	E				
Expressway	128 / 210	30,000	42,000	60,000	70,000	80,000				
Prime Arterial	106 / 136	22,200	37,000	44,600	50,000	57,000				
Minor Arterial	82 / 102	14,800	24,700	29,600	33,400	37,000				
Major Collector (Collector)	64 / 84	13,700	22,800	27,400	30,800	34,200				
Minor Collector (Local Collector)	40 / 70	1,900	4,100	7,100	10,900	16,200				
Residential Street	40 / 60	*	*	< 1,500	×	*				
Residential Cul-de- Sac / Loop Street	40/60	*	*	< 1,500	*	*				
Industrial Collector	76 / 96	5,000	10,000	14,000	17,000	20,000				
Industrial Local Street	44 / 64	2,500	5,000	7,000	8,500	10,000				

 TABLE 4–3

 IMPERIAL COUNTY STANDARD STREET CLASSIFICATION AVERAGE DAILY VEHICLE TRIPS

* Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.

5.0 SIGNIFICANCE CRITERIA

The County of Imperial does not have published significance criteria. However, the County General Plan does state that the LOS goal for intersections and roadway segments is to operate at LOS C or better. Therefore, if an intersection or segment degrades from LOS C or better to LOS D or worse with the addition of project traffic, the impact is considered significant. If the location operates at LOS D or worse with and without project traffic, the impact is considered significant if the project causes the intersection delta to increase by more than two (2) seconds, or the volume to capacity (V/C) ratio to increase by more than 0.02.

A project is considered to have a significant impact if the new project traffic decreases the operations of surrounding roadways by a defined threshold. The defined thresholds for roadway segments and intersections are defined in **Table 5–1** below. If the project exceeds the thresholds in **Table 5–1**, then the project may be considered to have a significant project impact. A feasible mitigation measure will need to be identified to return the impact within the thresholds (pre-project + allowable increase) or the impact will be considered significant and unmitigated.

	Allowable Increase Due to Project Impacts ^b								
Level of Service with	I	reeways	Roady	way Segments	Intersections	Ramp Metering			
Project ^a	V/C Speed (mph)		V/C	Speed (mph)	Delay (sec.)	Delay (min.)			
D, E & F (or ramp meter delays above 15 minutes)	0.01	1	0.02	1	2	2°			

TABLE 5–1 TRAFFIC IMPACT SIGNIFICANT THRESHOLDS

Footnotes:

a. All level of service measurements are based upon HCM procedures for peak-hour conditions. However, V/C ratios for Roadway Segments may be estimated on an ADT/24-hour traffic volume basis (using Table 4-3 or a similar LOS chart for each jurisdiction). The acceptable LOS for freeways, roadways, and intersections is generally "D" ("C" for undeveloped or not densely developed locations per jurisdiction definitions). For metered freeway ramps, LOS does not apply. However, ramp meter delays above 15 minutes are considered excessive.

b. If a proposed project's traffic causes the values shown in the table to be exceeded, the impacts are deemed to be significant. These impact changes may be measured from appropriate computer programs or expanded manual spreadsheets. The project applicant shall then identify feasible mitigations (within the Traffic Impact Study [TIS] report) that will maintain the traffic facility at an acceptable LOS. If the LOS with the proposed project becomes unacceptable (see note a above), or if the project adds a significant amount of peak hour trips to cause any traffic queues to exceed on- or off-ramp storage capacities, the project applicant shall be responsible for mitigating significant impact changes.

c. The allowable increase in delay at a ramp meter with more than 15 minutes of delay and freeway LOS E is 2 minutes and at LOS F is 1 minute.

General Notes:

- 1. V/C = Volume to Capacity Ratio
- 2. Speed = Arterial speed measured in miles per hour
- 3. Delay = Average stopped delay per vehicle measured in seconds for intersections, or minutes for ramp meters.
- 4. LOS = Level of Service

6.0 ANALYSIS OF EXISTING CONDITIONS

6.1 Peak Hour Intersection Levels of Service

The project study area is located in a rural setting and all intersections are unsignalized. As seen in **Table 6–1**, all study area intersections are calculated to currently operate at LOS C or better during both the AM and PM peak hours.

Appendix B contains the peak hour intersection analysis worksheets.

	Control	Peak	Exis	ting
Intersection	Туре	Hour	Delay ^a	LOS ^b
1. SR 111 / Main St.	AWSC	AM PM	10.7 11.1	B B
2. SR 111 / Yocum Rd.	TWSC	AM PM	11.9 11.4	B B
3. Kershaw Rd / Yocum Rd (West Side).	TWSC	AM PM	8.6 8.7	A A
4. Kershaw Rd / Yocum Rd (East Side).	TWSC	AM PM	0.0 0.1	A A
5. SR 111 / Albright Rd.	TWSC	AM PM	13.3 13.2	B B
6. Kershaw Rd / Albright Rd.	TWSC	AM PM	9.1 8.8	A A
7. Kershaw Rd / Albright Rd.	TWSC	AM PM	15.3 14.5	C B

TABLE 6–1 EXISTING INTERSECTION OPERATIONS

Footnotes:

a. Average delay expressed in seconds per vehicle.

b. Level of Service,

 AWSC - All Way Stop Controlled intersection; TWSC - Two-Way Stop Controlled intersection (Minor street turn delay is reported).

UNSIGNALIZED

DELAY/LOS THRESHOLDS Delay LOS 0.0 < 10,0 A 10,1 to 15.0 B 15.1 to 25.0 C 25.1 to 35.0 D 35.1 to 50.0 E > 50.1 F

19

6.2 **Daily Street Segment Levels of Service**

As described above, the project study area is located in a rural setting and all segments are two-lane facilities. As seen in Table 6-2, all study area segments are calculated to currently operate at LOS D or better.

Street Segment	Capacity (LOS E) ^a	ADT ^b	LOS°	V/C ^d					
SR-111									
SR-115 to Yocum Road	16,200	6,700	C	0.414					
Albright Road to Rutherford Road	16,200	7,500	D	0.463					
SR-115									
East of Kershaw Road	16,200	4,100	В	0.253					

TABLE 6-2 **EXISTING STREET SEGMENT OPERATIONS**

Footnotes:

Roadway capacity corresponding to Level of Service E from Imperial County Standard Street Classification, Average Daily Vehicle Trips table. a.

Average Daily Traffic volumes

b. Volume / Capacity ratio С.

Level of Service d.

7.0 TRIP GENERATION/DISTRIBUTION/ASSIGNMENT

7.1 Trip Generation

Project traffic generation is based on site-specific trip generating characteristics provided by the applicant. The Project would expand operations at the current project site along the southern portion of the project. Based on discussions with the applicant, it is expected that 90 additional trucks per day would ingress and egress the site per day, seven days a week. These trucks would be standard day cab Freightliner type haul trucks and would be loading and unloading grains.

In addition to trucks, the applicant will have 5 new full-time employees at the site to run operations. New worker/miscellaneous trips are expected to arrive/depart during the AM/PM peak hours. Also, in order to account for the vendor/visitor trips, an additional 10 trips per day was assumed.

Based on the information obtained from the applicant, the Total Project would generate a maximum of 20 ADT by passenger vehicles. It would also generate 360 ADT by trucks, with 15 inbound and 15 outbound trips during the AM and PM peak hours. A passenger car equivalence factor (PCE) of 2.0 is applied to these trips for the purposes of the analysis to account for the reduced performance characteristics (stopping, starting, maneuvering, etc.) of heavy vehicles in the traffic flow. *Table 7–1* is a summary of the Project traffic generated.

			Daily Trips		AM Peak Hour Volume		PM Peak Hour Volume	
Use	Quantity PCE*							
			Rate	ADT ^a	In	Out	In	Out
Heavy Veh (trucks) ^b	90	2.0	2.0 / vehicle	360	15	15	15	15
Employees	5	1.0	2.0 / vehicle	10	5	0	0	5
Light Veh (Vendors/Visitors) ^e	5	1.0	2.0 / vehicle	10	2	2	2	2
Subtotal			-I.	380	22	17	17	22

TABLE 7–1 TRIP GENERATION

Footnotes:

a. ADT - Average daily traffic.

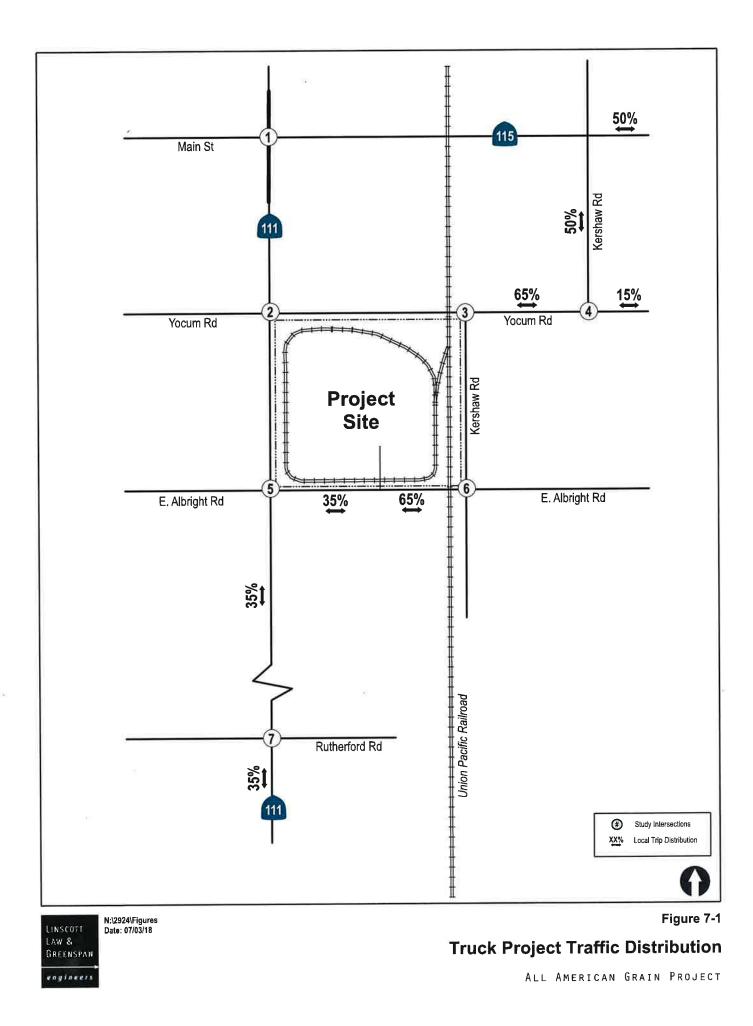
b. Heavy vehicle traffic includes trucks carrying full loads.

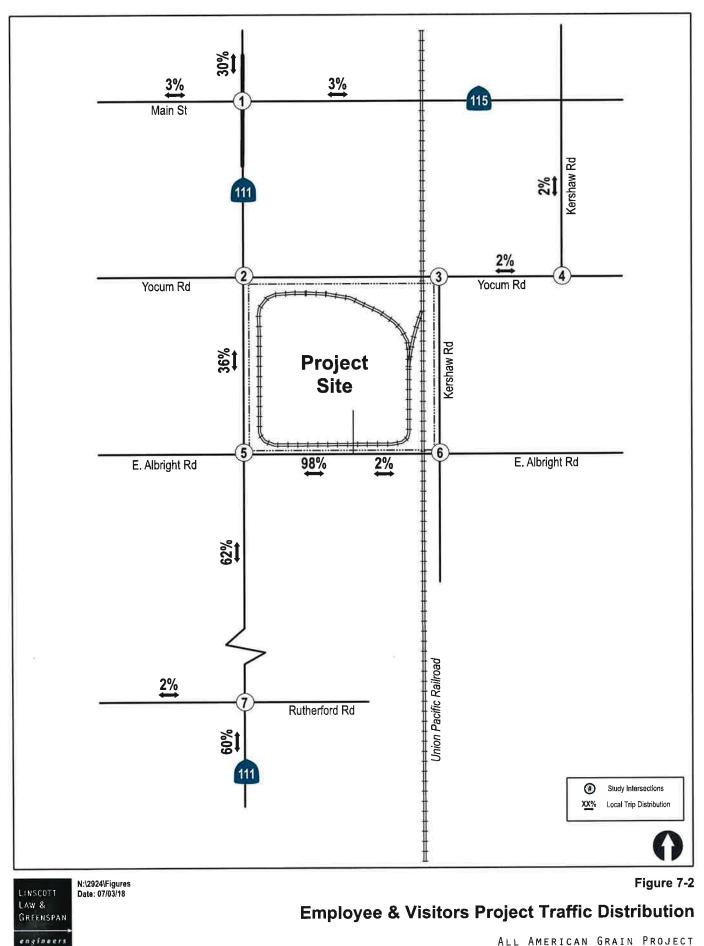
c. Trucks assumed to arrive/leave the site evenly throughout the day's work shift (6AM - 5PM).

d. 100% of employee trips are anticipated to enter and 100% to exit the site during the peak periods.

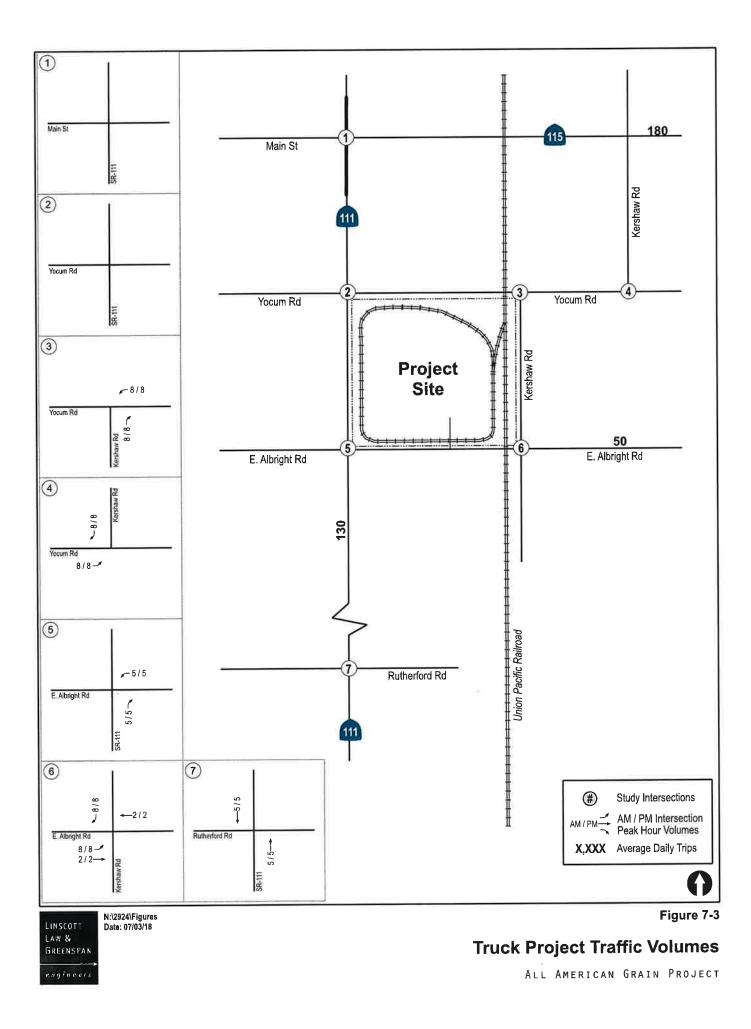
e. Light vehicle traffic includes vehicles used by vendors and miscellaneous visitors such as small service vehicles for fuel, supplies, and miscellaneous trips.

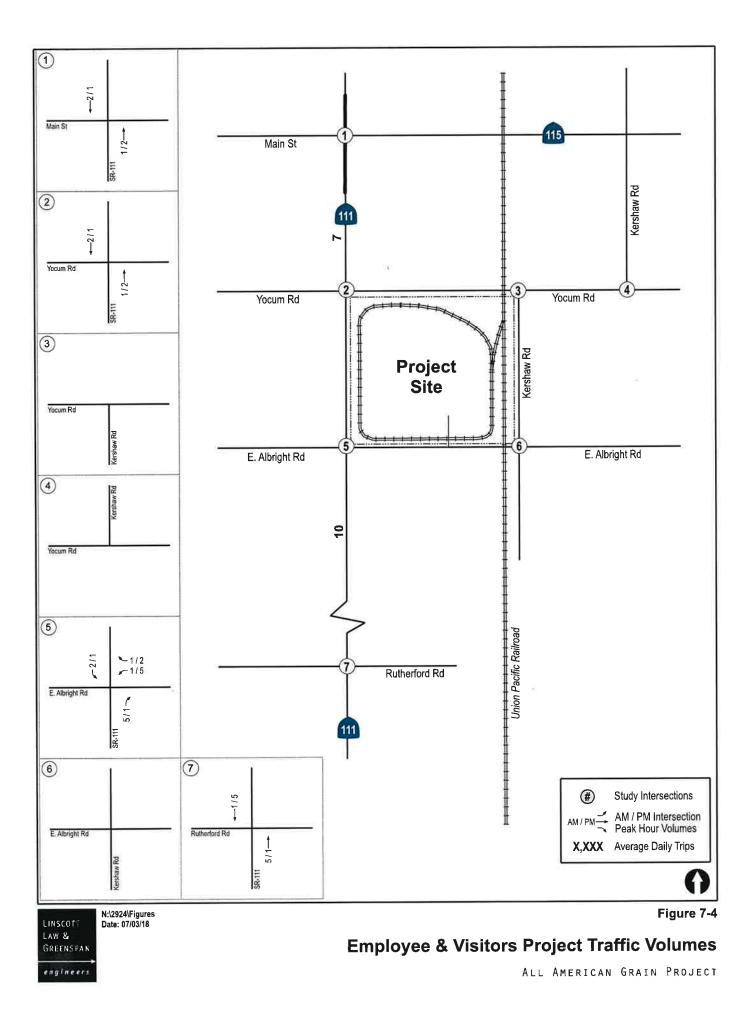
* PCE Factor of 2.0 for level terrain based on HCM 2010.

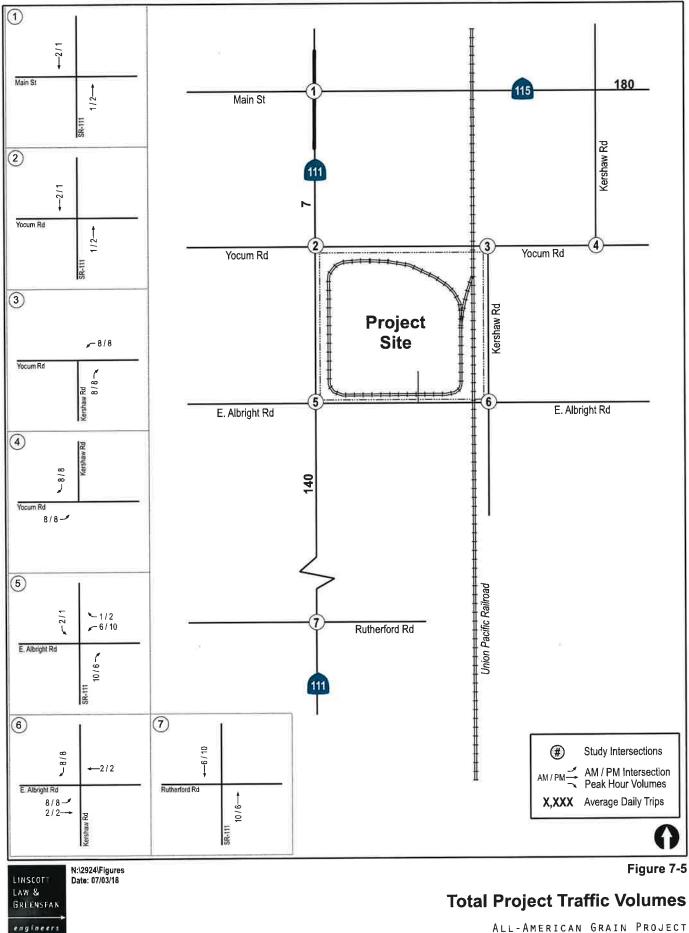

7.2 Trip Distribution

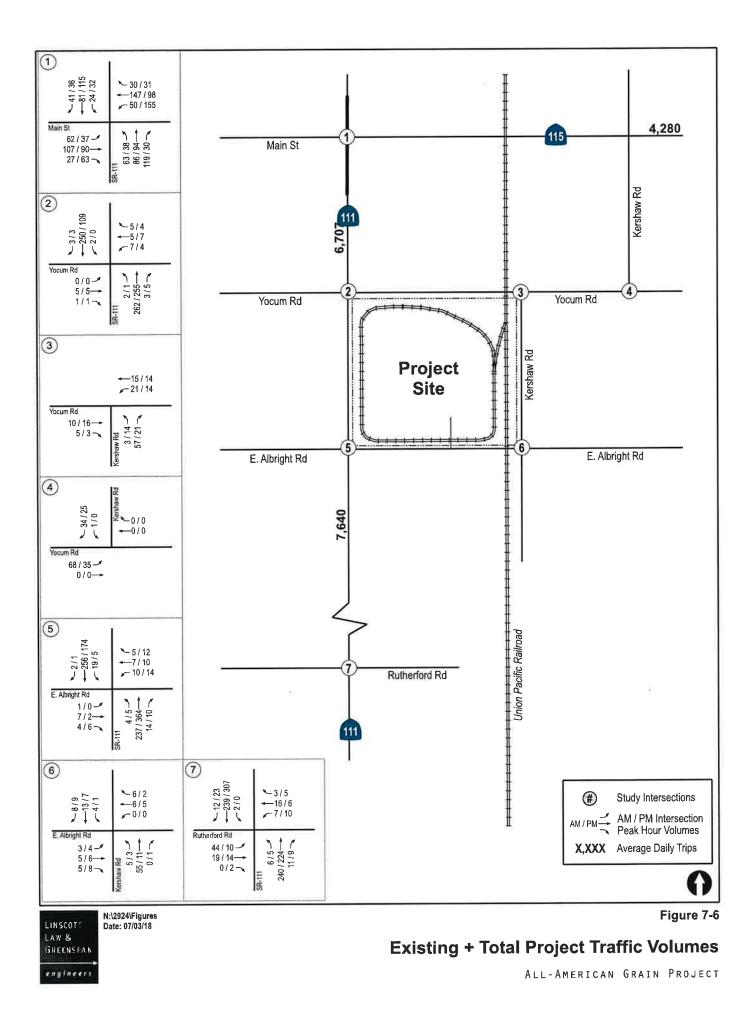

Regional trip distribution for construction truck traffic was based on current and forecasted travel patterns. Based on these discussions, 65% of truck traffic would come from the east principally utilizing SR-115. The remaining truck traffic would come from the south utilizing SR-111. *Figure 7–1* shows the distribution of truck traffic in the study area.

It is anticipated that the majority of new workers will be from the proximate local population centers of Calipatria, Brawley, and El Centro. *Figure 7–2* shows the distribution of employee passenger car traffic along with any miscellaneous trips associated with the project. The majority of employee traffic (62%) is anticipated to be to/from south of the site, from the local labor pool utilizing SR-111 as the primary route to work. The remaining employee trips (38%) would originate north of the project site.


7.3 Trip Assignment


The Project trip generation values shown in **Table 7–1** were multiplied by the related truck and employee distribution percentages shown on *Figures 7–1* and 7–2, respectively. The Project truck traffic assignment is shown on **Figure 7–3** and **Figure 7–4** shows the Project employee and miscellaneous traffic assignment. **Figure 7–5** depicts the Total Project traffic assignment. **Figure 7– 6** depicts the Existing + Total Project traffic assignment.




ALL AMERICAN GRAIN PROJECT

LL-AMERICAN GRAIN IROJECT

8.0 CUMULATIVE PROJECTS AND ANALYSIS RESULTS

There is one planned project in the area adjacent to the project site that may add traffic to the roadways surrounding the project site. The following is a brief description of this cumulative project.

8.1 Description of Projects

1. Circle K Convenience Store & Fuel Station is to be located on the southwest corner of the SR-111/S Main Street intersection.

In addition to this project, a 10% growth factor was applied to all existing 2018 traffic volumes throughout the study area. This 10% growth would conservatively represent the amount of traffic that may utilize the street system in the project vicinity proposed from future development projects planned in Imperial County.

Figure 8-1 depicts the Existing + Total Project + Cumulative traffic assignment.

8.2 Existing + Project Analysis

8.2.1 Intersection Operations

Table 8–1 summarizes the intersection operations throughout the project study area with the addition of project traffic. **Table 8–1** shows that all of the intersections in the study area are calculated to operate at LOS C or better during the AM and PM peak hours.

8.2.2 Segment Analysis

Table 8-2 summarizes the street segment operations throughout the project study area with the addition of project traffic. **Table 8-2** shows that all of the street segments in the study area are forecasted to operate at LOS D or better.

8.3 Existing + Project + Cumulative Analysis

8.3.1 Intersection Analysis

Table 8–1 summarizes the intersection operations throughout the project study area with the addition of cumulative traffic. **Table 8–1** shows that all of the intersections in the study area are calculated to continue to operate at LOS C or better during the AM and PM peak hours.

8.3.2 Segment Analysis

Table 8–2 summarizes the street segment operations throughout the project study area with the addition of cumulative traffic. **Table 8–2** shows that all of the street segments in the study area are forecasted to continue to operate at LOS D or better.

Int	ersection	ControlPeakExisting + ProjectTypeHour		Project	Existing - + Cum		Significant?	
				Delay ^a	LOS ^b	Delay	LOS	
1.	SR-111 / Main Street	C	AM	10.7	в	11.6	В	No
		AWSC ^C	PM	11.1	В	12.1	В	No
2. SR-111 / Yocum Road			AM	13.0	В	14.0	В	No
		TWSC	PM	11.4	В	11.6	В	No
3.	Kershaw Road (W) /		AM	8.6	А	8.7	A	No
Yocum Road	TWSC	PM	8.7	А	8.8	A	No	
4.	Kershaw Road (E) /		AM	0.1	А	0.1	A	No
	Yocum Road	TWSC	PM	0.1	A	0.1	A	No
5.	SR-111 / Albright Road		AM	13.8	В	14.9	В	No
	Ŭ	TWSC	PM	14.0	В	14.9	В	No
6.	Albright Road /		AM	9.2	A	9.2	A	No
-	Kershaw Road (E)	TWSC	PM	9.0	A	9.0	° A	No
7.	SR-111 / Rutherford Road	TWSC	AM	15.7	с	17.2	С	No
1.	SK-111 / Kullenoru Koau	I WBC	PM	14.7	B	15.8	C	No

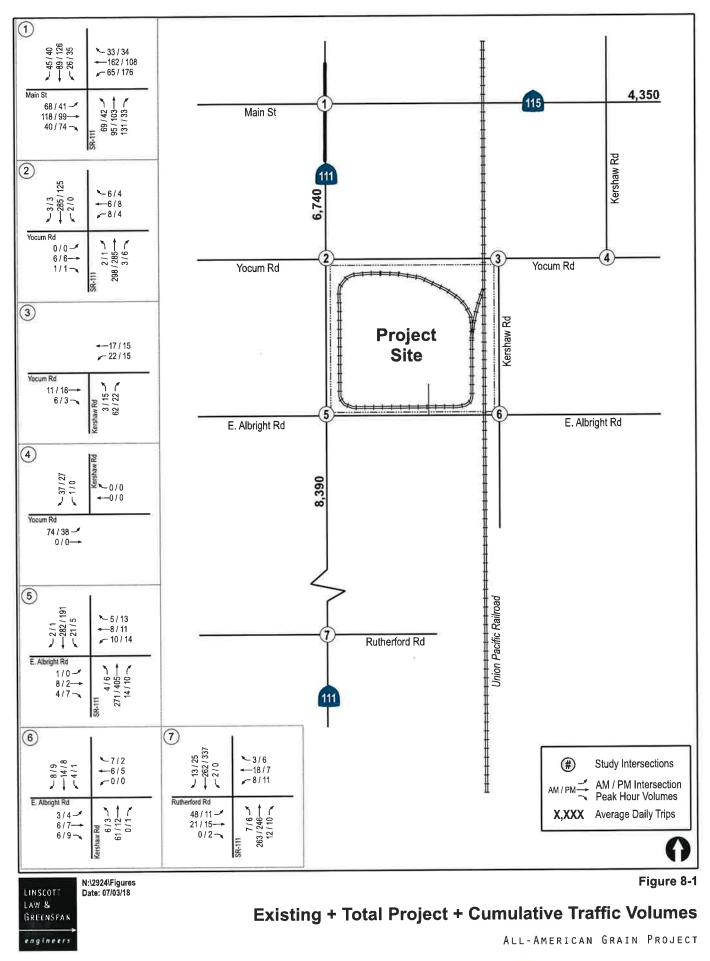
TABLE 8–1 NEAR-TERM INTERSECTION OPERATIONS

Footnotes:

a.	Average delay expressed in seconds per vehicle.	UNSIGNAL	IZED
b. с.	Level of Service. AWSC – All Way Stop Controlled intersection;	Delay	LOS
d.	TWSC - Two-Way Stop Controlled intersection	$0.0 \leq 10.0$	A
	(Minor street turn delay is reported); WB=Westbound; SB=Southbound.	10_1 to 15_0	В
		15.1 to 25.0	С
		25.1 to 35.0	D
		35.1 to 50.0	Е
		≥ 50.1	F

30

	Existing	Ex	isting + Proj	ect	Existing + Project + Cumulative		
Street Segment	Capacity (LOS E) ^a	ADT ^b	LOS	V/C ^d	ADT	LOS	V/C
SR-111							
SR-115 to Yocum Road	16,200	6,707	С	0.414	6,740	С	0.416
Albright Road to Rutherford Road	16,200	7,640	D	0.472	8,390	D	0.518
SR-115							
East of Kershaw Road	16,200	4,280	С	0.264	4,350	С	0.269


TABLE 8-2 **NEAR-TERM STREET SEGMENT OPERATIONS**

Footnotes:

a. Roadway capacity corresponding to Level of Service E from Imperial County Standard Street Classification, Average Daily Vehicle Trips table.
 b. Average Daily Traffic volumes

Level of Service c.

d. Volume / Capacity ratio.
c. Increase in V/C due to cumulative traffic.

9.0 **PROJECT ACCESS**

The Project will utilize the existing site access driveway along the southeast portion of the site. Based on the location of the driveway, the relatively low amount of project trips, and the very low traffic volumes along Albright Road, the driveway should perform adequately.

10.0 CONCLUSIONS & RECOMMENDATIONS

The capacity analyses performed for the key roadway segments and unsignalized intersections indicate that *no significant impacts would occur* during the daily operations of the project.

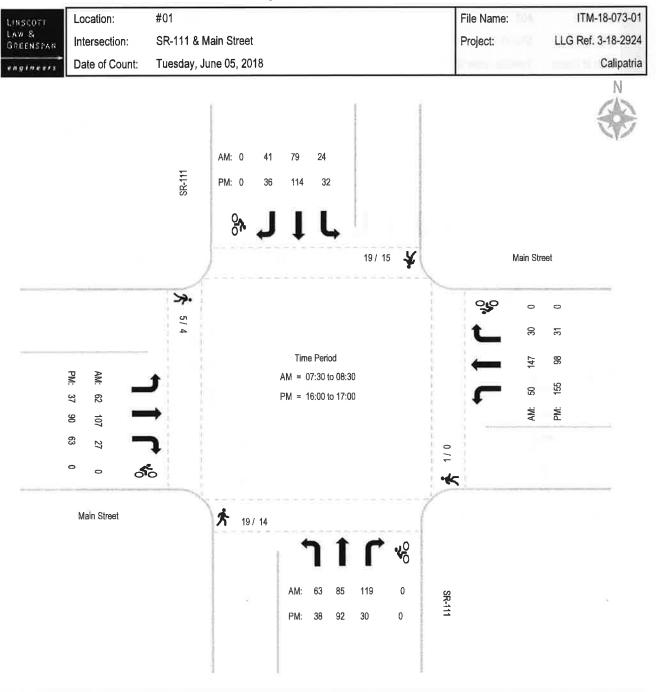
Inbound Trucks accessing the site should be scheduled such that several trucks do not arrive at the site at the same time.

LINSCOTT LAW & GREENSPAN

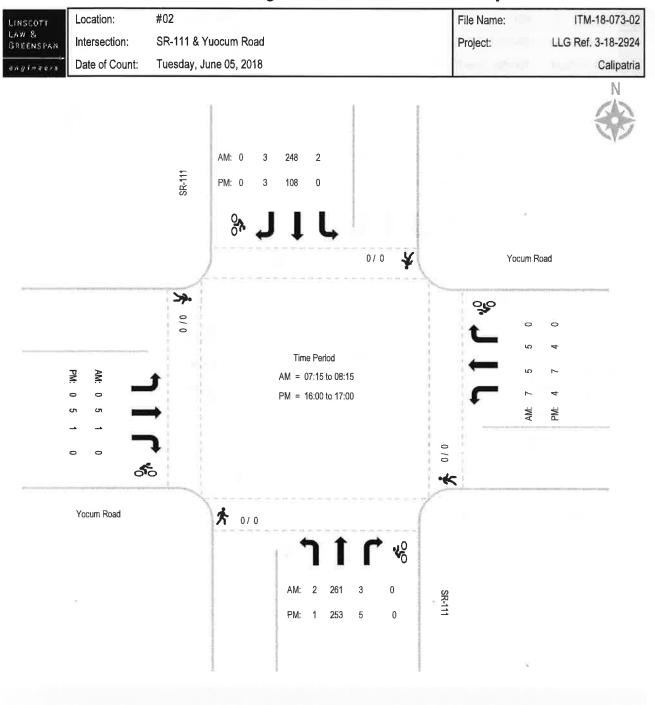
engineers

TECHNICAL APPENDICES

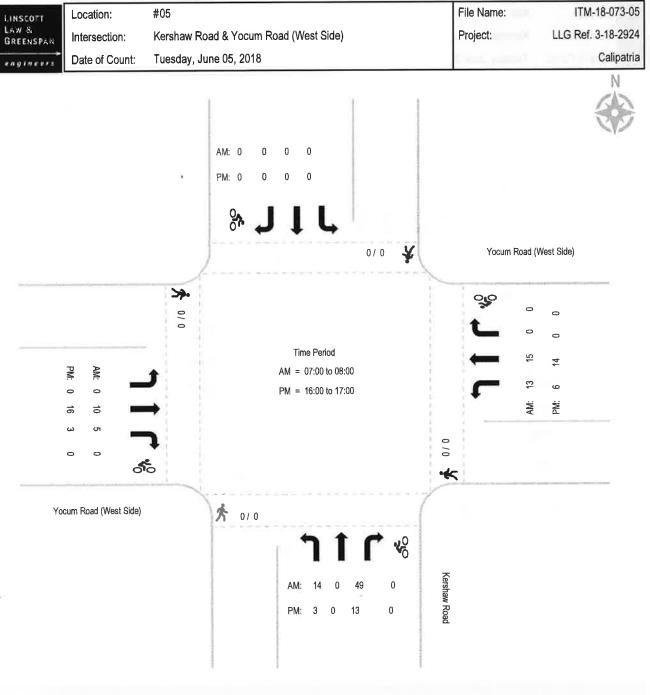
ALL AMERICAN GRAIN County of Imperial, California July 6, 2018


LLG Ref. 3-18-2924

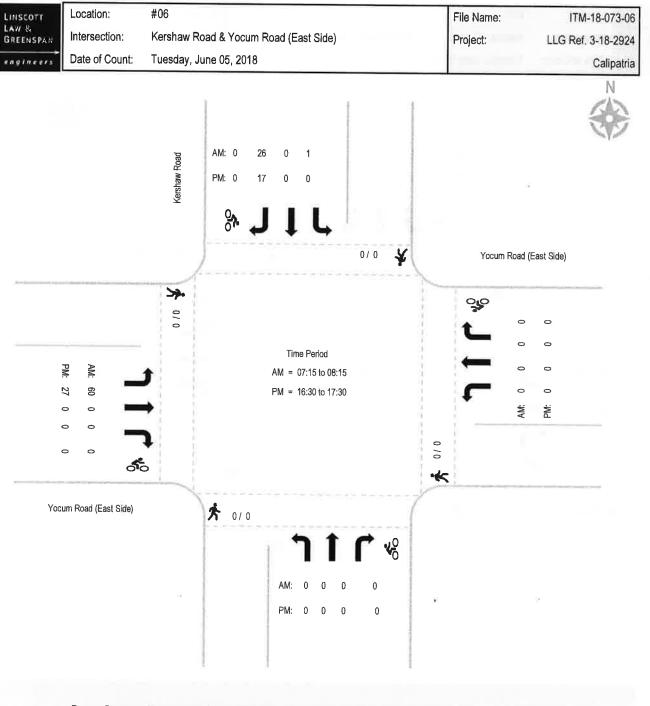
Linscott, Law & Greenspan, Engineers 4542 Ruffner Street Suite 100 San Diego, CA 92111 858.300.8800 T 858.300.8800 F www.llgengineers.com ____


APPENDIX A

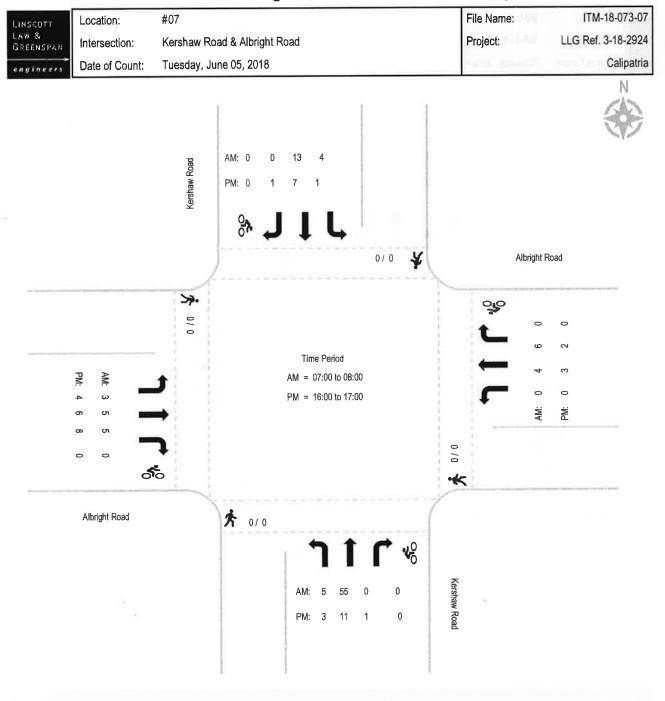
INTERSECTION AND SEGMENT MANUAL COUNT SHEETS


LLG Ref. 3-18-2924 All American Grain N \2924\Report\2924 Appendices doc

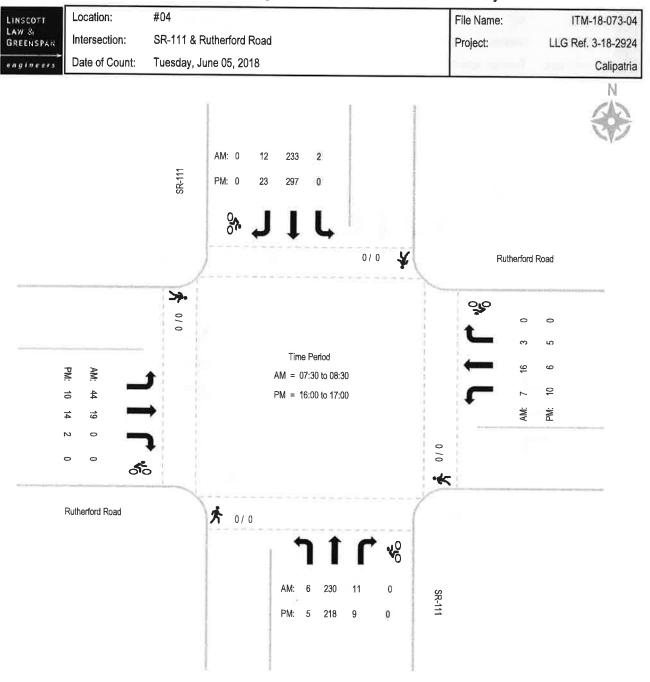
Report Generated by Bearcat Enterprises LLC, DBA "Count Data" | 619-987-5136 | info@yourcountdata.com



Report Generated by Bearcat Enterprises LLC, DBA "Count Data" | 619-987-5136 | info@yourcountdata.com


Report Generated by Bearcat Enterprises LLC, DBA "Count Data" | 619-987-5136 | info@yourcountdata.com

Report Generated



Report Generated by Bearcat Enterprises LLC, DBA "Count Data" | 619-987-5136 | info@yourcountdata.com

e F

Intersection Turning Movement - Peak Hour Summary

Report Generated by Bearcat Enterprises LLC, DBA "Count Data" | 619-987-5136 | info@yourcountdata.com

amp 🜀 Google 🎦 craigslist san diego classif... 🏦 My eBay Summary 🧱 KFI AM 640 - LA and OC's ...

🟠 🔹 🚮 👻 🚟 🛲 👻 Page 🕶

nune_

@2016 Traine_

g.

GIS

Ex Conds BA_ Ai FigS-1 Ex Co_

A

			the latest Michael					- Calt					2		- 2
â	Тгач	vel	W	ori	king wit	1CT (Online S	Gervices N	lews	Con	ntact Us		A to Z		Get
						es on CA State 1 2012 2013					2	016 Volur	mes Hom	e 🗸 Vi	ew
		Rte	со		Post Mile	Description				Back Peak Hour	Back Peak Month	Back AADT	Ahead Peak Hour	Ahead Peak Month	A A
	(1) [1]	115 115	IMP		9.255	GRAPE AVE	1			140	(300	1000	200	2200	130
	1	115	IMP		9.54	WALNUT AVE		TOPET		200	2200	1300	350	4050	250
	1	115	IMP		9.756	HOLTAVEN	100-200 - 10 Kores of 10	JINCEI		350 740	4050 7500	2500 6200	740	7500	620
-		115	IMP		10.116	FOURTH ST	- 1			570	6400	5500	570 530	6400	550 550
	1	115	IMP		11.395			N HEWES HIGHWAY	<i>•</i>	660	7500	6800	330	5900 4150	360
-	1	115	IMP	-	21.18	JCT. RTE. 78				230	2650	2150	160	1550	135
1	1	115	IMP		25.99	RUTHERFOR	DROAD			160	1550	1350	100	980	890
1	1	115	IMP		30.086	ALBRIGHT RO				100	980	890	100	930	860
1	1	115	IMP		31.63	WIRT ROAD				100	930	860	100	890	790
1	1	115	IMP		34.517	EAST AVENU	ε			100	890	790	200	2050	190
1	1	115	IMP		34.882	INDUSTRIAL	AVENUE			200	2050	1900	390	4100	385
1	1	115	IMP		34.964	RAILROAD AV	VENUE			390	4100	3850	420	4150	370
1	1	115	IMP		35.235	CALIPATRIA,	JCT. RTE	111		420	4150	3700			
0	4	116	SON		0	JCT. RTE. 1, .					÷		460	3050	250
0	14	116	SON		4.927	AUSTIN CREE				880	5900	4800	780	5200	425
														10	

🕅 🔹 🔯 🔹 🚅

APPENDIX B

INTERSECTION ANALYSIS WORKSHEETS

LINSCOTT, LAW & GREENSPAN, engineers

Intersection LOS B Movement EBU EBU EBT EBR WBU WBL WBR NBU NBL NBF NBF NBF Trafic Vol, veh/h 0 62 107 27 0 50 147 30 0 63 85 115 Peak Hour Factor 0.88 0.89 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.00 122 <th>Intersection</th> <th></th> <th>×</th> <th></th> <th>1000</th> <th>1.2.4</th> <th>Tel Ser T</th> <th>THE WE</th> <th>17 M 1</th> <th></th> <th></th> <th></th> <th></th>	Intersection		×		1000	1.2.4	Tel Ser T	THE WE	17 M 1				
Movement EBU EBL EBT EBR WBU WBL WBL NBU NBL NBL NBT NBT Traffic Vol, veh/h 0 62 107 27 0 50 147 30 0 63 85 111 Pack Hour Factor 0.88	Intersection Delay, s/veh	10.7											
Traffic Vol, velvih 0 62 107 27 0 50 147 30 0 63 85 115 Future Vol, velvih 0 62 107 27 0 50 147 30 0 63 85 115 Peak Hour Factor 0.88 0.89 Contridicing Lanes kight 2	Intersection LOS	В											
Traffic Vol. veh/h 0 62 107 27 0 50 147 30 0 63 85 115 Future Vol. veh/h 0 62 107 27 0 50 147 30 0 63 85 115 Peak Hour Factor 0.88 </td <td>Movement</td> <td>EBU</td> <td>EBL</td> <td>EBT</td> <td>EBR</td> <td>WBU</td> <td>WBL</td> <td>WBT</td> <td>WBR</td> <td>NBU</td> <td>NBL</td> <td>NBT</td> <td>NBR</td>	Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Future Vol. veh/h 0 62 107 27 0 50 147 30 0 63 85 119 Peak Hour Factor 0.88 0	Traffic Vol, veh/h	0	62	107	27	0	50	147	30	0	63		_
Peak Hour Factor 0.88 0.80 0.81 0.81 0.81	Future Vol, veh/h	0	62	107	27	0	50	147	30	0			119
Heavy Vehicles, % 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 2 2 2 0 0 0 2 0 0 0 0 2 0	Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88			0.88
Mvmt Flow 0 70 122 31 0 57 167 34 0 72 97 135 Number of Lanes 0 0 2 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2		2			2	2	2	2	2	2	2	2	2
Number of Lanes 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0		0	70	122	31	0	57	167	34	0			135
Approach EB WB NB Opposing Approach WB EB SB Opposing Lanes 2 2 2 Conflicting Approach Left SB NB EB Conflicting Approach Left SB NB EB Conflicting Approach Right NB SB WB Conflicting Lanes Right 2 2 2 Conflicting Lanes Right 0.8 10.8 10.9 HCM Control Delay 10.8 10.8 10.9 HCM LOS B B B B Lane NBLn1 NBLn2 EBLn1 EBLn2 VBLn1 VBLn2 SBLn1 SBLn2 Vol Left, % 60% 0% 54% 0% 40% 62% 49% Vol Left, % 60% 0% 54% 0% 29% 0% 51% Sign Control Stop Stop Stop Stop Stop Stop Stop Stop 116 81	Number of Lanes	0	0	2	0	0	0	2	0				0
Opposing Approach WB EB NB Opposing Lanes 2													
Opposing Lanes 2 2 2 2 2 Conflicting Approach Left SB NB EB Conflicting Approach Left 2 2 2 2 Conflicting Approach Right NB SB WB 2 104	Approach						WB				NB		de est
Conflicting Approach Left SB NB EB Conflicting Lanes Left 2 <t< td=""><td></td><td></td><td>WB</td><td></td><td>-</td><td>1</td><td>EB</td><td>1.74</td><td>H</td><td></td><td>SB</td><td></td><td></td></t<>			WB		-	1	EB	1.74	H		SB		
Conflicting Approach Left SB NB EB Conflicting Lanes Left 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							2						
Conflicting Lanes Left 2 2 2 2 Conflicting Approach Right NB SB WB WB Conflicting Lanes Right 2 2 2 2 HCM Control Delay 10.8 10.8 10.9 B			SB				NB						
Conflicting Approach Right NB SB WB Conflicting Lanes Right 2 10 2 10 10 2 10 3 3 2 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 <	Conflicting Lanes Left		2				2						
HCM Control Delay 10.8 10.8 10.9 HCM LOS B B B B B International Control Delay NBLn1 NBLn2 EBLn1 EBLn2 WBLn1 WBLn2 SBLn1 SBLn2 Val Left, % 60% 0% 54% 0% 40% 0% 38% 0% Vol Left, % 60% 0% 26% 46% 66% 60% 71% 62% 49% Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop	Conflicting Approach Right		NB				SB						
HCM LOS B </td <td>Conflicting Lanes Right</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td>	Conflicting Lanes Right		2				2				2		
HCM LOS B B B B Lane NBLn1 NBLn2 EBLn1 EBLn2 WBLn1 WBLn2 SBLn1 SBLn2 Vol Left, % 60% 0% 54% 0% 40% 0% 38% 0% Vol Left, % 60% 0% 54% 0% 40% 0% 38% 0% Vol Thru, % 40% 26% 46% 66% 60% 71% 62% 49% Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop Stop Stop Stop Stop Stop Stop Stop Trodic Vol by Lane 106 162 116 81 124 104 64 81 LT Vol 63 0 62 0 50 0 24 0 RT Vol 0 119 0 27 0 30 0 41 Lane Flow Rate 120 184 131 91 140 118 72			10.8				10.8						
Lane NBLn1 NBLn2 EBLn1 EBLn2 WBLn1 WBLn2 SBLn1 SBLn2 Vol Left, % 60% 0% 54% 0% 40% 0% 38% 0% Vol Left, % 60% 0% 54% 0% 60% 71% 62% 49% Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop Stop <td>HCM LOS</td> <td></td> <td>В</td> <td></td> <td></td> <td></td> <td>В</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	HCM LOS		В				В						
Vol Left, % 60% 0% 54% 0% 40% 0% 38% 0% Vol Thru, % 40% 26% 46% 66% 60% 71% 62% 49% Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop													
Vol Left, % 60% 0% 54% 0% 40% 0% 38% 0% Vol Thru, % 40% 26% 46% 66% 60% 71% 62% 49% Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop	Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2			
Vol Thru, % 40% 26% 46% 66% 60% 71% 62% 49% Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop Stop Stop Stop Stop Stop Stop Stop Stop Traffic Vol by Lane 106 162 116 81 124 104 64 81 LT Vol 63 0 62 0 50 0 24 0 Through Vol 43 43 54 54 74 74 40 40 RT Vol 0 119 0 27 0 30 0 41 Lane Flow Rate 120 184 131 91 140 118 72 91 Geometry Grp 7 7 7 7 7 7 7 7 7 7 Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 <td< td=""><td>Vol Left, %</td><td></td><td>60%</td><td>0%</td><td>54%</td><td>0%</td><td>40%</td><td></td><td></td><td></td><td></td><td>1.11</td><td>100</td></td<>	Vol Left, %		60%	0%	54%	0%	40%					1.11	100
Vol Right, % 0% 74% 0% 34% 0% 29% 0% 51% Sign Control Stop	Vol Thru, %		40%	26%	46%	66%							
Sign Control Stop	Vol Right, %		0%	74%	0%	34%							
Traffic Vol by Lane 106 162 116 81 124 104 64 81 LT Vol 63 0 62 0 50 0 24 0 Through Vol 43 43 54 54 74 74 40 40 RT Vol 0 119 0 27 0 30 0 41 Lane Flow Rate 120 184 131 91 140 118 72 91 Geometry Grp 7 7 7 7 7 7 7 7 Degree of Util (X) 0.217 0.29 0.239 0.154 0.251 0.197 0.132 0.154 Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43	Sign Control		Stop	Stop	Stop								
LT Vol 63 0 62 0 50 0 24 0 Through Vol 43 43 54 54 74 74 40 40 RT Vol 0 119 0 27 0 30 0 41 Lane Flow Rate 120 184 131 91 140 118 72 91 Geometry Grp 7 7 7 7 7 7 7 7 Degree of Util (X) 0.217 0.29 0.239 0.154 0.251 0.197 0.132 0.154 Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218	Traffic Vol by Lane												
Through Vol 43 43 54 54 74 74 40 40 RT Vol 0 119 0 27 0 30 0 41 Lane Flow Rate 120 184 131 91 140 118 72 91 Geometry Grp 7 7 7 7 7 7 7 7 Degree of Util (X) 0.217 0.29 0.239 0.154 0.251 0.197 0.132 0.154 Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Lane	LT Vol		63	0	62	0			24				- A
RT Vol 0 119 0 27 0 30 0 41 Lane Flow Rate 120 184 131 91 140 118 72 91 Geometry Grp 7 7 7 7 7 7 7 7 7 Degree of Util (X) 0.217 0.29 0.239 0.154 0.251 0.197 0.132 0.154 Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Lane LOS B B B A B B B A <td>Through Vol</td> <td></td> <td>43</td> <td>43</td> <td>54</td> <td>54</td> <td></td> <td>74</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Through Vol		43	43	54	54		74					
Lane Flow Rate120184131911401187291Geometry Grp77777777Degree of Util (X)0.2170.290.2390.1540.2510.1970.1320.154Departure Headway (Hd)6.5075.6826.5526.0416.4336.0226.6096.054Convergence, Y/NYesYesYesYesYesYesYesCap551631547592557595541590Service Time4.2553.434.3033.7924.1833.7724.3653.811HCM Lane V/C Ratio0.2180.2920.2390.1540.2510.1980.1330.154HCM Lane LOSBBBABBBA	RT Vol		0	119	0	27	0						
Geometry Grp 7 <t< td=""><td>Lane Flow Rate</td><td></td><td>120</td><td>184</td><td>131</td><td>91</td><td>140</td><td>118</td><td>72</td><td></td><td></td><td></td><td></td></t<>	Lane Flow Rate		120	184	131	91	140	118	72				
Degree of Util (X) 0.217 0.29 0.239 0.154 0.251 0.197 0.132 0.154 Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Yes Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Lane LOS B B B A B B A A B A	Geometry Grp		7	7	7	7	7						
Departure Headway (Hd) 6.507 5.682 6.552 6.041 6.433 6.022 6.609 6.054 Convergence, Y/N Yes Yes Yes Yes Yes Yes Yes Yes Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Lane LOS B B B A B B A	Degree of Util (X)		0.217	0.29	0.239	0.154	0.251	0,197		0.154			
Convergence, Y/N Yes	Departure Headway (Hd)		6.507	5.682	6.552	6.041							
Cap 551 631 547 592 557 595 541 590 Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Control Delay 11.1 10.8 11.4 9.9 11.3 10.4 9.9 HCM Lane LOS B B A B B A B A B B A	Convergence, Y/N		Yes	Yes	Yes	Yes							
Service Time 4.255 3.43 4.303 3.792 4.183 3.772 4.365 3.811 HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Control Delay 11.1 10.8 11.4 9.9 11.3 10.4 9.9 HCM Lane LOS B B A B B A B A B A	Сар		551	631	547	592	557						
HCM Lane V/C Ratio 0.218 0.292 0.239 0.154 0.251 0.198 0.133 0.154 HCM Control Delay 11.1 10.8 11.4 9.9 11.3 10.3 10.4 9.9 HCM Lane LOS B B A B B A A B A	Service Time		4.255	3.43	4.303								10 oct
HCM Control Delay 11.1 10.8 11.4 9.9 11.3 10.3 10.4 9.9 HCM Lane LOS B B A B B A A B B A	HCM Lane V/C Ratio		0.218	0.292									
HCM Lane LOS B B A B B A	HCM Control Delay		11.1										
	HCM Lane LOS		В										
	HCM 95th-tile Q							0.7	0.5	0.5			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	5	1	7	5	5	2	261	3	2	248	3
Future Vol, veh/h	0	5	1	7	5	5	2	261	3	2	248	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0) 0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	100		None	1990 - 1990 (A)		None		1.8	None	112 13		None
Storage Length	-	-	-			1.75	-	-	•			-
Veh in Median Storage, #		0	Exc. Inc.		0			0		1.1.1	- 0	
Grade, %	-	0	-		0	-	-	0	-		- 0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	8 88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2 2	2
Mvmt Flow	0	6	1	8	6	6	2	297	3	2	2 282	3

Minor2			Minor1	-1 5	lk in it.	Major1			Major2		
444	593	143	451	593	150	285	0	0	300	0	0
288	288	1.00	303	303			-	-	v . v • 1		÷
156	305	5 .	148	290	-						
7.54	6.54	6.94	7.54	6.54	6.94	4.14	•		4.14	1	+
6.54	5.54	200	6.54	5.54	(#)			51	<u> </u>		7
6.54	5.54		6.54	5.54	100		31	1.0		vi de s	
3.52	4.02	3.32	3.52	4.02	3.32	2.22		•	2.22		•
497	417	879	492	417	870	1274	1.0	- 8	1258		- 18
695	672	3.00	681	662			۵.				2
831	661	The second	840	671	-	÷		1.6	N 1 2 8 1	1.21	÷
							3			14	-
487	415	879	485	415	870	1274		1.1	1258	8 3 10	÷
487	415		485	415	-	-	(P)	2			-
694	671	-11-2-	680	661	1.14	이번 것이 없다.	121	•		10.0	•
817	660	-	830	670	-		199	¥	÷	:#J	
EB			WB			NB	eriyay	7	SB		
12.9	191	32.1	11.9	1.5	1.1.1.1	0.1			0.1		
В			В								
	444 288 156 7.54 6.54 6.54 3.52 497 695 831 487 487 487 694 817 EB 12.9	444 593 288 288 156 305 7.54 6.54 6.54 5.54 6.52 4.02 497 417 695 672 831 661 487 415 694 671 817 660 EB 12.9	444 593 143 288 288 - 156 305 - 7.54 6.54 6.94 6.54 5.54 - 6.54 5.54 - 3.52 4.02 3.32 497 417 879 695 672 - 831 661 - 487 415 879 487 415 - 817 660 - 817 660 - EB 12.9 -	444 593 143 451 288 288 - 303 156 305 - 148 7.54 6.54 6.94 7.54 6.54 5.54 - 6.54 6.54 5.54 - 6.54 3.52 4.02 3.32 3.52 497 417 879 492 695 672 - 681 831 661 - 840 - - 680 817 694 671 - 680 817 660 - 830 EB WB 12.9 11.9 11.9	444 593 143 451 593 288 288 - 303 303 156 305 - 148 290 7.54 6.54 6.94 7.54 6.54 6.54 5.54 - 6.54 5.54 6.54 5.54 - 6.54 5.54 3.52 4.02 3.32 3.52 4.02 497 417 879 492 417 695 672 - 681 662 831 661 - 840 671 - 487 415 879 485 415 487 415 - 485 415 694 671 - 680 661 817 660 - 830 670 UB UB UB UB UB UB UB 415	444 593 143 451 593 150 288 288 - 303 303 - 156 305 - 148 290 - 7.54 6.54 6.94 7.54 6.54 6.94 6.54 5.54 - 6.54 5.54 - 6.54 5.54 - 6.54 5.54 - 3.52 4.02 3.32 3.52 4.02 3.32 497 417 879 492 417 870 695 672 - 681 662 - 831 661 - 840 671 - 487 415 879 485 415 870 487 415 879 485 415 - 694 671 - 680 661 - 817 660 - 830 670 - TL9 11.9	444 593 143 451 593 150 285 288 288 - 303 303 - - 156 305 - 148 290 - - 7.54 6.54 6.94 7.54 6.54 6.94 4.14 6.54 5.54 - 6.54 5.54 - - 6.54 5.54 - 6.54 5.54 - - 3.52 4.02 3.32 3.52 4.02 3.32 2.22 497 417 879 492 417 870 1274 695 672 - 681 662 - - 831 661 - 840 671 - - 487 415 879 485 415 870 1274 487 415 - 680 661 - - 817 660 - 830 670 - - 817 660 - 830	444 593 143 451 593 150 285 0 288 288 303 303 - - - - 156 305 - 148 290 - - - 7.54 6.54 6.94 7.54 6.54 6.94 4.14 - 6.54 5.54 - 6.54 5.54 - - - 6.54 5.54 - 6.54 5.54 - - - 3.52 4.02 3.32 3.52 4.02 3.32 2.22 - 497 417 879 492 417 870 1274 - 695 672 - 681 662 - - - - 487 415 879 485 415 870 1274 - 487 415 879 485 415 - - - 694 671 - 680 661 - - - <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	444 593 143 451 593 150 285 0 0 300 0 288 288 303 303 -

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2	WBLn1V	VBLn2	SBL	SBT	SBR		
Capacity (veh/h)	1274			415	489	464	637	1258				
HCM Lane V/C Ratio	0.002	-	,	0.007	0.008	0.023	0.013	0.002	-	•		
HCM Control Delay (s)	7.8	0		13.7	12.4	12.9	10.7	7.9	0	1.40		
HCM Lane LOS	А	А		В	В	В	В	А	А	3 4 6		
HCM 95th %tile Q(veh)	0			0	0	0.1	0	0	-			

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Vol, veh/h	10	5	13	15	3	49	Service and the service of the
Future Vol, veh/h	10	5	13	15	3	49	
Conflicting Peds, #/hr	0	0	0	0	0	0	A LOS TO ANY LOS
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	1.1.1.1.1.1	None	1.12.1.25.	None		None	
Storage Length	*	100	1410	-	0	·····	
Veh in Median Storage, #	0		56	0	0	1	
Grade, %	0	-	543	0	0	-	
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	11	6	15	17	3	56	

Major/Minor	1	Aajor1			Major2	A 1	Minor1		
Conflicting Flow All		0	0		17	0	61	14	
Stage 1			1				14	21.1	
Stage 2					3		47		
Critical Hdwy			-		4.12	1.2	6.42	6.22	
Critical Hdwy Stg 1		2			-	-	5.42		
Critical Hdwy Stg 2						2114	5.42	1.1	
Follow-up Hdwy		÷			2.218	N#C	3.518	3.318	
Pot Cap-1 Maneuver			1.14		1600	1941	945	1066	
Stage 1		×				245	1009		
Stage 2			*		• 7		975	1.1.1	
Platoon blocked, %						1. 4 1			
Mov Cap-1 Maneuver		l les			1600		936	1066	
Mov Cap-2 Maneuver							936		
Stage 1		115				1.00	1009	7111111111	
Stage 2					5		966		
Approach	S. 19.7	EB			WB		NB		
HCM Control Delay, s		0		1,1.45	3.4		8.6	1.000	
HCM LOS							A		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT				
Capacity (veh/h)	1058		2	1600	12 100			A second second	
HCM Lane V/C Ratio	0.056	:*:		0.009	-				
HCM Control Delay (s)	8.6	-		7.3	0	2.5		**************************************	NEW YEARS
HCM Lane LOS	А	۲	ŝ	А	А				
HCM 95th %tile Q(veh)	0.2			0					

Intersection

Int Delay, s/veh

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Vol, veh/h	60	0	() 0	1	26	
Future Vol, veh/h	60	0	() 0	1	26	
Conflicting Peds, #/hr	0	0) 0	0	0	
Sign Control	Free	Free	Stor	Stop	Free	Free	
RT Channelized		None	5	None	a the second	None	
Storage Length		-			0		
Veh in Median Storage, #		0) -	0		
Grade, %	-	0	() -	0	-	
Peak Hour Factor	88	88	88	88 88	88	88	
Heavy Vehicles, %	2	2	2	2 2	2	2	
Mvmt Flow	68	0	() 0	1	30	

Major/Minor	Major1	- 10 ⁻¹		ne w	Mi	nor1	Ex X	Major	2		122121	- 14-
Conflicting Flow All	30	0				168	0)			
Stage 1						136	de e					
Stage 2						32	-			1.00		
Critical Hdwy						6.52	6.22	4.12	2			
Critical Hdwy Stg 1						5.52				1. 7 2		
Critical Hdwy Stg 2							1997		- k. 1 - 4	18		
Follow-up Hdwy					4	.018	3.318	2.21	3	1.2		
Pot Cap-1 Maneuver						725	1 × 1			11		
Stage 1						784	-					
Stage 2							2 10 100			16		
Platoon blocked, %		-								-		
Mov Cap-1 Maneuver						0				-/*-		
Mov Cap-2 Maneuver	17/					0	945		•	1		
Stage 1						0	1.5.042		- 1 N	*		
Stage 2	•					0	14					
Approach	EB					WB		SI	3	n chi		
HCM Control Delay, s			0			0					1 1	
HCM LOS						Α						
Minor Lane/Major Mvmt	EBL	EBTW	BLn1	SBL	SBR							
Capacity (veh/h)					7811							
HCM Lane V/C Ratio			-									
HCM Control Delay (s)		1.1	0	1								
HCM Lane LOS	1.50	8	А	8	(•]							
HCM 95th %tile Q(veh)		1.1										

Int Delay, s/veh 0.9

Movement	EBIL	EBT	EBR	WBL.	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	1	7	4	4	7	4	4	237	4	17	256	2
Future Vol, veh/h	1	7	4	4	7	4	4	237	4	17	256	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	11		None			None	-		Mana
Storage Length	-	-	-		-	320			-			-
Veh in Median Storage, #	10.14	0			0		X. I	0	15		0	0 -
Grade, %	-	0	-	24	0	~	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	8	5	5	8	5	5	269	5	19	291	2
												-

Major/Minor	Minor2	1.6011	2.0	N	Ainor1		1	- 22	Major1		1.27	Major2		
Conflicting Flow All	618	614	292		618	613	272		293	0	0	274	0	C
Stage 1	331	331	-		281	281							84 P.	
Stage 2	287	283	1		337	332	-				æ.		*	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12			4.12		
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52	-				3 7 A			
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	-			112		14.4534		
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218		5	2.218		
Pot Cap-1 Maneuver	402	407	747		402	408	767		1269	an 1		1289		1
Stage 1	682	645			726	678	-			-	-	E.	-	
Stage 2	720	677			677	644	1		1 4	112	104			10.1
Platoon blocked, %										14	14		-	-
Mov Cap-1 Maneuver	387	398	747		387	399	767		1269		1.00	1289		1.72
Mov Cap-2 Maneuver	387	398			387	399	-					3	-	
Stage 1	679	633			722	675	•			The			1.16	1
Stage 2	704	674	•		652	632	-			() #(*			-
Approach	EB				WB			1	NB		<u>6</u> 8	SB	111	
HCM Control Delay, s	12.9			1	13.3	1121		-	0.1			0.5	144	11.2.5
HCM LOS	В				В									
														۰,
Minor Lane/Major Mvmt	NBL	NBT	NBRI	EBLn1W	BLn1	SBL	SBT	SBR					10 E	
Capacity (veh/h)	1269	15		470	453	1289	-		1	112		122 1910	1	2.1
HCM Lane V/C Ratio	0.004	-		0.029 (0.038									
HCM Control Delay (s)	7.8	0		12.9	13.3	7.8	0					1.15		25-11
HCM Lane LOS	A	А	8	В	В	A	A	198						
HCM 95th %tile Q(veh)	0	12	1.1	0.1	0.1	0								

Int Delay, s/veh 2.7

										1 - C - C - C - C			
Movement	EBL	EBT	EBR	WBL	WBT	WBR	N	IL NE	3T	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	3	5	5	0	4	6	Cost in	5	55	0	4	13	0
Future Vol, veh/h	3	5	5	0	4	6		5	55	0	4	13	0
Conflicting Peds, #/hr	0	0	0	0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Fr	ee Fr	ee	Free	Free	Free	Free
RT Channelized		-	None		-	None			•	None	-	÷	None
Storage Length				-	•	-			52		•	÷.	2
Veh in Median Storage, #		0			0				0	1.5 10	-	0	11.6
Grade, %		0	-	-	0	-		-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88		38	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2		2	2	2	2	2	2
Mvmt Flow	3	6	6	0	5	7		6	63	0	5	15	0

Major/Minor	Minor2	112		Minor1		1.7.	Mi	ajor1		1211	Major2	84 k *	
Conflicting Flow All	104	98	15	104	98	63		15	0	0	63	0	0
Stage 1	24	24		74	74	1. 3.			1.1	(*):	302		-
Stage 2	80	74	-	30	24			(#)	÷		3 4 0	*	
Critical Hdwy	7.12	6,52	6.22	7.12	6.52	6.22		4.12		1 Here	4.12	•	10
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	(*):				(e))		•	
Critical Hdwy Stg 2	6.12	5.52	- 10	6.12	5.52	-			1.1	-			
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2	2.218	*	(#2)	2.218		12
Pot Cap-1 Maneuver	876	792	1065	876	792	1002		1603		۲	1540		10
Stage 1	994	875	-	935	833	100				198	æ	3	•
Stage 2	929	833	12. 4	987	875	1000			18			1.84	
Platoon blocked, %									•	570		ě.	
Mov Cap-1 Maneuver	862	786	1065	862	786	1002		1603	1.5		1540	1.8	1
Mov Cap-2 Maneuver	862	786	1.0	862	786	5 7)				2	•		-
Stage 1	990	872		931	830	100		۲			4	19.0	46
Stage 2	914	830	170	972	872			۲		1	121	-	•
													īv
Approach	EB	ti den		WB	6191			NB			SB	و کر ا	
HCM Control Delay, s	9.1	1 . Y	1-5	9				0.6			1.7		
HCM LOS	A			А									
													7
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn1	SBL	SBT	SBR					8. J. B.	
Capacity (veh/h)	1603			894 903	1540		•						
HCM Lane V/C Ratio	0.004			0.017 0.013	0.003	-							
HCM Control Delay (s)	7.3	0		9.1 9	7.3	0	1.1						
HCM Lane LOS	А	А		A A	А	А							
HCM 95th %tile Q(veh)	0	2.1		0.1 0	0		1 2 .						

Intersect	ion

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	44	19	0	7	16	3	6	230	11	2	233	12
Future Vol, veh/h	44	19	0	7	16	3	6	230	11	2	233	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None		2011	None		1.2	None	80 C 50		None
Storage Length	(•)	-	(-)	4	-		600		-	230		
Veh in Median Storage, #		0			0	121	100 (ET 2)	0	1	10 11 10 10	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	22	0	8	18	3	7	261	13	2	265	14
Mvmt Flow	50	22	0	8	18	3	7	261	13	2	265	14

Major/Minor	Minor2			Minor1			Major1	1.25	1910	Major2		12.3
Conflicting Flow All	568	564	272	568	564	268	278	0	0	274	0	0
Stage 1	276	276		281	281				1.1			
Stage 2	292	288	-	287	283			352			-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4,12	-1	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	÷.	-	0.51			-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52			·			1.0	- 01
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	30		2.218		
Pot Cap-1 Maneuver	434	435	767	434	435	771	1285		1.2.2	1289		
Stage 1	730	682	-	726	678	4	2	0 2 0		2	1000	
Stage 2	716	674	1.03-1	720	677			1 1 1 1 1 1 1	1172			
Platoon blocked, %											(10)	
Mov Cap-1 Maneuver	416	432	767	415	432	771	1285		11.2	1289	1025	M 100
Mov Cap-2 Maneuver	416	432	-	415	432		-	140	4		124	-
Stage 1	726	681	lave -	722	674	Ther:		1.00	12.00	AND LOCK	115	
Stage 2	690	670		696	676	-					144	
					12							
Approach	EB		32.00	WB	1. 11		NB	(and t	100	SB		
HCM Control Delay, s	15.3			13.6			0.2		10	0.1	0.00	
HCM LOS	С			В								
									¹ 1			
Allow I and Marine Marine	ALLENA	NAME OF			_							

Minor Lane/Major Mvmt	NBL	NBT	NBRE	BLn IV	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1285			421	450	1289		T.A.	PIK CHARLES AND THE PHYSIC WAS A
HCM Lane V/C Ratio	0.005	3 2 /		0.17	0.066	0.002		€ ⊕):	
HCM Control Delay (s)	7.8	100		15.3	13.6	7.8		i neci	
HCM Lane LOS	А			С	В	А			
HCM 95th %tile Q(veh)	0	1		0.6	0.2	0			

ntersection				1.0								
ntersection Delay, s/veh	11.1											_
Intersection LOS	В		- "						1.1		44 (j.)	0.0
Movement	EBU	EBL	EBT	EBR	WBU	WBL.	WBT	WBR	NBU	NBL	NBT	NB
Traffic Vol, veh/h	0	37	90	63	0	155	98	31	0	38	92	3
Future Vol, veh/h	0	37	90	63	0	155	98	31	0	38	92	3
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.8
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Nvmt Flow	0	42	102	72	0	176	111	35	0	43	105	3
Number of Lanes	0	0	2	0	0	0	2	0	0	0	2	
									1.1.2.1			
Approach		EB				WB	in i n	11-11-1-1-1		NB		
Opposing Approach	1917	WB		28163		EB		1	1000 C	SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				2		
		10.2				12.4				10.5		
HCM Control Delay		10.2										
		10.2 B				В				В		
HCM Control Delay										В	. vi	
HCM Control Delay			NBLn2	EBLn1	EBLn2		WBLn2	SBLn1	SBLn2	В		
HCM Control Delay HCM LOS		В	NBLn2 0%	EBLn1 45%	EBLn2 0%	В	WBLn2 0%	<u>SBLn1</u> 36%	SBLn2 0%	В		
HCM Control Delay HCM LOS Lane Vol Left, %		B NBLn1		1 of the second second	The second second	B WBLn1		and a second second second	and the second second	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, %		B NBLn1 45%	0%	45%	0%	B WBLn1 76%	0%	36%	0%	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %		B NBLn1 45% 55% 0%	0% 61% 39%	45% 55% 0%	0% 42%	B WBLn1 76% 24%	0% 61%	36% 64%	0% 61%	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		B NBLn1 45% 55%	0% 61%	45% 55%	0% 42% 58%	B WBLn1 76% 24% 0%	0% 61% 39%	36% 64% 0%	0% 61% 39%	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		B NBLn1 45% 55% 0% Stop	0% 61% 39% Stop	45% 55% 0% Stop	0% 42% 58% Stop	B WBL11 76% 24% 0% Stop	0% 61% 39% Stop	36% 64% 0% Stop	0% 61% 39% Stop	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		B NBLn1 45% 55% 0% Stop 84	0% 61% 39% Stop 76	45% 55% 0% Stop 82	0% 42% 58% Stop 108	B WBL117 76% 24% 0% Stop 204	0% 61% 39% Stop 80	36% 64% 0% Stop 89	0% 61% 39% Stop 93	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		B NBLn1 45% 55% 0% Stop 84 38	0% 61% 39% Stop 76 0	45% 55% 0% Stop 82 37	0% 42% 58% Stop 108 0	B WBLn1 76% 24% 0% Stop 204 155	0% 61% 39% Stop 80 0 49 31	36% 64% 0% Stop 89 32 57 0	0% 61% 39% Stop 93 0	В		
HCM Control Delay HCM LOS HCM LOS Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		B NBLn1 45% 55% 0% Stop 84 38 46	0% 61% 39% Stop 76 0 46	45% 55% 0% Stop 82 37 45	0% 42% 58% Stop 108 0 45	B WBLn1 76% 24% 0% Stop 204 155 49	0% 61% 39% Stop 80 0 49	36% 64% 0% Stop 89 32 57	0% 61% 39% Stop 93 0 57	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		B NBLn1 45% 55% 0% Stop 84 38 46 0	0% 61% 39% Stop 76 0 46 30	45% 55% 0% Stop 82 37 45 0	0% 42% 58% Stop 108 0 45 63	B WBLn1 76% 24% 0% Stop 204 155 49 0	0% 61% 39% Stop 80 0 49 31	36% 64% 0% Stop 89 32 57 0	0% 61% 39% Stop 93 0 57 36	В		
HCM Control Delay HCM LOS HCM LOS Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		B NBLn1 45% 55% 0% Stop 84 38 46 0 95	0% 61% 39% Stop 76 0 46 30 86	45% 55% 0% Stop 82 37 45 0 93	0% 42% 58% Stop 108 0 45 63 123	B WBLn1 76% 24% 0% Stop 204 155 49 0 232	0% 61% 39% Stop 80 0 49 31 91	36% 64% 0% Stop 89 32 57 0 101	0% 61% 39% Stop 93 0 57 36 106	В		
HCM Control Delay HCM LOS HCM LOS Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7	0% 61% 39% Stop 76 0 46 30 86 7	45% 55% 0% Stop 82 37 45 0 93 7	0% 42% 58% Stop 108 0 45 63 123 7	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7	0% 61% 39% Stop 80 0 49 31 91 7	36% 64% 0% Stop 89 32 57 0 101 7	0% 61% 39% Stop 93 0 57 36 106 7	В		
HCM Control Delay HCM LOS Vol Left, % Vol Thru, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7 0.177	0% 61% 39% Stop 76 0 46 30 86 7 0.148	45% 55% 0% Stop 82 37 45 0 93 7 0.167	0% 42% 58% Stop 108 0 45 63 123 7 0.198	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.413	0% 61% 39% Stop 80 0 49 31 91 7 0.145	36% 64% 0% Stop 89 32 57 0 101 7 0.185	0% 61% 39% Stop 93 0 57 36 106 7 0.18 6.116 Yes	В		
HCM Control Delay HCM LOS Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7 0.177 6.662	0% 61% 39% Stop 76 0 46 30 86 7 0.148 6.151	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.44	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.797	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.413 6.416	0% 61% 39% Stop 80 0 49 31 91 7 0.145 5.757	36% 64% 0% Stop 89 32 57 0 101 7 0.185 6.574	0% 61% 39% Stop 93 0 57 36 106 7 0.18 6.116	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7 0.177 6.662 Yes	0% 61% 39% Stop 76 0 46 30 86 7 0.148 6.151 Yes	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.44 Yes	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.797 Yes	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.413 6.416 Yes	0% 61% 39% Stop 80 0 49 31 91 7 0.145 5.757 Yes	36% 64% 0% Stop 89 32 57 0 101 7 0.185 6.574 Yes	0% 61% 39% Stop 93 0 57 36 106 7 0.18 6.116 Yes	В		
HCM Control Delay HCM LOS Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7 0.177 6.662 Yes 537	0% 61% 39% Stop 76 0 46 30 86 7 0.148 6.151 Yes 582	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.44 Yes 556	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.797 Yes 617	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.413 6.416 Yes 561	0% 61% 39% Stop 80 0 49 31 91 7 0.145 5.757 Yes 622	36% 64% 0% Stop 89 32 57 0 101 7 0.185 6.574 Yes 545	0% 61% 39% Stop 93 0 57 36 106 7 0.18 6.116 Yes 585	В		
HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7 0.177 6.662 Yes 537 4.414	0% 61% 39% Stop 76 0 46 30 86 7 0.148 6.151 Yes 582 3.903	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.44 Yes 556 4.191	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.797 Yes 617 3.548	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.413 6.416 Yes 561 4.163	0% 61% 39% Stop 80 0 49 31 91 7 0.145 5.757 Yes 622 3.503	36% 64% 0% Stop 89 32 57 0 101 7 0.185 6.574 Yes 545 4.325	0% 61% 39% Stop 93 0 57 36 106 7 0.18 6.116 Yes 585 3.867	В		
HCM Control Delay HCM LOS		B NBLn1 45% 55% 0% Stop 84 38 46 0 95 7 0.177 6.662 Yes 537 4.414 0.177	0% 61% 39% Stop 76 0 46 30 86 7 0.148 6.151 Yes 582 3.903 0.148	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.44 Yes 556 4.191 0.167	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.797 Yes 617 3.548 0.199	B WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.413 6.416 Yes 561 4.163 0.414	0% 61% 39% Stop 80 0 49 31 91 7 0.145 5.757 Yes 622 3.503 0.146	36% 64% 0% Stop 89 32 57 0 101 7 0.185 6.574 Yes 545 4.325 0.185	0% 61% 39% Stop 93 0 57 36 106 7 0.18 6.116 Yes 585 3.867 0.181	В		

Intersection

Int Delay, s/veh

										1		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	5	1	4	7	4	1	253	5	0	108	3
Future Vol, veh/h	0	5	1	4	7	4	1	253	5	0	108	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	- 0		None	12 YEAR	1	None	1.8.31		None		1	None
Storage Length	-	-	-	12	-							
Veh in Median Storage, #	-	0	•	1.1	0	-		0		1.01	0	
Grade, %	-	0	-	a	0	-	-	0	-		0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	6	1	5	8	5	1	288	6	0	123	3

Major/Minor	Minor2			Minor1				Major1	1.1	An C	Major2	1.1	
Conflicting Flow All	274	419	63	357	419	147		126	0	0	293	0	0
Stage 1	124	124	1.3	293	293			1.11				i e	
Stage 2	150	295		64	126	5		-				(14)	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94		4.14		4	4.14		
Critical Hdwy Stg 1	6.54	5.54		6.54	5.54	8		-				3.52	,
Critical Hdwy Stg 2	6.54	5.54		6.54	5.54			1.1.1			11 A	1	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32		2.22			2.22		
Pot Cap-1 Maneuver	657	524	988	574	524	873		1458	21		1265		
Stage 1	867	792		691	669			2	-	2	-		
Stage 2	837	668	1 ×	939	791				142	1.2	2.1		
Platoon blocked, %									549	-		1.0	
Mov Cap-1 Maneuver	646	523	988	568	523	873		1458	- 47		1265	-	
Mov Cap-2 Maneuver	646	523	-	568	523				340	¥	2	-	
Stage 1	866	792	-	690	668	i e			540			(a)	
Stage 2	822	667		931	791						-	54).	
						1						1×.	
Approach	EB	1642		WB		36.2		NB			SB	1.40	
HCM Control Delay, s	11.4	1723	777	11.1	3473	10.5	181	0	0,11,11		0		
HCM LOS	В			В									
Minor Lane/Major Mvmt	NBL	NBT	NBRE	BLn1 EBLn2	WBLn1V	VBLn2	SBL	SBT	SBR				
Capacity (veh/h)	1458			523 604	546	665	1265					Fait	
HCM Lane V/C Ratio	0.001	-		0.005 0.007	0.016	0.013		-					
HCM Control Delay (s)	7.5	0	-	11.9 11	11.7	10.5	0		1. 2. 1			1	
HCM Lane LOS	А	А		B B	В	В	А		-				
HCM 95th %tile Q(veh)	0	11.12	2	0 0	0	0	0						

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Vol, veh/h	16	3	6	14	14	13	
Future Vol, veh/h	16	3	6	14	14	13	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None		None	- IN THE REAL PROPERTY	None	
Storage Length	-	-		-	0	-	
Veh in Median Storage, #	0	1 2		0	0	1.0.00	
Grade, %	0	-	-	0	0		
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	18	3	7	16	16	15	

Major/Minor	N	lajor1		N	Najor2	1.25	Minor1		
Conflicting Flow All		0	0		22	0	50	20	
Stage 1		1.8			14		20		
Stage 2		2	(a)		(a)	a.	30		
Critical Hdwy					4.12		6.42	6.22	
Critical Hdwy Stg 1		-	5 8 .)		.(#6		5.42		
Critical Hdwy Stg 2		1.4			100		5.42		
Follow-up Hdwy		×	5 0 0		2.218		3.518	3.318	
Pot Cap-1 Maneuver					1593		959	1058	
Stage 1		÷			0.942		1003		
Stage 2							993		
Platoon blocked, %									
Mov Cap-1 Maneuver		1114	(19)		1593		955	1058	
Mov Cap-2 Maneuver			3.5		5.85		955		
Stage 1		non s	5.55			•	1003		
Stage 2			1992		1.54		989		
Approach		EB	1.137	No.	WB.		NB		line of the second
HCM Control Delay, s		0			2.2		8.7		un se de l'arrente
HCM LOS							A		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT				
Capacity (veh/h)	1002		190	1593					
HCM Lane V/C Ratio	0.031		() •)	0.004	-				
HCM Control Delay (s)	8.7			7.3	0				
HCM Lane LOS	А		3.20	А	А				
HCM 95th %tile Q(veh)	0.1	1.2	12	0					

Intersection

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Vol, veh/h	27	0	0	0	0	17	S REAL STREET
Future Vol, veh/h	27	0	0	0	0	17	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Stop	Stop	Free	Free	
RT Channelized	x 100,7+	None		None	1	None	12 N 1 K 1 1 1 2
Storage Length			-	140	0		
Veh in Median Storage, #		0	0	1004	0		COST NUMBER OF A
Grade, %		0	0		0	1	
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	31	0	0	0	0	19	

Major/Minor	Major1				Minor1	22 × 1	Major2		1 9 1	1.0
Conflicting Flow All	19	0			80	0	0			
Stage 1	- Gad				61	r -	1.11	· 특성 전비 같다?		
Stage 2	(2)	2			19					
Critical Hdwy	1.1	•			6.52	6.22	4.12			
Critical Hdwy Stg 1	229				5.52	-				
Critical Hdwy Stg 2	100	1.4			1. 1. 1. 1.	1481		1.		
Follow-up Hdwy	3 4 3	•			4.018	3.318	2.218	3		
Pot Cap-1 Maneuver		- 12 M			810	10.0				
Stage 1					844	-		-		
Stage 2	i di teri	+					X = 1 4 4 1			
Platoon blocked, %		•						a		
Mov Cap-1 Maneuver		Kuel			0	· · · ·				
Mov Cap-2 Maneuver					0					
Stage 1		101			0	n.2 •				
Stage 2		1121			0					
Approach	EB				WB		SB			W111.5.
HCM Control Delay, s					0		0			
HCM LOS					А					
Minor Lane/Major Mymt	EBL	EBTW	BLn1	SBL	SBR	199				
Capacity (veh/h)	A LAN	100		322	The Dive		- 1 Turke	I minutes in	1	S BUILDER
HCM Lane V/C Ratio				-						
HCM Control Delay (s)			0	0						15 TO PA
HCM Lane LOS	i i i	۲	А	А						
HCM 95th %tile Q(veh)				-						

Intersection

										and the second sec		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	2	6	4	10	10	5	364	4	4	174	1
Future Vol, veh/h	0	2	6	4	10	10	5	364	4	4	174	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	OIL NET		None	- 125 like		None		53.5	None	YS IR		None
Storage Length	-	-	-	se	-	1.05	-	-	-		÷	
Veh in Median Storage, #	1. 1	0	1		0			0	1.1.1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0	
Grade, %	-	0	-		0	1	-	0	-	-	0	2
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	7	5	11	11	6	414	5	5	198	1

Minor2		mbel-of	Minor1	1		N	lajor1			Major2		
646	637	198	639	635	416		199	0	0	418	0	0
207	207	141	427	427	п — н		*	11.00				-
439	430	9. # 3	212	208			*:	300	-		5 7 (•
7.12	6.52	6.22	7.12	6,52	6.22		4.12		1.1	4.12		-
6.12	5.52	:(+;	6.12	5.52	•			(*)			1943	
6.12	5.52	100	6.12	5.52			•				20	•
3.518	4.018	3.318	3.518	4.018	3.318		2.218	35				-
385	395	843	389	396	637		1373	150		1141	1.0	
795	731	: •:	606	585				10	-		.	•
597	583	(10)	790	730								× •
									E		180	-
367	391	843	381	392	637		1373	۲	199	1141	147	4
367	391	-	381	392	-		2	2		-	1211	-
790	727	1-1-1	602	581	•			-	1.44		-	· ·
571	580	-	777	726	-			1941 1	2	-	346	-
												-
EB		i kan se	WB				NB			SB		m2
10.6			13.2				0.1			0.2		
В			В									_
NBL	NBT	NBRI	BLn1WBLn1	SBL	SBT	SBR	. 14					
1373			654 464	1141	1.4							
0.004			0.014 0.059	0.004	-	(a)						
7.6	0		10.6 13.2	8.2	0							
А	А		B B	A	А							
0	-		0 0.2	0								
	646 207 439 7.12 6.12 3.518 385 795 597 367 367 790 571 268 10.6 B NBL 1373 0.004 7.6 A	646 637 207 207 439 430 7.12 6.52 6.12 5.52 6.12 5.52 3.518 4.018 385 395 795 731 597 583 367 391 367 391 790 727 571 580 EB 10.6 B 11373 - 0.004 - 7.6 0 A A	646 637 198 207 207 - 439 430 - 7.12 6.52 6.22 6.12 5.52 - 3.518 4.018 3.318 385 395 843 795 731 - 597 583 - 367 391 843 367 391 - 790 727 - 571 580 - 6 - - 790 727 - 571 580 - 790 727 - 571 580 - 6.0 - - 737 - - 0.06 B - 1373 - - 0.004 - - 7.6 0 - A A -	646 637 198 639 207 207 - 427 439 430 - 212 7.12 6.52 6.22 7.12 6.12 5.52 - 6.12 3.518 4.018 3.318 3.518 385 395 843 389 795 731 - 606 597 583 - 790 367 391 843 381 367 391 - 381 790 727 - 602 571 580 - 777 EB WB 10.6 13.2 B B B B NBL NBT NBR EBLn1WBLn1 1373 - 654 464 0.004 - 0.014 0.059 7.6 0 - 10.6 13.2 A A B B	646 637 198 639 635 207 207 - 427 427 439 430 - 212 208 7.12 6.52 6.22 7.12 6.52 6.12 5.52 - 6.12 5.52 6.12 5.52 - 6.12 5.52 3.518 4.018 3.318 3.518 4.018 385 395 843 389 396 795 731 - 606 585 597 583 - 790 730 367 391 843 381 392 790 727 - 602 581 571 580 - 777 726 KBE KBE 10.6 13.2 B B 1373 - 654 464 1141 0.004 - 0.014 0.059 0.004 <td>646 637 198 639 635 416 207 207 - 427 427 - 439 430 - 212 208 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 385 395 843 389 396 637 795 731 - 606 585 - 597 583 - 790 730 - 367 391 843 381 392 637 367 391 - 381 392 - 790 727 - 602 581 - 571 580 - 777 726 - 571 580 - 777 726 - 10.6 13.2 B B - - 1373 - 65</td> <td>646 637 198 639 635 416 207 207 - 427 427 - 439 430 - 212 208 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 385 395 843 389 396 637 795 731 - 606 585 - 597 583 - 790 730 - 367 391 843 381 392 637 790 727 - 602 581 - 571 580 - 7777 726 - 571 580 - 7777 726 - 10.6 13.2 - - - - 11373 -</td> <td>646 637 198 639 635 416 199 207 207 - 427 427 - - 439 430 - 212 208 - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 6.12 5.52 - 6.12 5.52 - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 385 395 843 389 396 637 1373 795 731 - 606 585 - - 597 583 - 790 730 - - 367 391 843 381 392 637 1373 367 391 - 381 392 - - - 790 727 - 602 581 - - - 71 580 - 777 726 - - - 715</td> <td>646 637 198 639 635 416 199 0 207 207 - 427 427 - - - 439 430 - 212 208 - - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - 6.12 5.52 - 6.12 5.52 - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 3.518 4.018 3.318 3.518 4.018 3.318 3.518 4.018 3.318 - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 3.517 731 - 606 585 - - - 597 583 - 790 730 - - - 790 727 - 602</td> <td>646 637 198 639 635 416 199 0 0 207 207 - 427 427 - - - - 439 430 - 212 208 - - - - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - - 6.12 5.52 - 6.12 5.52 - - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 -</td> <td>646 637 198 639 635 416 199 0 0 418 207 207 - 427 427 - - - - - 439 430 - 212 208 - - - - - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - - 4.12 6.12 5.52 - 6.12 5.52 -</td> <td>646 637 198 639 635 416 199 0 0 418 0 207 207 - 427 427 -</td>	646 637 198 639 635 416 207 207 - 427 427 - 439 430 - 212 208 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 385 395 843 389 396 637 795 731 - 606 585 - 597 583 - 790 730 - 367 391 843 381 392 637 367 391 - 381 392 - 790 727 - 602 581 - 571 580 - 777 726 - 571 580 - 777 726 - 10.6 13.2 B B - - 1373 - 65	646 637 198 639 635 416 207 207 - 427 427 - 439 430 - 212 208 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 385 395 843 389 396 637 795 731 - 606 585 - 597 583 - 790 730 - 367 391 843 381 392 637 790 727 - 602 581 - 571 580 - 7777 726 - 571 580 - 7777 726 - 10.6 13.2 - - - - 11373 -	646 637 198 639 635 416 199 207 207 - 427 427 - - 439 430 - 212 208 - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 6.12 5.52 - 6.12 5.52 - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 385 395 843 389 396 637 1373 795 731 - 606 585 - - 597 583 - 790 730 - - 367 391 843 381 392 637 1373 367 391 - 381 392 - - - 790 727 - 602 581 - - - 71 580 - 777 726 - - - 715	646 637 198 639 635 416 199 0 207 207 - 427 427 - - - 439 430 - 212 208 - - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - 6.12 5.52 - 6.12 5.52 - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 3.518 4.018 3.318 3.518 4.018 3.318 3.518 4.018 3.318 - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 3.517 731 - 606 585 - - - 597 583 - 790 730 - - - 790 727 - 602	646 637 198 639 635 416 199 0 0 207 207 - 427 427 - - - - 439 430 - 212 208 - - - - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - - 6.12 5.52 - 6.12 5.52 - - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - - - 3.518 4.018 3.318 3.518 4.018 3.318 2.218 -	646 637 198 639 635 416 199 0 0 418 207 207 - 427 427 - - - - - 439 430 - 212 208 - - - - - - 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - - 4.12 6.12 5.52 - 6.12 5.52 -	646 637 198 639 635 416 199 0 0 418 0 207 207 - 427 427 -

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR		SBL	SBT	SBR
Traffic Vol, veh/h	4	6	8	0	3	2	3	11	1	10.00	1	7	1
Future Vol, veh/h	4	6	8	0	3	2	3	11	1		1	.7	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0		0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	F	ree	Free	Free
RT Channelized	the bar		None	1.00		None	-110	-	None	0.0	-		None
Storage Length	240	-		121							•		None
Veh in Median Storage, #	1.56	0		12 5000.34	0			0	1.2			0	
Grade, %	-	0		-	0		-	0	-			0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88		88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2		2	2	2
Mvmt Flow	5	7	9	0	3	2	3	13	1		1	8	1
												•	

Major/Minor	Minor2		C. Contract	Minor1			N	Aajor1		199	Major2		
Conflicting Flow All	34	31	9	39	31	13		9	0	0	14	0	0
Stage 1	11	11	1.1	20	20					1.61	-		
Stage 2	23	20	-	19	11					-			
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12	1000	- 21	4.12	1.	-
Critical Hdwy Stg 1	6.12	5,52	-	6.12	5.52						-		
Critical Hdwy Stg 2	6.12	5.52	1.7	6.12	5.52	-			1.00	· · · ·	2		
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218			2.218		
Pot Cap-1 Maneuver	973	862	1073	966	862	1067		1611	140		1604	9	
Stage 1	1010	886	-	999	879	-			1/2				
Stage 2	995	879	•	1000	886	-			102	2.2	0.0	1.2.1	
Platoon blocked, %									1966	4		14	
Mov Cap-1 Maneuver	966	859	1073	950	859	1067		1611	1940	0.01	1604	11022	10.0
Mov Cap-2 Maneuver	966	859	-	950	859				3. 8 5		14	1/21	
Stage 1	1008	885	1243	997	877	-					0.00	0.043	
Stage 2	987	877	-	983	885				(1)			6 2 3	1
										1.1.1	201 B 100		
Approach	EB			WB		Π.S.		NB			SB		
HCM Control Delay, s	8.8	1		8.9		1	20.0	1.4	1 1 1 1	111 2	0.8	1.21	
HCM LOS	А			А							010		
Minor Lane/Major Mymt	NBL	NBT	NBREE	SLn1WBLn1	SBL	SBT	SBR			10.54		THEOR	
Capacity (veh/h)	1611		12.8	969 932	1604	18.2		102		31 - L	n sonth		
HCM Lane V/C Ratio	0.002		- 0	.021 0.006	0.001		5 8 .2						
IOMO A LD L ()													

HCM Lane V/C Ratio	0.002			0.021	0.006	0.001		6 8 .0	
HCM Control Delay (s)	7.2	0		8.8	8.9	7.2	0		of the only 2. Yes the second second
HCM Lane LOS	А	А	ŝ	А	А	А	А		
HCM 95th %tile Q(veh)	0	1 1 1		0.1	0	0	21.82		A THE REPORT OF A PARTY OF A PART

Intersection Int Delay, s/veh

								2 10 2					8. L. L. J.		124
Movement	EBL	EBT	EBR	N N	VBL	WBT	WBR		NBL	NBT	NBR	1	SBL	SBT	SBR
Traffic Vol, veh/h	10	14	2	1	10	6	5		5	218	9		0	297	23
Future Vol, veh/h	10	14	2		10	6	5		5	218	9		0	297	23
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0		0	0	0
Sign Control	Stop	Stop	Stop	5	Stop	Stop	Stop		Free	Free	Free		Free	Free	Free
RT Channelized			None		•	· ·	None			0.00	None			•	None
Storage Length			-		-	-	-		600	-	-		230		-
Veh in Median Storage, #		0	-		-	0	-		-	0			1.1	0	-
Grade, %		0				0				0	-			0	-
Peak Hour Factor	88	88	88		88	88	88		88	88	88		88	88	88
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2		2	2	2
Mvmt Flow	11	16	2		11	7	6		6	248	10		0	338	26

Major/Minor	Minor2			Minor1			٨	Major1			Major2		
Conflicting Flow All	621	620	351	624	628	253		364	0	0	258	0	0
Stage 1	351	351		264	264	1.12				1.1		n" e "	
Stage 2	270	269	-	360	364	-						. •	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12	•		4.12		
Critical Hdwy Stg 1	6.12	5.52		6.12	5,52	-							
Critical Hdwy Stg 2	6.12	5.52		6.12	5.52	1.1.1							
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218		57.5	2.218		17.
Pot Cap-1 Maneuver	400	404	692	398	400	786		1195			1307		1
Stage 1	666	632		741	690					120	150		
Stage 2	736	687	1.12.4	658	624	- Shares		-	· •		1.00		3
Platoon blocked, %										100			16
Mov Cap-1 Maneuver	390	402	692	383	398	786		1195		- 10	1307		11 723
Mov Cap-2 Maneuver	390	402		383	398						1941 1941	2	4
Stage 1	663	632		737	687	-				121	1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -		
Stage 2	720	684	-	639	624	•		1	-	1.0	120	-	
1 S. 16 S. 16 S.		1							-				22
Approach	EB	1	n di	WB	e sa	nite fi		NB		4.74	SB	de Inde	
HCM Control Delay, s	14.5	A.		13.6				0.2			0		1.12
HCM LOS	В			В									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn1	SBL	SBT	SBR	1.014					
Capacity (veh/h)	1195			410 442	1307								
HCM Lane V/C Ratio	0.005			0.072 0.054		19 3							
HCM Control Delay (s)	8			14.5 13.6	0	HT.C							
HCM Lane LOS	А		32.0	B B	А								
HCM 95th %tile Q(veh)	0	•		0.2 0.2	0								

Intersection		1910			, ¹ - 191			- 33				
Intersection Delay, s/veh	10.7											-
Intersection LOS	В						11 W - 1		크러지지			27 11
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	MBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	62	107	27	0	50	147	30	0	63	86	119
Future Vol, veh/h	0	62	107	27	0	50	147	30	0	63	86	119
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	70	122	31	0	57	167	34	0	72	98	135
Number of Lanes	0	0	2	0	0	0	2	0	0	0	2	0
V V N I B CRUM,												
Approach		EB				WB	1.000			NB		
Opposing Approach		WB			1.1	EB	-was		0.000	SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				2		
HCM Control Delay		10.8				10.9				10.9		
HCM LOS		В				В				В		
		D				D				D		
	2018			8.24						D		
Lane	N	JBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	D		
Lane Vol Left, %	Ν	1BLn1 59%	0%	54%	0%	WBLn1 40%	0%	37%	0%	D		
Lane Vol Left, % Vol Thru, %	Ŋ	<mark>JBLn1</mark> 59% 41%	0% 27%	54% 46%	0% 66%	WBLn1 40% 60%	0% 71%	37% 63%	0% 50%	D		
Lane Vol Left, % Vol Thru, % Vol Right, %	Ν	<mark>JBLn1</mark> 59% 41% 0%	0% 27% 73%	54% 46% 0%	0% 66% 34%	WBLn1 40% 60% 0%	0% 71% 29%	37%	0%	B		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control	Ν	UBLn1 59% 41% 0% Stop	0% 27% 73% Stop	54% 46% 0% Stop	0% 66%	WBLn1 40% 60% 0% Stop	0% 71% 29% Stop	37% 63%	0% 50%	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	Ν	JBLn1 59% 41% 0% Stop 106	0% 27% 73% Stop 162	54% 46% 0% Stop 116	0% 66% 34% Stop 81	WBLn1 40% 60% 0% Stop 124	0% 71% 29%	37% 63% 0% Stop 65	0% 50% 50%	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	Ν	UBLn1 59% 41% 0% Stop 106 63	0% 27% 73% Stop 162 0	54% 46% 0% Stop 116 62	0% 66% 34% Stop 81 0	WBLn1 40% 60% 0% Stop 124 50	0% 71% 29% Stop 104 0	37% 63% 0% Stop 65 24	0% 50% 50% Stop	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	Ν	JBLn1 59% 41% 0% Stop 106 63 43	0% 27% 73% Stop 162 0 43	54% 46% 0% Stop 116 62 54	0% 66% 34% Stop 81 0 54	WBLn1 40% 60% 0% Stop 124 50 74	0% 71% 29% Stop 104 0 74	37% 63% 0% Stop 65	0% 50% 50% Stop 82	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	Ν	JBLn1 59% 41% 0% Stop 106 63 43 0	0% 27% 73% Stop 162 0 43 119	54% 46% 0% Stop 116 62 54 0	0% 66% 34% Stop 81 0 54 27	WBLn1 40% 60% 0% Stop 124 50 74 0	0% 71% 29% Stop 104 0 74 30	37% 63% 0% Stop 65 24 41 0	0% 50% 50% Stop 82 0 41 41	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate	Ν	JBLn1 59% 41% 0% Stop 106 63 43 0 120	0% 27% 73% Stop 162 0 43 119 184	54% 46% 0% Stop 116 62 54 0 131	0% 66% 34% Stop 81 0 54 27 91	WBLn1 40% 60% 0% Stop 124 50 74 0 140	0% 71% 29% Stop 104 0 74 30 118	37% 63% 0% Stop 65 24 41 0 73	0% 50% 50% Stop 82 0 41 41 93	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7	0% 27% 73% Stop 162 0 43 119 184 7	54% 46% 0% Stop 116 62 54 0 131 7	0% 66% 34% Stop 81 0 54 27 91 7	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7	0% 71% 29% Stop 104 0 74 30 118 7	37% 63% 0% Stop 65 24 41 0 73 7	0% 50% 50% Stop 82 0 41 41 93 7	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218	0% 27% 73% Stop 162 0 43 119 184 7 0.291	54% 46% 0% Stop 116 62 54 0 131 7 0.239	0% 66% 34% Stop 81 0 54 27 91 7 0.154	WBLn1 40% 60% 0% Stop 124 50 74 0 140	0% 71% 29% Stop 104 0 74 30 118	37% 63% 0% Stop 65 24 41 0 73 7 0.135	0% 50% 50% Stop 82 0 41 41 93	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7 0.251 6.443	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608	0% 50% 50% Stop 82 0 41 41 93 7	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51 Yes	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687 Yes	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562 Yes	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051 Yes	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7 0.251 6.443 Yes	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032 Yes	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608 Yes	0% 50% 50% 82 0 41 41 93 7 0.156 6.061 Yes	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51 Yes 550	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687 Yes 630	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562 Yes 546	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051 Yes 591	WBLn1 40% 60% Stop 124 50 74 0 140 7 0.251 6.443 Yes 556	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032 Yes 594	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608 Yes 542	0% 50% Stop 82 0 41 41 93 7 0.156 6.061 Yes 590	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51 Yes 550 4.259	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687 Yes 630 3.436	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562 Yes 546 4.315	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051 Yes 591 3.804	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7 0.251 6.443 Yes 556 4.195	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032 Yes 594 3.784	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608 Yes 542 4.364	0% 50% 50% 82 0 41 41 93 7 0.156 6.061 Yes 590 3.817	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51 Yes 550 4.259 0.218	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687 Yes 630 3.436 0.292	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562 * Yes 546 4.315 0.24	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051 Yes 591 3.804 0.154	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7 0.251 6.443 Yes 556 4.195 0.252	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032 Yes 594 3.784 0.199	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608 Yes 542 4.364 0.135	0% 50% 50% 82 0 41 41 93 7 0.156 6.061 Yes 590 3.817 0.158	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51 Yes 550 4.259 0.218 11.1	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687 Yes 630 3.436 0.292 10.8	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562 Yes 546 4.315 0.24 11.4	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051 Yes 591 3.804 0.154 9.9	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7 0.251 6.443 Yes 556 4.195 0.252 11.4	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032 Yes 594 3.784 0.199 10.3	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608 Yes 542 4.364 0.135 10.4	0% 50% 50% 82 0 41 41 93 7 0.156 6.061 Yes 590 3.817 0.158 9.9	D		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		JBLn1 59% 41% 0% Stop 106 63 43 0 120 7 0.218 6.51 Yes 550 4.259 0.218	0% 27% 73% Stop 162 0 43 119 184 7 0.291 5.687 Yes 630 3.436 0.292	54% 46% 0% Stop 116 62 54 0 131 7 0.239 6.562 * Yes 546 4.315 0.24	0% 66% 34% Stop 81 0 54 27 91 7 0.154 6.051 Yes 591 3.804 0.154	WBLn1 40% 60% 0% Stop 124 50 74 0 140 7 0.251 6.443 Yes 556 4.195 0.252	0% 71% 29% Stop 104 0 74 30 118 7 0.197 6.032 Yes 594 3.784 0.199	37% 63% 0% Stop 65 24 41 0 73 7 0.135 6.608 Yes 542 4.364 0.135	0% 50% 50% 82 0 41 41 93 7 0.156 6.061 Yes 590 3.817 0.158	D		

Intersection Int Delay, s/veh 0.6

												_
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	5	1	7	5	5	2	262	3	2	250	3
Future Vol, veh/h	0	5	1	7	5	5	2	262	3	2	250	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	1000		None		1.00	None	1.1.1	11.	None
Storage Length				-		-	-	-	-	•	-	•
Veh in Median Storage, #	•	0	1.0	1	0	-militer		0		1.1	0	0.18
Grade, %	-	0	-	-	0	-	-	0	-		0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	6	1	8	6	6	2	298	3	2	284	3

Major/Minor	Minor2		114 8 70	Minor1		Charles .	Major1			Major2		
Conflicting Flow All	446	596	144	453	596	151	288	0	0	301	0	0
Stage 1	290	290	1.14	304	304	14		ж	•		•	-
Stage 2	156	306	-	149	292	(*)		3	•	-		3.24
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14			4.14		
Critical Hdwy Stg 1	6.54	5.54		6.54	5.54	•;			•			
Critical Hdwy Stg 2	6.54	5.54		6.54	5.54	•	•		•		1.12	-
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22		•	2.22		
Pot Cap-1 Maneuver	496	415	877	490	415	868	1271	÷.,		1257	1.5	•
Stage 1	694	671	3 6 2	681	662	*				•		•
Stage 2	831	660	- 18	838	670		- State II				18	-
Platoon blocked, %								150			-	-
Mov Cap-1 Maneuver	486	413	877	483	413	868	1271	۲		1257	-	1
Mov Cap-2 Maneuver	486	413	-	483	413	•	ž			-	(ä).	-
Stage 1	693	670		680	661	1 . 24				1.1.1.1.1.1.1.1	196	-
Stage 2	817	659	-	828	669	-	1	120	8	-	100	*
Approach	EB	6 M E.		WB	. PS.		NB			SB		
HCM Control Delay, s	13	277		12	0.504	0.2	0.1			0.1		33
HCM LOS	В			В								-

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1V	VBLn2	SBL	SBT	SBR	22 L		
Capacity (veh/h)	1271			413	487	462	635	1257		100			
HCM Lane V/C Ratio	0.002			0.007	0.008	0.023	0.013	0.002	-				
HCM Control Delay (s)	7.8	0		13.8	12.5	13	10.7	7.9	0				
HCM Lane LOS	А	А		В	В	В	В	А	А	100			
HCM 95th %tile Q(veh)	0	-	•	0	0	0.1	0	0		020			

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Vol, veh/h	10	5	21	15	3	57	
Future Vol, veh/h	10	5	21	15	3	57	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	1.1	None		None	
Storage Length	4			-	0		
Veh in Median Storage, #	0			0	0	1.1	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	11	6	24	17	3	65	

3

Major/Minor		Major1			Major2		Minor1		
Conflicting Flow All		0	0		17	0	79	14	
Stage 1			-				14	S	
Stage 2			64				65		
Critical Hdwy					4.12	12.5 -	6.42	6.22	
Critical Hdwy Stg 1			14		14	141	5.42		
Critical Hdwy Stg 2						14	5.42	1 1 1 2 2	
Follow-up Hdwy		(*)			2.218	121	3.518	3.318	
Pot Cap-1 Maneuver		100			1600	12	924	1066	
Stage 1					-		1009	1000	
Stage 2		(e)	10 ×		1.1.4.3		958		
Platoon blocked, %							000		
Nov Cap-1 Maneuver			110		1600		910	1066	
Nov Cap-2 Maneuver							910	-	
Stage 1		1.0				-	1009		
Stage 2							944		
Approach		EB			WB		NB		
CM Control Delay, s	10 C	0	18.0	1.00	4.2	11.000	8.6		
ICM LOS							A		
				57 - S S			A CONTRACTOR		
linor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	1000	The second second	100000	
Capacity (veh/h)	1057		-	1600	-	1	A COLORADOR	-	the local sectors and
ICM Lane V/C Ratio	0.065		-	0.015					
ICM Control Delay (s)	8.6			7.3	0				
ICM Lane LOS	А	2	-	A	Ă				
CM OF+L 0/+ile O(ush)	0.0			_					

0

.

HCM 95th %tile Q(veh)

0.2

4

_

Intersection

Int Delay, s/veh

					N 10		
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Vol, veh/h	68	0	0	0	1	34	
Future Vol, veh/h	68	0	0	0	1	34	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Stop	Stop	Free	Free	
RT Channelized	-	None	with the second s	None	1.0	None	
Storage Length		-		(• 2	0	5	
Veh in Median Storage, #	-	0	0	1.1	0	8 - S - S	
Grade, %		0	0	-	0	-	
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	77	0	0	0	1	39	

Major1			Minor	1	Major2		
39	0		19	60	0		
			15	5 -		11 A	
	×		4	1 -	-	•	
	•		6.5	2 6.22	4.12		
			5.5	2 -	•		
					· · · ·		
			4.01	8 3.318	2.218	•	
					100 100 1	for the second	
	•		76	9 •			
						1. 15 T T . + 1	
100				0 -		A 16 16 .	
(1)				0 -			
100				0 -			
				0 -	8		
	1. A P						
EB			W	3	SB		le de la surde " s
			in the first sector	0			
				Ą			
EBL	EBTWB	Ln1 SE	IL SBR				
700							
3 • 2							
100 100		0					
55		А	17. T				
			A				
	39 	39 0 	39 0 	39 0 19 - - 15 - - 6.5 - - 5.5 - - 4.01 - - 69 - - 69 - - 69 - - 76 - - <td>39 0 196 0 - - 155 - - - 6.52 6.22 - - 5.52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - - - - - - - - - - - - - - -</td> <td>39 0 196 0 0 - - 155 - - - 6.52 6.22 4.12 - - 5.52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - 0 - - - - 0 - - - - 0 - - - 0 - - 0 - - - - - - - - - - - - - - - - - - - <tr< td=""><td>39 0 196 0 0 - - - 155 - - - - - 6.52 6.22 4.12 - - - 5.52 - - - - - - - - - - - - - - - - - - - <</td></tr<></td>	39 0 196 0 - - 155 - - - 6.52 6.22 - - 5.52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - - - - - - - - - - - - - - -	39 0 196 0 0 - - 155 - - - 6.52 6.22 4.12 - - 5.52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - 0 - - - - 0 - - - - 0 - - - 0 - - 0 - - - - - - - - - - - - - - - - - - - <tr< td=""><td>39 0 196 0 0 - - - 155 - - - - - 6.52 6.22 4.12 - - - 5.52 - - - - - - - - - - - - - - - - - - - <</td></tr<>	39 0 196 0 0 - - - 155 - - - - - 6.52 6.22 4.12 - - - 5.52 - - - - - - - - - - - - - - - - - - - <

Intersection Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	1	7	4	10	7	5	4	237	14	19	256	2
Future Vol, veh/h	1	7	4	10	7	5	4	237	14	19	256	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	100		None			None		_ _	None	-		None
Storage Length	-	-	-	240	-	-			-	-		-
Veh in Median Storage, #	-	0	-		0	4		0	5.5		0	-
Grade, %	-	0	-		0		-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	8	5	11	8	6	5	269	16	22	291	2

Major/Minor	Minor2			Minor1				Major1		200	Major2		1
Conflicting Flow All	628	629	292	627	622	277		293	0	0	285	0	0
Stage 1	335	335	-	286	286					1.1			1
Stage 2	293	294	-	341	336	-							
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12			4.12		
Critical Hdwy Stg 1	6.12	5,52	-	6.12	5.52	-			11.00		-		
Critical Hdwy Stg 2	6.12	5.52	1.00	6.12	5.52	1		COL ST.	20				
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218	12		2.218	0.00	
Pot Cap-1 Maneuver	395	399	747	396	403	762		1269			1277	1.	
Stage 1	679	643	-	721	675	-		-	027		1211	-	
Stage 2	715	670	- 12	674	642				1.0	1.1		1.00	1
Platoon blocked, %					0.12							72.4	
Mov Cap-1 Maneuver	378	389	747	380	393	762		1269		1	1277	1000	
Mov Cap-2 Maneuver	378	389		380	393	-		1200			1277	i de l	-
Stage 1	676	629		717	672	-		-	-				
Stage 2	698	667		648	629								
		007		010	025			100		Y.Y.S		2	
Approach	EB	(S.)		WB				NB	100	0.1	SB		
HCM Control Delay, s	13		Sec. 1	13.8	1			0.1		1812	0.5	10.00	
HCM LOS	В			В							0.0		
										And			
Minor Lane/Major Mvmt	NBL	NBT	NBRE	BLn1WBLn1	SBL	SBT	SBR						
Compatible (see h /h-)	4000	-					_		_	_		_	_

	AT THE .		A MEASUREMENT	- Poster plant	A PROPERTY OF	and the second second	001	JUN	
Capacity (veh/h)	1269	191		462	434	1277	•		
HCM Lane V/C Ratio	0.004			0.03	0.058	0.017		(•):	
HCM Control Delay (s)	7.8	0		13	13.8	7.9	0	1.0	
HCM Lane LOS	A	А	-	В	В	А	А		
HCM 95th %tile Q(veh)	0			0.1	0.2	0.1			The second s

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	3	5	5	0	6	6	5	55	0	4	13	8
Future Vol, veh/h	3	5	5	0	6	6	5	55	0	4	13	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	10.00	1	None		-	None	1. 1. 1.	-	None	1 × 2	- 1 - 2	None
Storage Length	-		-	-	-	-		5	-	1	-	
Veh in Median Storage, #		0	11. 2		0			0	-		0	17.5
Grade, %	-	0	-	-	0	-	1.00	0	-	-	0	•
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	6	6	0	7	7	6	63	0	5	15	9

Major/Minor	Minor2			Minor1			M	ajor1			Major2		
Conflicting Flow All	109	102	19	108	107	63		24	0	0	63	0	0
Stage 1	28	28	-	74	74			•	u		i ie		
Stage 2	81	74	-	34	33	240		(19 1		:(#)	(•)	•	
Critical Hdwy	7.12	6.52	6.22	7.12		6.22		4.12		040	4.12		
Critical Hdwy Stg 1	6.12	5.52	100	6.12		0.00		0.00	-	1.5			
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	1000		0.00	1.0		3.02	•	1
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218			2.218		<u>, 194</u>
Pot Cap-1 Maneuver	870	788	1059	871		1002		1591			1540	1 .	2 2
Stage 1	989	872		935		13973				•			50
Stage 2	927	833		982	868			121		1.	1.1.1.1.1.1		
Platoon blocked, %												3	
Mov Cap-1 Maneuver	854	782	1059	857	778	1002		1591	1 3 3	24.81	1540		1
Mov Cap-2 Maneuver	854	782	-	857	778	100				•			12
Stage 1	985	869	-	931	830	÷.			1 2	194	1. 1. 1. 1.	•	14
Stage 2	909	830	•	967	865	1			<u></u>		8 1	4	16
the second second													
Approach	EB		1 FL	WE	k .	21.1		NB			SB		
HCM Control Delay, s	9.1			9.2				0.6			1.2		
HCM LOS	A			ŀ	۱								
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn	SBL	SBT	SBR						
Capacity (veh/h)	1591		1 55	889 876	5 1540								161
HCM Lane V/C Ratio	0.004	-		0.017 0.016		24							
HCM Control Delay (s)	7.3	0		9.1 9.2	2 7.3	0	1126						MIE
HCM Lane LOS	A	А	1.54	A A	A	А	3						
HCM 95th %tile Q(veh)	0			0.1 () 0								

Int Delay, s/veh 2.4

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	44	19	0	7	16	3	6	240	11	2	239	12
Future Vol, veh/h	44	19	0	7	16	3	6	240	11	2	239	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	1		None	and the second		None	onne re	-	None	S		None
Storage Length	5 8 0		-	100			600	-		230		
Veh in Median Storage, #		0	1.1.1		0			0	-	3111 201	0	1.5.1
Grade, %	-	0	-	544	0	-	-	0	120		0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	50	22	0	8	18	3	7	273	13	2	272	14

Major/Minor	Minor2			٨	Ainor1				Major1	1.1	21221	Major2	-	
Conflicting Flow All	586	582	278		587	583	279		285	0	0	285	0	0
Stage 1	283	283			293	293	1.00		1 1			11 A.	1.41	
Stage 2	303	299	•		294	290			-			250		
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12		14.01	4.12		
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52	-				÷.			
Critical Hdwy Stg 2	6,12	5.52	1		6,12	5.52				- 20	1.2	11.0	1	111,-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	14	8	2,218		
Pot Cap-1 Maneuver	422	425	761		421	424	760		1277	1.2	4	1277	127-	
Stage 1	724	677	-		715	670			-	1.6	-	-	-	
Stage 2	706	666	-		714	672	101 0-2		-	- 12	1		25	
Platoon blocked, %													1.0	
Mov Cap-1 Maneuver	404	422	761		402	421	760		1277	1.47		1277	01.4	
Mov Cap-2 Maneuver	404	422	-		402	421	-			:00			145	
Stage 1	720	676	1.1.1		711	666	2011-1							8
Stage 2	680	662	-		690	671	-			0.00			2.45	
Approach	EB	M 6 -	de F		WB		1.1	м (ана 	NB			SB		
HCM Control Delay, s	15.7		15.0	1.	13.8		122		0.2	30		0.1		115
HCM LOS	С				В									
														чV.
Minor Lane/Major Mymt	NBL	NBT	NBR	EBLn1W	BLn1	SBL	SBT	SBR		1-1			122.14	
Capacity (veh/h)	1277	1.15	:	409	438	1277	1		10.00		10 10	n "s land	12	1-0
HCM Lane V/C Ratio	0.005			0.175	0.067	0.002								
HCM Control Delay (s)	7.8		12.8	15.7	13.8	7.8	21.						1576	
HCM Lane LOS	А		8	С	В	А								
HCM 95th %tile Q(veh)	0	112		0.6	0.2	0								

ntersection												
Intersection Delay, s/veh	11.1											
Intersection LOS	В											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBI
Traffic Vol, veh/h	0	37	90	63	0	155	98	31	0	38	94	3
Future Vol, veh/h	0	37	90	63	0	155	98	31	0	38	94	3
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0,88	0.88	0.8
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	42	102	72	0	176	111	35	0	43	107	3
Number of Lanes	0	0	2	0	0	0	2	0	0	0	2	1
Namenia K	1.1											
Approach		EB				WB				NB	- 19	
Opposing Approach	and the	WB	1997	120		EB				SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				2		
		10.2				12.5				10.5		
HCM Control Delay												
HCM LOS		В				В				В		
		В				В				В		
		B NBLn1	NBLn2	EBLn1	EBLn2	B WBLn1	WBLn2	SBLn1	SBLn2	В	10.	.1
HCM LOS			NBLn2 0%	EBLn1 45%	EBLn2 0%		WBLn2 0%	SBLn1 36%	SBLn2 0%	В		.1
HCM LOS Lane Vol Left, %		NBLn1	TERCE BALL		Life and the second second	WBLn1	The second second second	and the second se	A CONTRACTOR OF THE	В		1 - 20
HCM LOS Lane Vol Left, % Vol Thru, %		NBLn1 45%	0%	45%	0%	WBLn1 76%	0%	36%	0%	В		a - 747
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %		NBLn1 45% 55% 0%	0% 61% 39%	45% 55% 0%	0% 42% 58%	WBLn1 76% 24%	0% 61% 39%	36% 64%	0% 61%	В		1
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		NBLn1 45% 55%	0% 61%	45% 55%	0% 42%	WBLn1 76% 24% 0%	0% 61%	36% 64% 0%	0% 61% 39%	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		NBLn1 45% 55% 0% Stop 85	0% 61% 39% Stop	45% 55% 0% Stop	0% 42% 58% Stop	WBLn1 76% 24% 0% Stop	0% 61% 39% Stop	36% 64% 0% Stop	0% 61% 39% Stop	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		NBLn1 45% 55% 0% Stop	0% 61% 39% Stop 77	45% 55% 0% Stop 82	0% 42% 58% Stop 108	WBLn1 76% 24% 0% Stop 204	0% 61% 39% Stop 80	36% 64% 0% Stop 90	0% 61% 39% Stop 94	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		NBLn1 45% 55% 0% Stop 85 38 47	0% 61% 39% Stop 77 0	45% 55% 0% Stop 82 37	0% 42% 58% Stop 108 0	WBLn1 76% 24% 0% Stop 204 155	0% 61% 39% Stop 80 0	36% 64% 0% Stop 90 32	0% 61% 39% Stop 94 0	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		NBLn1 45% 55% 0% Stop 85 38	0% 61% 39% Stop 77 0 47	45% 55% 0% Stop 82 37 45	0% 42% 58% Stop 108 0 45	WBLn1 76% 24% 0% Stop 204 155 49	0% 61% 39% Stop 80 0 49	36% 64% 0% Stop 90 32 58	0% 61% 39% Stop 94 0 58	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		NBLn1 45% 55% 0% Stop 85 38 47 0	0% 61% 39% Stop 77 0 47 30	45% 55% 0% Stop 82 37 45 0	0% 42% 58% Stop 108 0 45 63	WBLn1 76% 24% 0% Stop 204 155 49 0	0% 61% 39% Stop 80 0 49 31	36% 64% 0% Stop 90 32 58 0	0% 61% 39% Stop 94 0 58 36	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7	0% 61% 39% Stop 77 0 47 30 88 7	45% 55% 0% Stop 82 37 45 0 93 7	0% 42% 58% Stop 108 0 45 63 123 7	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7	0% 61% 39% Stop 80 0 49 31 91	36% 64% 0% Stop 90 32 58 0 102	0% 61% 39% Stop 94 0 58 36 106	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol by Lane Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7 0.179	0% 61% 39% Stop 77 0 47 30 88 7 0.15	45% 55% 0% Stop 82 37 45 0 93 7 0.167	0% 42% 58% Stop 108 0 45 63 123	WBLn1 76% 24% 0% Stop 204 155 49 0 232	0% 61% 39% Stop 80 0 49 31 91 7	36% 64% 0% Stop 90 32 58 0 102 7	0% 61% 39% Stop 94 0 58 36 106 7	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7	0% 61% 39% Stop 77 0 47 30 88 7	45% 55% 0% Stop 82 37 45 0 93 7	0% 42% 58% Stop 108 0 45 63 123 7 0.198	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0,414	0% 61% 39% Stop 80 0 49 31 91 7 0.146	36% 64% 0% Stop 90 32 58 0 102 7 0.186	0% 61% 39% Stop 94 0 58 36 106 7 0.181	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7 0.179 6.661	0% 61% 39% Stop 77 0 47 30 88 7 0.15 6.157	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.451	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.808	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.414 6.427	0% 61% 39% Stop 80 0 49 31 91 7 0.146 5.767	36% 64% 0% Stop 90 32 58 0 102 7 0.186 6.577	0% 61% 39% Stop 94 0 58 36 106 7 0.181 6.122	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7 0.179 6.661 Yes	0% 61% 39% Stop 77 0 47 30 88 7 0.15 6.157 Yes	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.451 Yes	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.808 Yes	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.414 6.427 Yes	0% 61% 39% Stop 80 0 49 31 91 7 0.146 5.767 Yes	36% 64% 0% Stop 90 32 58 0 102 7 0.186 6.577 Yes	0% 61% 39% Stop 94 0 58 36 106 7 0.181 6.122 Yes	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7 0.179 6.661 Yes 537 4.416	0% 61% 39% Stop 77 0 47 30 88 7 0.15 6.157 Yes 581 3.912	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.451 Yes 555 4.204	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.808 Yes 616 3.56	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.414 6.427 Yes 559	0% 61% 39% Stop 80 0 49 31 91 7 0.146 5.767 Yes 621	36% 64% 0% Stop 90 32 58 0 102 7 0.186 6.577 Yes 544	0% 61% 39% Stop 94 0 58 36 106 7 0.181 6.122 Yes 584	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7 0.179 6.661 Yes 537 4.416 0.181	0% 61% 39% Stop 77 0 47 30 88 7 0.15 6.157 Yes 581 3.912 0.151	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.451 Yes 555 4.204 0.168	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.808 Yes 616 3.56 0.2	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.414 6.427 Yes 559 4.173	0% 61% 39% Stop 80 0 49 31 91 7 0.146 5.767 Yes 621 3.514	36% 64% 0% Stop 90 32 58 0 102 7 0.186 6.577 Yes 544 4.331	0% 61% 39% Stop 94 0 58 36 106 7 0.181 6.122 Yes 584 3.876	В		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		NBLn1 45% 55% 0% Stop 85 38 47 0 97 7 0.179 6.661 Yes 537 4.416	0% 61% 39% Stop 77 0 47 30 88 7 0.15 6.157 Yes 581 3.912	45% 55% 0% Stop 82 37 45 0 93 7 0.167 6.451 Yes 555 4.204	0% 42% 58% Stop 108 0 45 63 123 7 0.198 5.808 Yes 616 3.56	WBLn1 76% 24% 0% Stop 204 155 49 0 232 7 0.414 6.427 Yes 559 4.173 0.415	0% 61% 39% Stop 80 0 49 31 91 7 0.146 5.767 Yes 621 3.514 0.147	36% 64% 0% Stop 90 32 58 0 102 7 0.186 6.577 Yes 544 4.331 0.188	0% 61% 39% Stop 94 0 58 36 106 7 0.181 6.122 Yes 584 3.876 0.182	В		

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	5	1	4	7	4	1	255	5	0	109	3
Future Vol, veh/h	0	5	1	4	7	4	1	255	5	0	109	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		3 (1	None			None			None	Y 53544		None
Storage Length	-	-	-	100		4	-	-	-	-		
Veh in Median Storage, #	-	0	- C	6 IL 9	0			0		CONTRACTOR OF	0	
Grade, %	-	0	-		0	14.		0	-		0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	6	1	5	8	5	1	290	6	0	124	3

Major/Minor	Minor2			Minor1	34 ¹			Major1	1 - N - C	1	Major2	1.11	
Conflicting Flow All	277	424	64	360	422	148		127	0	0	295	0	0
Stage 1	126	126	1.1	295	295	11.1		•		1.1	9 9 - Lak		1
Stage 2	151	298	24	65	127								
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94		4.14			4.14		-
Critical Hdwy Stg 1	6.54	5.54	<u>.</u>	6.54	5.54				رق)				
Critical Hdwy Stg 2	6.54	5.54	1.1	6.54	5.54					1.1	De la		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32		2.22	-		2.22		
Pot Cap-1 Maneuver	654	520	987	571	522	872		1457	141	2	1263		÷.
Stage 1	865	791		689	668			-	12				
Stage 2	836	666		938	790				1	4			
Platoon blocked, %									-	4		1125	
Mov Cap-1 Maneuver	643	519	987	565	521	872		1457	- Inter		1263	0.025	
Mov Cap-2 Maneuver	643	519	-	565	521	-						240	
Stage 1	864	791		688	667					1 .		2.	
Stage 2	821	665	-	930	790	-						140	
		-IX-		autors.								-	1
Approach	EB	127		WB	1784)=			NB	3		SB	10-1	-
HCM Control Delay, s	11.4			11.1		1.1		0		12.20	0		75.3
HCM LOS	В			В									
												RC 1	17-1
Minor Lane/Major Mvmt	NBL	NBT	NBRE	BLn1 EBLn2W	/BLn1W	/BLn2	SBL	SBT	SBR	5 m 2 m		-	
Capacity (veh/h)	1457			519 600	544	663	1263		1. 1.		1 A 4	1000	

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER		1112211251	ALC: NO. OF STREET, ST	and the second sec	Contraction of the second second	Children and the second second second	and the second second			
Capacity (veh/h)	1457	1.100		519	600	544	663	1263	1.000	NUMBER OF THE OWNER
HCM Lane V/C Ratio	0.001			0.005	0.007	0.016	0.013	-	2.431	
HCM Control Delay (s)	7.5	0		12	11	11.7	10.5	0		
HCM Lane LOS	А	А		В	В	В	В	А	(*)	
HCM 95th %tile Q(veh)	0	1.1		0	0	0	0	0		

Intersection Int Delay, s/veh

				1.122			1000 - 100 -
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Vol, veh/h	16	3	14	14	14	21	
Future Vol, veh/h	16	3	14	14	14	21	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	1	None		None	NO 30 1	None	
Storage Length	()		5		0		
Veh in Median Storage, #	0	1.1		0	0		
Grade, %	0	-	27	0	0		
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	18	3	16	16	16	24	

Major/Minor	N	lajor1		N	Aajor2		Minor1		
Conflicting Flow All		0	0		22	0	68	20	
Stage 1			11.14				20		
Stage 2		¥5				*	48	2	8
Critical Hdwy		•	11		4.12	1.	6.42	6.22	
Critical Hdwy Stg 1					(*):	*	5.42	3	
Critical Hdwy Stg 2		•					5.42		
ollow-up Hdwy					2.218		3.518	3.318	
Pot Cap-1 Maneuver					1593		937	1058	
Stage 1		•	1		198	-	1003	92	
Stage 2						•	974	1 V 9	
Platoon blocked, %		5	-						
Nov Cap-1 Maneuver					1593		928	1058	
Nov Cap-2 Maneuver		•	17.0				928	64	
Stage 1			÷.				1003	1 0 7	
Stage 2			۵.		۲		964	54	
		-	_		1410		ND		
Approach		EB			WB		NB		
ICM Control Delay, s		0		i kine	3.6		8.7		
HCM LOS							A		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	2.1.1			
Capacity (veh/h)	1002		1	1593				- 10 111	2 M
ICM Lane V/C Ratio	0.04			0.01					
HCM Control Delay (s)	8.7		11	7.3	0				
ICM Lane LOS	A	1		A	A				
HCM 95th %tile Q(veh)	0.1	- 2		0	1.1				

Intersection

EBL	EBT	WBT	WBR	SBL	SBR	
35	0	0	0	0	25	the section of sections.
35	0	0	0	0	25	
0	0	0	0	0	0	
Free	Free	Stop	Stop	Free	Free	
	None		None		None	
24				0	-	
- 1.	0	0		0	1.1	S DIL USE DE MA
-	0	0		0		
88	88	88	88	88	88	and a stage per per
2	2	2	2	2	2	
40	0	0	0	0	28	
	35 35 0 Free - - - - - 88 2	35 0 35 0 0 0 Free Free - None - 0 - 0 - 0 - 0 - 0 - 0 - 2	35 0 0 35 0 0 0 0 0 Free Free Stop - None - - 0 0 0 - 0 0 0 88 88 88 2 2 2 2 2	35 0 0 0 35 0 0 0 0 0 0 0 Free Free Stop Stop - None - None - 0 0 - - 0 0 - 88 88 88 88 2 2 2 2	35 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Free Free Stop Stop Free - None - 0 - - - 0 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 88 88 88 88 88 2 2 2 2	35 0 0 0 0 25 35 0 0 0 0 25 0 0 0 0 0 25 0 0 0 0 0 0 Free Free Stop Stop Free Free - None - None - None - 0 0 - 0 - - 0 0 - 0 - - 0 0 - 0 - 88 88 88 88 88 88 2 2 2 2 2 2

Major/Minor	Major1				Minor1	1.00	Major2	The second	
Conflicting Flow All	28	0			108	0	0	9 9 0	
Stage 1	-				80			1000	
Stage 2	141	-			28				
Critical Hdwy					6.52	6.22	4.12	10 00	
Critical Hdwy Stg 1	•••	2:			5.52	-		-	
Critical Hdwy Stg 2	191								
Follow-up Hdwy	(4 .)	-			4.018	3.318	2.218	3	
Pot Cap-1 Maneuver	200				782		12.5	1241 24 2	
Stage 1	2):	×			828	-	*	<u>.</u>	
Stage 2							1.000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Platoon blocked, %		-						2	
Mov Cap-1 Maneuver		-			0			1.1	
Mov Cap-2 Maneuver					0				
Stage 1					0		1. 1. 1. 1.	1. A.	
Stage 2		1.21			0				
Approach	EB				WB		SB		
HCM Control Delay, s				3	0		0	1.2.1.2.2.2.1	
HCM LOS					А				
Minor Lane/Major Mvmt	EBL	EBTWE	BLn1	SBL	SBR				
Capacity (veh/h)		1991	1.	5.00	o fierad	-	in with the	1.1.1.1.78.7.1	A A Hajota A I
HCM Lane V/C Ratio		1.54		-					
HCM Control Delay (s)			0	0	stille type				
HCM Lane LOS	1		А	А					
HCM 95th %tile Q(veh)		19	•	-	-				EPERATURE AND AND

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	2	6	14	10	12	5	364	10	5	174	1
Future Vol, veh/h	0	2	6	14	10	12	5	364	10	5	174	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None		11 - 52	None	5. S. 1.		None		-	None
Storage Length	-	-	-				-	-	5	-	-	-
Veh in Median Storage, #	2	0			0	•	12 PM 11 P	0	. 18	•	0	7
Grade, %	-	0	-		0	-	-	0	Ξ.	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2	7	16	11	14	6	414	11	6	198	1

Major/Minor	Minor2		2.11	Minor1			- 1	lajor1			Major2	n	
Conflicting Flow All	653	646	198	645	641	419		199	0	0	425	0	(
Stage 1	210	210		431	431	1.1				-	24 - NKI	1.00	00
Stage 2	443	436	*	214	210	-					A		
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12	×.		4.12	- 68	
Critical Hdwy Stg 1	6.12	5.52	٠	6.12		-							1
Critical Hdwy Stg 2	6.12	5.52	11.5	6.12	5.52	- NE						1.55	n i i
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218	٠		2.218	0.20	
Pot Cap-1 Maneuver	380	390	843	385	393	634		1373	12	1	1134	1	
Stage 1	792	728	-	603	583	-			37	ž	8		1
Stage 2	594	580		788	728	60.0		1.1		1.1		14	
Platoon blocked, %												(4)	-
Mov Cap-1 Maneuver	360	385	843	377		634		1373		8 8 1	1134	1.40	
Mov Cap-2 Maneuver	360	385	-	377	388	-		2	30			141	4
Stage 1	787	724		599	580				74.7			100	1
Stage 2	566	577	-	774	724	-		•	02:	4	3 4	2.55	-
Approach	EB	act.		WB		- 11-		NB	u 1 54		SB		
HCM Control Delay, s	10.6			14			1.1	0.1			0.2		
HCM LOS	В			B	i								
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn1	SBL	SBT	SBR					17	
Capacity (veh/h)	1373		20.	650 440	1134		1175				ALC: NO		
HCM Lane V/C Ratio	0.004		-	0.014 0.093	0.005	-							
HCM Control Delay (s)	7.6	0		10.6 14	8.2	0							
HCM Lane LOS	А	А		BE	A	А	- 6						
HCM 95th %tile Q(veh)	0			0 0.3	0	-	1 2 2						

				the second s								
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	4	6	8	0	5	2	3	11	1	1	7	9
Future Vol, veh/h	4	6	8	0	5	2	3	11	1	1	7	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	1000	1	None			None			None		1100	None
Storage Length	-		-	-	-	-		-				
Veh in Median Storage, #		0	1.2.40	Sec. 17.5-1	0		1	0	-		0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	7	9	0	6	2	3	13	1	1	8	10

Major/Minor	Minor2			Minor1	1.2	111	M	ajor1		1.1	Major2		-
Conflicting Flow All	39	35	13	43	40	13		18	0	0	14	0	0
Stage 1	15	15	-	20	20				-	26 JU 21			
Stage 2	24	20	-	23	20				• 2				
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12	· . ·		4.12	1.1	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-							
Critical Hdwy Stg 2	6.12	5.52	1.1 2	6.12	5.52			2			315 - Y 24	100	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2	2.218	11.7		2.218	1	
Pot Cap-1 Maneuver	966	857	1067	960	852	1067		1599			1604		
Stage 1	1005	883	-	999	879				122				
Stage 2	994	879	100	995	879	- T		-	145				
Platoon blocked, %									045	2			
Mov Cap-1 Maneuver	957	854	1067	944	849	1067		1599	11 148	ec. 20	1604	N 187 - 1	
Mov Cap-2 Maneuver	957	854	-	944	849	-		*	243	÷			
Stage 1	1003	882	-	997	877	1141 -			-		Ci ini.	0.05	
Stage 2	983	877	-	978	878	-		-	5 2		-	141	
Approach	EB	7.5		WB			140	NB	1. S.	7 Y	SB		
HCM Control Delay, s	8.8	- 36		9			112.0	1.5		11.01	0.4		
HCM LOS	А			А							0.1		
Minor Lane/Major Mymt	NBL	NBT	NBR E	BLn1WBLn1	SBL	SBT	SBR			1536		10-15	-
Capacity (veh/h)	1599			962 902	1604		21.20	10.00	12.57	100		THE.	

winter care/wajor wivint	NDL	NDI	NBK	EBLUW	VELNI	SBL	SBI	SBR	
Capacity (veh/h)	1599			962	902	1604		241.945	
HCM Lane V/C Ratio	0.002	-		0.021	0.009	0.001	-	:•)	
HCM Control Delay (s)	7.3	0		8.8	9	7.2	0	11.00	In Section 2 is a section of the section
HCM Lane LOS	A	А		А	А	А	А		
HCM 95th %tile Q(veh)	0	-	•	0.1	0	0			The second of the second se

Intersection

Sign ControlStopStopStopStopStopFree <th></th>	
Future Vol, veh/h 10 14 2 10 6 5 5 224 9 0 30 Conflicting Peds, #/hr 0 <th>SBR</th>	SBR
Conflicting Peds, #/hr 0	23
Sign ControlStopStopStopStopStopStopStopFree <td>23</td>	23
RT Channelized-None-NoneStorage Length600-230Veh in Median Storage, #-0-0	C
Storage Length - - - 600 - 230 Veh in Median Storage, # - 0 - 0 - 0 - 230	Free
Veh in Median Storage, # - 0 0 0 0	None
Grade. % - 0 0 0	E-8-9
Peak Hour Factor 88 88 88 88 88 88 88 88 88 88 88 88 88	88
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2	2
Mvmt Flow 11 16 2 11 7 6 6 255 10 0 34	26

Major/Minor	Minor2			Minor1			M	ajor1			Major2	11.2	24.1
Conflicting Flow All	639	638	362	642	646	260		375	0	0	265	0	0
Stage 1	362	362		271	271								
Stage 2	277	276	-	371	375					5 0 0			•
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12			4.12	*	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52			3 9 (
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52			*					-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218			2.218	*	
Pot Cap-1 Maneuver	389	394	683	387	390	779		1183			1299		
Stage 1	657	625	•	735	685				~	٠			•
Stage 2	729	682	- P	649	617		I THE						-
Platoon blocked, %													
Mov Cap-1 Maneuver	380	392	683	372	388	779		1183		1.0	1299		
Mov Cap-2 Maneuver	380	392	-	372	388	-		ی				۰.	
Stage 1	654	625	5 812	731	682	-						•	
Stage 2	713	679		630	617	-		•					•
						8	- A.Y.						
Approach	EB	Sine 1		WB			1.00	NB	6.5	1616	SB	vi)	
HCM Control Delay, s	14.7			13.8				0.2			0		
HCM LOS	В			В									
the first State of A	La los			in sie									
Minor Lane/Major Wymt	NBL	NBT	NBRI	EBLn1WBLn1	SBL	SBT	SBR		1.11				
Capacity (veh/h)	1183	100		400 431	1299								
HCM Lane V/C Ratio	0.005	1.2		0.074 0.055		1.0							
HCM Control Delay (s)	8.1	1	1.14	14.7 13.8	0								
HCM Lane LOS	А		3	B B	А	۲	8						
HCM 95th %tile Q(veh)	0			0.2 0.2	0	10.00							

Intersection		F TP									8.31	
Intersection Delay, s/veh	11.6				_							
Intersection LOS	В										1	
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	68	118	40	0	65	162	33	0	69	95	131
Future Vol, veh/h	0	68	118	40	0	65	162	33	0	69	95	131
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	77	134	45	0	74	184	38	0	78	108	149
Number of Lanes	0	0	2	0	0	0	2	0	0	0	2	0
Approach	Jone"	EB			a se	WB		SN LL	nt n	NB		1. 1, 1
Opposing Approach		WB				EB		0.0		SB	2. 24	The se
Opposing Lanes		2				2				2		- parts
Conflicting Approach Left		SB				NB		N		EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				2		
HCM Control Delay		11.5				11.8				11.8		
HCM LOS		В				В				В		
1000												
Lane		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	101	881.5	
Vol Left, %		59%	0%	54%	EBLn2 0%	WBLn1 45%	WBLn2 0%	SBLn1 37%	SBLn2 0%			
Vol Left, % Vol Thru, %								and the second second				
Vol Left, %		59%	0%	54%	0%	45%	0%	37%	0%			
Vol Left, % Vol Thru, %		59% 41%	0% 27%	54% 46%	0% 60%	45% 55%	0% 71%	37% 63%	0% 50%			
Vol Left, % Vol Thru, % Vol Right, %		59% 41% 0%	0% 27% 73%	54% 46% 0%	0% 60% 40%	45% 55% 0%	0% 71% 29%	37% 63% 0%	0% 50% 50%			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		59% 41% 0% Stop	0% 27% 73% Stop	54% 46% 0% Stop	0% 60% 40% Stop	45% 55% 0% Stop	0% 71% 29% Stop	37% 63% 0% Stop	0% 50% 50% Stop			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		59% 41% 0% Stop 117	0% 27% 73% Stop 179	54% 46% 0% Stop 127	0% 60% 40% Stop 99	45% 55% 0% Stop 146	0% 71% 29% Stop 114	37% 63% 0% Stop 71	0% 50% 50% Stop 90			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		59% 41% 0% Stop 117 69 48 0	0% 27% 73% Stop 179 0 48 131	54% 46% 0% Stop 127 68	0% 60% 40% Stop 99 0	45% 55% 0% Stop 146 65	0% 71% 29% Stop 114 0	37% 63% 0% Stop 71 26	0% 50% 50% Stop 90 0			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		59% 41% 0% Stop 117 69 48	0% 27% 73% Stop 179 0 48	54% 46% 0% Stop 127 68 59	0% 60% 40% Stop 99 0 59	45% 55% 0% Stop 146 65 81	0% 71% 29% Stop 114 0 81	37% 63% 0% Stop 71 26 45	0% 50% 50% Stop 90 0 45			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		59% 41% 0% Stop 117 69 48 0	0% 27% 73% Stop 179 0 48 131	54% 46% 0% Stop 127 68 59 0	0% 60% 40% Stop 99 0 59 40	45% 55% 0% Stop 146 65 81 0	0% 71% 29% Stop 114 0 81 33	37% 63% 0% Stop 71 26 45 0	0% 50% 50% Stop 90 0 45 45			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		59% 41% 0% Stop 117 69 48 0 132	0% 27% 73% Stop 179 0 48 131 203	54% 46% 0% Stop 127 68 59 0 144	0% 60% 40% Stop 99 0 59 40 112	45% 55% 0% Stop 146 65 81 0 166	0% 71% 29% Stop 114 0 81 33 130	37% 63% 0% Stop 71 26 45 0 80	0% 50% 50% Stop 90 0 45 45 102			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		59% 41% 0% Stop 117 69 48 0 132 7	0% 27% 73% Stop 179 0 48 131 203 7	54% 46% 0% Stop 127 68 59 0 144 7	0% 60% 40% Stop 99 0 59 40 112 7	45% 55% 0% Stop 146 65 81 0 166 7	0% 71% 29% Stop 114 0 81 33 130 7	37% 63% 0% Stop 71 26 45 0 80 7	0% 50% 50% Stop 90 0 45 45 102 7			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		59% 41% 0% Stop 117 69 48 0 132 7 0.25	0% 27% 73% Stop 179 0 48 131 203 7 0.336	54% 46% 0% Stop 127 68 59 0 144 7 0.274	0% 60% 40% Stop 99 0 59 40 112 7 0.196	45% 55% 0% Stop 146 65 81 0 166 7 0.31	0% 71% 29% Stop 114 0 81 33 130 7 0.226	37% 63% 0% Stop 71 26 45 0 80 7 0.154	0% 50% 50% Stop 90 0 45 45 102 7 0.18			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		59% 41% 0% Stop 117 69 48 0 132 7 0.25 6.791 Yes 527	0% 27% 73% Stop 179 0 48 131 203 7 0.336 5.968	54% 46% 0% Stop 127 68 59 0 144 7 0.274 6.828	0% 60% 40% Stop 99 0 59 40 112 7 0.196 6.268	45% 55% 0% Stop 146 65 81 0 166 7 0.31 6.718	0% 71% 29% Stop 114 0 81 33 130 7 0.226 6.285	37% 63% 0% Stop 71 26 45 0 80 7 0.154 6.93	0% 50% 50% Stop 90 0 45 45 102 7 0.18 6.383			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		59% 41% 0% Stop 117 69 48 0 132 7 0.25 6.791 Yes	0% 27% 73% Stop 179 0 48 131 203 7 0.336 5.968 Yes	54% 46% 0% Stop 127 68 59 0 144 7 0.274 6.828 Yes	0% 60% 40% Stop 99 0 59 40 112 7 0.196 6.268 Yes	45% 55% 0% Stop 146 65 81 0 166 7 0.31 6.718 6.718 Yes	0% 71% 29% Stop 114 0 81 33 130 7 0.226 6.285 Yes	37% 63% 0% Stop 71 26 45 0 80 7 0.154 6.93 Yes	0% 50% 50% Stop 90 0 45 45 102 7 0.18 6.383 Yes			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		59% 41% 0% Stop 117 69 48 0 132 7 0.25 6.791 Yes 527	0% 27% 73% Stop 179 0 48 131 203 7 0.336 5.968 Yes 598	54% 46% 0% Stop 127 68 59 0 144 7 0.274 6.828 Yes 524	0% 60% 40% Stop 99 0 59 40 112 7 0.196 6.268 Yes 569	45% 55% 0% Stop 146 65 81 0 166 7 0.31 6.718 Yes 533	0% 71% 29% Stop 114 0 81 33 130 7 0.226 6.285 Yes 569	37% 63% 0% Stop 71 26 45 0 80 7 0.154 6.93 Yes 515	0% 50% 50% Stop 90 0 45 45 102 7 0.18 6.383 Yes 558			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		59% 41% 0% Stop 117 69 48 0 132 7 0.25 6.791 Yes 527 4.561	0% 27% 73% Stop 179 0 48 131 203 7 0.336 5.968 Yes 598 3.737	54% 46% 0% Stop 127 68 59 0 144 7 0.274 6.828 Yes 524 4.599	0% 60% 80% 99 0 59 0 59 40 112 7 0.196 6.268 Yes 569 4.038	45% 55% 0% Stop 146 65 81 0 166 7 0.31 6.718 Yes 533 4.487	0% 71% 29% Stop 114 0 81 33 130 7 0.226 6.285 Yes 569 4.055	37% 63% 0% Stop 71 26 45 0 80 7 0.154 6.93 Yes 515 4.71	0% 50% 50% 90 0 45 45 102 7 0.18 6.383 Yes 558 4.163			
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		59% 41% 0% Stop 117 69 48 0 132 7 0.25 6.791 Yes 527 4.561 0.25	0% 27% 73% Stop 179 0 48 131 203 7 0.336 5.968 Yes 598 3.737 0.339	54% 46% 0% Stop 127 68 59 0 144 7 0.274 6.828 Yes 524 4.599 0.275	0% 60% 40% Stop 99 0 59 40 112 7 0.196 6.268 Yes 569 4.038 0.197	45% 55% 0% Stop 146 65 81 0 166 7 0.31 6.718 Yes 533 4.487 0.311	0% 71% 29% Stop 114 0 81 33 130 7 0.226 6.285 Yes 569 4.055 0.228	37% 63% 0% Stop 71 26 45 0 80 7 0.154 6.93 Yes 515 4.71 0.155	0% 50% 50% 90 0 45 45 102 7 0.18 6.383 Yes 558 4.163 0.183			

												_
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	6	1	8	6	6	2	298	3	2	285	3
Future Vol, veh/h	0	6	1	8	6	6	2	298	3	2	285	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	1000	1.1	None		2.	None		16.4	None
Storage Length	-	-	-	-	-	-		×	500	15		
Veh in Median Storage, #		0	Sec. 2.	100 100	0			0		Die Charles	0	116
Grade, %	-	0	-	-	0	-		0	-	-	0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	7	1	9	7	7	2	339	3	2	324	3

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	507	677	164	515	677	171	327	0	0	342	0	0
Stage 1	330	330	-	345	345	-			100	1		-
Stage 2	177	347	-	170	332	-	() + (*		(•)		
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14			4.14		3-
Critical Hdwy Stg 1	6.54	5.54	:e)	6.54	5.54		3 .	*	:(•E	2 • 2		3.5
Critical Hdwy Stg 2	6.54	5.54		6.54	5.54					1.0	- i -	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	×	5 9 2	2.22		
Pot Cap-1 Maneuver	449	373	852	443	373	843	1229			1214		
Stage 1	657	644	180	644	635		3.52	7				
Stage 2	808	633		815	643				-		1.1	1
Platoon blocked, %									•		÷	
Mov Cap-1 Maneuver	438	372	852	435	372	843	1229			1214		1.18
Mov Cap-2 Maneuver	438	372	-	435	372	-				8	•	
Stage 1	656	643	17. 1.	643	634	16.18						- 36
Stage 2	791	632	-	804	642		1			1	-	Ve
By all all an												
Approach	EB			WB	1.20		NB			SB	211	
HCM Control Delay, s	14			12.7			0.1			0.1		1.1
HCM LOS	В			В								
TV CONTRACTOR												

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	BLn2V	BLn1V	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	1229	•		372	433	416	593	1214		0.18	
HCM Lane V/C Ratio	0.002			0.009	0.01	0.03	0.017	0.002		:=	
HCM Control Delay (s)	7.9	0		14.8	13.4	13.9	11.2	8	0	101 E	
HCM Lane LOS	A	А		В	В	В	В	А	А	5	
HCM 95th %tile Q(veh)	0		1.5	0	0	0.1	0.1	0	- 1 - F		

Intersection

Int Delay, s/veh

Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Vol, veh/h	11	6	22	17	3	62	
Future Vol, veh/h	11	6	22	17	3	62	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	8 W705	None	a state of the state of the	None	
Storage Length		12			0		
Veh in Median Storage, #	0	10 a .		0	0	1	
Grade, %	0	54	5	0	0	-	
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	13	7	25	19	3	70	

Majer/Minor	1	Najor1	-bist	N	Aajor2		Minor1	Sec. 63. 14	
Conflicting Flow All		0	0		19	0	85	16	
Stage 1		1	1			100	16	84	
Stage 2		۲	÷				69		
Critical Hdwy		1	uluş,		4.12	-	6.42	6.22	
Critical Hdwy Stg 1		95					5.42		
Critical Hdwy Stg 2		122				N	5.42	1 A 1 2	
Follow-up Hdwy		86	÷		2.218		3.518	3.318	
Pot Cap-1 Maneuver		1.1.58			1597	1. 1.	916	1063	Us of Users and
Stage 1		5 (# 5	×		4		1007		
Stage 2							954	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Platoon blocked, %		•	8			-			
Mov Cap-1 Maneuver		100	. ×		1597	•	901	1063	
Mov Cap-2 Maneuver					*		901	-	
Stage 1						1.00	1007		
Stage 2						(#0	939		
Approach		EB	2		WB		NB	10.000	
HCM Control Delay, s		0			4.1	9	8.7		
HCM LOS							A		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	1.21			
Capacity (veh/h)	1054		•	1597		5 TO			A CONTRACTOR OF
ICM Lane V/C Ratio	0.07			0.016					
-ICM Control Delay (s)	8.7	1	201 -	7.3	0				A STATE OF A DATE OF A DAT
HCM Lane LOS	A			А	А				
HCM 95th %tile Q(veh)	0.2		-	0					Contraction of the second s

Intersection

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Vol, veh/h	74	0	0	0	1	37	
Future Vol, veh/h	74	0	0	0	1	37	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Stop	Stop	Free	Free	
RT Channelized	-	None		None		None	
Storage Length	.				0	(H)	
Veh in Median Storage, #	1 10 10	0	0		0	A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Grade, %		0	0	-	0		
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	84	0	0	0	1	42	

Major/Minor	Major1	-		Minor1	1124	Major2	Spinsore Chief	
Conflicting Flow All	42	0		212	0	0	5 1 43	
Stage 1		19.3		168				
Stage 2	527 C	-		44	323	340	245	
Critical Hdwy	1.1			6,52	6.22	4.12		
Critical Hdwy Stg 1		21		5.52	345	(e)	1.	
Critical Hdwy Stg 2					1. 1.41			
Follow-up Hdwy	3 8 0	*		4.018	3.318	2.218	(
Pot Cap-1 Maneuver				685	-			
Stage 1	(#);	*		759	-	0.00	•	
Stage 2	())			10810.				
Platoon blocked, %		*					1.00	
Mov Cap-1 Maneuver	(*)			0	354	1.00		
Mov Cap-2 Maneuver	170			0	(.)			
Stage 1				0	323			
Stage 2	19 3			0				
Approach	EB			WB		SB		
HCM Control Delay, s				0				
HCM LOS				A				
Minor Lane/Major Mvmt	EBL	EBTWB	.n1 SBL	SBR				
Capacity (veh/h)	1.	12.00	कर जान	-	12110			
HCM Lane V/C Ratio				(1 7)				
HCM Control Delay (s)	-		0 -					
HCM Lane LOS	978		Α -	3 5 3				
HCM 95th %tile Q(veh)	1.00							

Intersection

Movement	EBL	EBT	EBR	WBL,	W/BT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	1	8	4	10	8	5	4	271	14	21	282	2
Future Vol, veh/h	1	8	4	10	8	5	4	271	14	21	282	2
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	•	173	None	100	1.7	None		5.5.	None	1917		None
Storage Length	-	-	-		-		-		-		-	
Veh in Median Storage, #	•	0		100	0		가는 것이 있는 것	0			0	- X
Grade, %	-	0	-	140	0	-		0			0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	9	5	11	9	6	5	308	16	24	320	2

Major/Minor	Minor2			Minor			N	Major1	1.81		Major2	1.1.2	2.7
Conflicting Flow All	701	702	322	70	1 695	316		323	0	0	324	0	0
Stage 1	369	369	1.1.1	32	5 325	· · ·			1.84	-			
Stage 2	332	333	-	37	6 370	-			199				
Critical Hdwy	7.12	6.52	6.22	7.1	6.52	6.22		4.12			4.12	1.1	1 .
Critical Hdwy Stg 1	6.12	5.52	-	6.1	2 5.52	-							
Critical Hdwy Stg 2	6.12	5.52		6.1	2 5.52			8		1.1	- 20	1.00	
Follow-up Hdwy	3.518	4.018	3.318	3.51	3 4.018	3.318		2.218		-	2.218	•:	-
Pot Cap-1 Maneuver	353	362	719	35	3 366	724		1237	1.0		1236		- 2
Stage 1	651	621	-	68	649			2	1.41	3			
Stage 2	681	644	1. A.	64	5 620	0.14			141	194.9	0.0.0.5	1.	-
Platoon blocked, %									i 🖅	4		12	
Mov Cap-1 Maneuver	336	352	719	33	355	724		1237	141		1236	14	
Mov Cap-2 Maneuver	336	352		33	5 355	-		a	(a)	2	12	NES	
Stage 1	648	606	10.00	68	4 646	C . O			-	1 a		14	- 2
Stage 2	663	641	-	61	605	-			0945			6.00	-
							8 s				Les al P		Ċ,
Approach	EB			WI	3	1.111	it k i	NB	- N.		SB		
HCM Control Delay, s	14			14.	9	2.2		0.1	11 2 1 2		0.5	4	1,10
HCM LOS	В			E	3								
	19. L. 19.												9n-3
Mino: Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn	SBL	SBT	SBR				1.1		Freq.
Capacity (veh/h)	1237	(*)		416 38	3 1236				1	1931		1.00	2.11
HCM Lane V/C Ratio	0.004			0.036 0.06	0.019	-							
HCM Control Delay (s)	7.9	0	•	14 14.9	8	0							
HCM Lane LOS	А	А		BE	8 A	А							
HCM 95th %tile Q(veh)	0	1		0.1 0.1	2 0.1	- 11 - I							2.11

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	3	6	6	0	6	7	6	61	0	4	14	8
Future Vol, veh/h	3	6	6	0	6	7	6	61	0	4	14	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	1.00	-	None	1000		None		-	None	1		None
Storage Length				-	-	-				(a)		
Veh in Median Storage, #	•	0		· · · · ·	0	-		0			0	(o) is
Grade, %	-	0	-	-	0	-		0	(-)		0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	7	7	0	7	8	7	69	0	5	16	9

Major/Minor	Minor2		27 21	Minor1		31. J		viajor 1	1 N#	- 22	Major2		
Conflicting Flow All	120	113	20	119	117	69		25	0	0	69	0	0
Stage 1	30	30	-	83	83				1.1				
Stage 2	90	83	-	36	34	8		54	1	5 4	14 - C	14	1
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12	10.0	-	4.12	18	•
Critical Hdwy Stg 1	6,12	5.52	-	6.12	5.52			-	14	14		100	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	Y		1.1	-	-			
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218			2.218	.(#5	
Pot Cap-1 Maneuver	855	777	1058	857	773	994		1589	10.10		1532	1100	
Stage 1	987	870	-	925	826							:(*)	
Stage 2	917	826	-	980	867	1			1.0		- 1 e -	11062	-
Platoon blocked, %									1.00			(e)	
Mov Cap-1 Maneuver	837	771	1058	841	767	994		1589	1.0		1532		-
Mov Cap-2 Maneuver	837	771	-	841	767	-			1.00				
Stage 1	982	867		920	822	-			- 18 I.	line i i			-
Stage 2	898	822		963	864			,					
													24
Approach	EB	V_F"		WB				NB	110		SB	1	
HCM Control Delay, s	9.2			9.2				0.7			1.1	1.00	
HCM LOS	А			A									
												1.52	
Minor Lane/Major Mvmt	NBL	NBT	NBRI	EBLn1WBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1589		-	880 875	1532	7 - T	Till.						
HCM Lane V/C Ratio	0.004	-		0.019 0.017	0.003		(* :						
HCM Control Delay (s)	7.3	0		9.2 9.2	7.4	0	1 68						
HCM Lane LOS	А	А		A A	А	А	395						
HCM 95th %tile Q(veh)	0	-		0.1 0.1	0	1 - 1							

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SB	L SBT	SBR
Traffic Vol, veh/h	48	21	0	8	18	3	7	263	12	12 n S	2 262	13
Future Vol, veh/h	48	21	0	8	18	3	7	263	12		2 262	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0		0 0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Fre	e Free	Free
RT Channelized	20.54	1	None	2. 전문 가락적		None	1. 7.8.		None			None
Storage Length		-		-		-	600		-	23	0 -	
Veh in Median Storage, #		0	<u>1</u> 22	12 5-1-124	0	100 00	- 1 - C	0	1.1.1		- 0	
Grade, %	-	0	-		0	-	-	0	-		- 0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	8	8 88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2		2 2	2
Mvmt Flow	55	24	0	9	20	3	8	299	14		2 298	15

Major/Minor	Minor2	2	200	Minor1			Ma	jor1			Major2	10.00	
Conflicting Flow All	644	638	305	644	639	306		313	0	0	313	0	0
Stage 1	310	310	-	322	322	•			1	l la l	100	× 1	
Stage 2	334	328	-	322	317				() +)				
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	10 0 2	4.12	1		4.12		1.
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52								
Critical Hdwy Stg 2	6.12	5.52	50.000	6.12	5.52								
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.	218			2.218		
Pot Cap-1 Maneuver	386	394	735	386	394	734	1	247			1247		
Stage 1	700	659	-	690	651	-			<u>(</u>		3		
Stage 2	680	647		690	654	10 20		3				FILE	-
Platoon blocked, %									(rat	4		14	
Mov Cap-1 Maneuver	367	391	735	366	391	734	1	247		allog 🗌	1247	0,140	
Mov Cap-2 Maneuver	367	391	-	366	391			-	86	2		Val	34
Stage 1	696	658	1.10.0	686	647								-
Stage 2	651	643		664	653	-			3 4 5	×		200	1
Period Sector March 1													
Approach	EB			WB			119	NB	1		SB		
HCM Control Delay, s	17.2			14.7				0.2			0.1	THE R	<u> </u>
HCM LOS	С			В									
													115-
Minor Lane/Major Mvmt	NBL	NBT	NBR	BLn1WBLn1	SBL	SBT	SBR	Su d					
Capacity (veh/h)	1247	10	1	374 403	1247			1773		- 21 (¹	2 V. 11-21.1	12.7.7	01
HCM Lane V/C Ratio	0.006			0.21 0.082	0.002								
HCM Control Delay (s)	7.9	1.	1.7,115	17.2 14.7	7.9	17 -						120	
HCM Lane LOS	А	8.		C B	А	*							
HCM 95th %tile Q(veh)	0			0.8 0.3	0		ě ke				in the		6 15

Intersection	46.1			7								E
Intersection Delay, s/veh	12.1											
Intersection LOS	В											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBF
Traffic Vol, veh/h	0	41	99	74	0	176	108	34	0	42	103	33
Future Vol, veh/h	0	41	99	74	0	176	108	34	0	42	103	33
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	47	113	84	0	200	123	39	0	48	117	38
Number of Lanes	0	0	2	0	0	0	2	0	0	0	2	1
the set of the second second	D.					£.,,1				. 1 - 10		
Approach	S. 14	EB				WB				NB		
Opposing Approach	200	WB				EB				SB		
Opposing Lanes		2				2				2		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		2				2				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		2				2				2		
HCM Control Delay		10.9				14				11.1		
		D				В				В		
HCM LOS		В				D				D		
HCM LOS		В				Б				D		
HCM LOS		NBLn1	NBLn2	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	B		
		<u>NBLn1</u> 45%	0%	45%	0%	WBLn1 77%	0%	36%	0%	В		
Lane		NBLn1 45% 55%	0% 61%	45% 55%	0% 40%	WBLn1 77% 23%	0% 61%	36% 64%	0% 61%			
Lane Vol Left, %		<u>NBLn1</u> 45%	0% 61% 39%	45% 55% 0%	0% 40% 60%	WBLn1 77% 23% 0%	0% 61% 39%	36% 64% 0%	0% 61% 39%			
Lane Vol Left, % Vol Thru, %		NBLn1 45% 55% 0% Stop	0% 61% 39% Stop	45% 55%	0% 40%	WBLn1 77% 23% 0% Stop	0% 61% 39% Stop	36% 64% 0% Stop	0% 61% 39% Stop	J		
Lane Vol Left, % Vol Thru, % Vol Right, %		NBLn1 45% 55% 0% Stop 94	0% 61% 39% Stop 85	45% 55% 0% Stop 91	0% 40% 60% Stop 124	WBLn1 77% 23% 0% Stop 230	0% 61% 39% Stop 88	36% 64% 0% Stop 98	0% 61% 39% Stop 103			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		NBLn1 45% 55% 0% Stop 94 42	0% 61% 39% Stop 85 0	45% 55% 0% Stop	0% 40% 60% Stop 124 0	WBLn1 77% 23% 0% Stop 230 176	0% 61% 39% Stop 88 0	36% 64% 0% Stop 98 35	0% 61% 39% Stop 103 0	B		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		NBLn1 45% 55% 0% Stop 94 42 52	0% 61% 39% Stop 85 0 52	45% 55% 0% Stop 91	0% 40% 60% Stop 124	WBLn1 77% 23% 0% Stop 230 176 54	0% 61% 39% Stop 88 0 54	36% 64% 0% Stop 98 35 63	0% 61% 39% Stop 103 0 63			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		NBLn1 45% 55% 0% Stop 94 42 52 0	0% 61% 39% Stop 85 0 52 33	45% 55% 0% Stop 91 41 50 0	0% 40% 60% Stop 124 0 50 74	WBLn1 77% 23% 0% Stop 230 176 54 0	0% 61% 39% Stop 88 0 54 34	36% 64% 0% Stop 98 35 63 0	0% 61% 39% Stop 103 0 63 40			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		NBLn1 45% 55% 0% Stop 94 42 52	0% 61% 39% Stop 85 0 52	45% 55% 0% Stop 91 41 50	0% 40% 60% Stop 124 0 50 74 140	WBLn1 77% 23% 0% Stop 230 176 54 0 261	0% 61% 39% Stop 88 0 54 34 100	36% 64% 0% Stop 98 35 63 0 111	0% 61% 39% Stop 103 0 63 40 117			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7	0% 61% 39% Stop 85 0 52 33 96 7	45% 55% 0% Stop 91 41 50 0 103 7	0% 40% 60% Stop 124 0 50 74 140 7	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7	0% 61% 39% Stop 88 0 54 34 100 7	36% 64% 0% Stop 98 35 63 0 111 7	0% 61% 39% Stop 103 0 63 40 117 7	В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205	0% 61% 39% Stop 85 0 52 33 96	45% 55% 0% Stop 91 41 50 0 103 7 0.191	0% 40% 60% Stop 124 0 50 74 140 7 0.235	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482	0% 61% 39% Stop 88 0 54 34 100 7 0.166	36% 64% 0% Stop 98 35 63 0 1111 7 0.212	0% 61% 39% Stop 103 0 63 40 117 7 0.208	В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697	0% 40% 60% Stop 124 0 50 74 140 7 0.235 6.04	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7	0% 61% 39% Stop 88 0 54 34 100 7	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389	В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94 Yes	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433 Yes	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697 Yes	0% 40% 60% Stop 124 0 50 74 140 7 0.235 6.04 Yes	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482 6.642 Yes	0% 61% 39% Stop 88 0 54 34 100 7 0.166 5.98 Yes	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848 Yes	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389 Yes			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94 Yes 515	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433 Yes 555	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697 Yes 534	0% 40% 500% 124 0 50 74 140 7 0.235 6.04 Yes 591	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482 6.642 Yes 541	0% 61% 39% Stop 88 0 54 34 100 7 0.166 5.98 Yes 597	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848 Yes 522	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389 Yes 559			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94 Yes 515 4.713	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433 Yes 555 4.205	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697 Yes	0% 40% 500% 124 0 50 74 140 7 0.235 6.04 Yes 591 3.811	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482 6.642 Yes 541 4.406	0% 61% 39% Stop 88 0 54 34 100 7 0.166 5.98 Yes 597 3.743	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848 Yes 522 4.619	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389 Yes 559 4.16			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94 Yes 515 4.713 0.206	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433 Yes 555 4.205 0.173	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697 Yès 534 4.469 0.193	0% 40% 500% 124 0 50 74 140 7 0.235 6.04 Yes 591 3.811 0.237	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482 6.642 Yes 541 4.406 0.482	0% 61% 39% Stop 88 0 54 34 100 7 0.166 5.98 Yes 597	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848 Yes 522 4.619 0.213	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389 Yes 559 4.16 0.209			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94 Yes 515 4.713	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433 Yes 555 4.205	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697 Yēs 534 4.469	0% 40% 500% 124 0 50 74 140 7 0.235 6.04 Yes 591 3.811	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482 6.642 Yes 541 4.406	0% 61% 39% Stop 88 0 54 34 100 7 0.166 5.98 Yes 597 3.743 0.168 9.9	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848 Yes 522 4.619	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389 Yes 559 4.16			
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		NBLn1 45% 55% 0% Stop 94 42 52 0 106 7 0.205 6.94 Yes 515 4.713 0.206	0% 61% 39% Stop 85 0 52 33 96 7 0.172 6.433 Yes 555 4.205 0.173	45% 55% 0% Stop 91 41 50 0 103 7 0.191 6.697 Yès 534 4.469 0.193	0% 40% 500% 124 0 50 74 140 7 0.235 6.04 Yes 591 3.811 0.237	WBLn1 77% 23% 0% Stop 230 176 54 0 261 7 0.482 6.642 Yes 541 4.406 0.482	0% 61% 39% Stop 88 0 54 34 100 7 0.166 5.98 Yes 597 3.743 0.168	36% 64% 0% Stop 98 35 63 0 111 7 0.212 6.848 Yes 522 4.619 0.213	0% 61% 39% Stop 103 0 63 40 117 7 0.208 6.389 Yes 559 4.16 0.209			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	6	1	4	8	4	1	285	6	0	125	3
Future Vol, veh/h	0	6	1	4	8	4	1	285	6	0	125	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	a deserved and	170	None		- · · -	None			Mana
Storage Length	200		94 () 94	-		-			-	-		
Veh in Median Storage, #		0		-	0	1.1	1	0			0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	7	1	5	9	5	1	324	7	0	142	3

Major/Minor	Minor2			Minor1			Major1		1 mar 1	Major2	100	
Conflicting Flow All	313	477	73	404	475	165	145	0	0	331	0	0
Stage 1	144	144		330	330	· · · ·		Se		- Maria		
Stage 2	169	333	÷.	74	145	-		5 % 3				
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-		4.14		
Critical Hdwy Stg 1	6.54	5.54		6,54	5.54							
Critical Hdwy Stg 2	6.54	5.54	1.4	6.54	5.54	0.14				-		
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22			2.22		
Pot Cap-1 Maneuver	616	486	974	531	487	850	1435	12		1225		
Stage 1	844	777		657	644	-		100	1			
Stage 2	816	642		927	776		-					
Platoon blocked, %								127	-			
Mov Cap-1 Maneuver	604	486	974	524	487	850	1435			1225		
Mov Cap-2 Maneuver	604	486	-	524	487	-	-		-		24	
Stage 1	843	777		656	643	-			- 12		12	
Stage 2	799	641	-	918	776	-			*		141	
				au 10 8		in the second	5.0				ani, s	
Approach	EB	n i dalla		WB		Red T	NB	and an		SB	in the	
HCM Control Delay, s	11.9			11.6			0	1.1		0		, E T
HCM LOS	В			В								
Minor Lano/Major Mymt	MDI	NET				11	CDI CDT					

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1V	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	1435	1		486	556	505	619	1225	•	- 121	
HCM Lane V/C Ratio	0.001			0.007	0.008	0.018	0.015	240	2	34 5	
HCM Control Delay (s)	7.5	0		12.5	11.5	12.3	10.9	0			
HCM Lane LOS	A	А		В	В	В	В	А		5 4	
HCM 95th %tile Q(veh)	0	•		0	0	0.1	0	0		74 - 2e ⁻¹	

Intersection

						NO 21 TEACHINE TO	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Vol, veh/h	18	3	15	15	15	22	
Future Vol, veh/h	18	3	15	15	15	22	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None		None		None	
Storage Length		(*))	5 - 02	-	0	12))	
Veh in Median Storage, #	0	11 2 200	1 Section	0	0	1.00	
Grade, %	0	(#2)	1990	0	0		
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	20	3	17	17	17	25	

Major/Minor	N	lajor1		N	lajor2		Minor1		
Conflicting Flow All		0	0		24	0	73	22	
Stage 1		-					22		
Stage 2							51	•	
Critical Hdwy					4.12		6.42	6.22	
Critical Hdwy Stg 1					:*:	*	5.42	•	
Critical Hdwy Stg 2							5.42	The state	
Follow-up Hdwy					2.218	*	3.518	3.318	
Pot Cap-1 Maneuver					1591		931	1055	
Stage 1			200		198	•	1001		
Stage 2		<u> </u>	(e)		1		971	the factor	
Platoon blocked, %			(1 2)						
Mov Cap-1 Maneuver		•	5 5 1		1591	t i skit	921	1055	
Mov Cap-2 Maneuver			(S.C.)		0.21		921		
Stage 1		•	1 200		10.17/		1001		
Stage 2			055			•	960	-	
Approach		EB			WB		NB		
HCM Control Delay, s		0			3.6		8.8		
HCM LOS							A		
Minor Lane/Major Wvmt	NBLn1	EBT	EBR	WBL	WBT		Without the		
Capacity (veh/h)	996			1591	10				
HCM Lane V/C Ratio	0.042		-	0.011					
HCM Control Delay (s)	8.8		-	7.3	0				
HCM Lane LOS	А		-	А	Α				
HCM 95th %tile Q(veh)	0.1	-	-	0	-				

0

Intersection

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Vol, veh/h	38	0	0	0	0	27	The state of the second st
Future Vol, veh/h	38	0	0	0	0	27	
Conflicting Peds, #/hr	0	0	0	0	0	0	The second second
Sign Control	Free	Free	Stop	Stop	Free	Free	
RT Channelized	2011.14	None		None	J. DYCE.	None	
Storage Length		-		i i	0		
Veh in Median Storage, #		0	0		0		
Grade, %	-	0	0	-	0		
Peak Hour Factor	88	88	88	88	88	88	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	43	0	0	0	0	31	

Major/Minor	Major1			1	Mir	nor1	12012	Major2			de la		
Conflicting Flow All	31	0				117	0	C		÷			
Stage 1		181				86	20 Q.N		X -				
Stage 2	2	1				31	-						
Critical Hdwy		141				6.52	6.22	4.12					
Critical Hdwy Stg 1	¥	14			:	5.52							
Critical Hdwy Stg 2	1.00	144								•			
Follow-up Hdwy		843			4,	.018	3.318	2.218					
Pot Cap-1 Maneuver	1.1	(#)				773	1 80		- 428 - <u>1</u>				
Stage 1	*	5 0 0				824	-			÷.			
Stage 2						-				4			
Platoon blocked, %										8			
Mov Cap-1 Maneuver	1.00					0				-			
Mov Cap-2 Maneuver	×	-				0	×	2		¥.			
Stage 1		111.003				0	•	- III - F					w = 5 _ 1
Stage 2		ی				0	•						
Approach	EB					WB	***	SB		1	1.1.1		
HCM Control Delay, s		1000	0.1			0		0		8 A		10.00	S 100 (
HCM LOS						А							
Minor Lane/Major Mymt	EBL	EBTWE	3Ln1	SBL	SBR			1 1 1					
Capacity (veh/h)	-			1 40			23. T					N ICA	
HCM Lane V/C Ratio				-	-								-
HCM Control Delay (s)	in di si		0	0								1 30 St	
HCM Lane LOS		-	А	А									
HCM 95th %tile Q(veh)									the state of the s			1000	

Intersection

Int Delay, s/veh

EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
0	2	7	14	11	13	6	405	10	5	191	1
0	2	7	14	11	13	6	405	10	5	191	1
0	0	0	0	0	0	0	0	0	0	0	0
Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
d'arte	-	None			None		•	None		÷	None
-	-	-		-	947	-	-	-	245	-	•
	0	14.4	*	0	721		0	•	100	0	
	0			0	121		0	-	2.45	0	-
88	88	88	88	88	88	88	88	88	88	88	88
2	2	2	2	2	2	2	2	2	2	2	2
0	2	8	16	13	15	7	460	11	6	217	1
	0 0 Stop - - - 88 2	0 2 0 2 0 0 Stop Stop 0 - 0 88 88 2 2	0 2 7 0 2 7 0 0 0 Stop Stop Stop - - None - - - - 0 - - 0 - 88 88 88 2 2 2	0 2 7 14 0 2 7 14 0 0 0 0 Stop Stop Stop Stop - - None - - 0 - - - 0 - - 88 88 88 88 2 2 2 2	0 2 7 14 11 0 2 7 14 11 0 0 0 0 0 Stop Stop Stop Stop Stop - - - - - - 0 - - 0 - 0 - - 0 88 88 88 88 88 2 2 2 2 2	0 2 7 14 11 13 0 2 7 14 11 13 0 0 0 0 0 0 Stop Stop Stop Stop Stop Stop - - None - None - 0 - 0 - 88 88 88 88 88 2 2 2 2 2	0 2 7 14 11 13 6 0 2 7 14 11 13 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Stop Stop Stop Stop Stop Free - - - - None - - 0 - - 0 - - 0 - - 0 - - 88 88 88 88 88 88 88 2	0 2 7 14 11 13 6 405 0 2 7 14 11 13 6 405 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Stop Stop Stop Stop Stop Free Free - - - - - - - - 0 - - 0 - - 0 - 0 - - 0 - - 0 0 - 0 - - 0 - - 0 0 0 - 0 - - 0 - - 0 0 0 - 0 - - 0 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 7 14 11 13 6 405 10 0 2 7 14 11 13 6 405 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Stop Stop Stop Stop Stop Free Free Free Free - - - - - - - None - None - - - - - - - - None - <t< td=""><td>0 2 7 14 11 13 6 405 10 5 0 2 7 14 11 13 6 405 10 5 0 2 7 14 11 13 6 405 10 5 0 -</td><td>O 2 7 14 11 13 6 405 10 5 191 0 2 7 14 11 13 6 405 10 5 191 0 2 7 14 11 13 6 405 10 5 191 0</td></t<>	0 2 7 14 11 13 6 405 10 5 0 2 7 14 11 13 6 405 10 5 0 2 7 14 11 13 6 405 10 5 0 -	O 2 7 14 11 13 6 405 10 5 191 0 2 7 14 11 13 6 405 10 5 191 0 2 7 14 11 13 6 405 10 5 191 0

Major/Minor	Minor2			Minor1			Major1		The second	Major2	100	
Conflicting Flow All	722	714	218	714	710	466	218	0	0	472	0	0
Stage 1	229	229	-	480	480	11.1-			1.1			
Stage 2	493	485		234	230		1.51		-	÷.	9	Ē
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		2.41	4.12		
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	, - E	5	8	1	÷	12
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	1.1		18		1.2	1.	1
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218		*	2.218	- 14	
Pot Cap-1 Maneuver	342	357	822	346	359	597	1352	u e	1.4	1090	n (a l	-
Stage 1	774	715	-	567	554	-		5 4 1	2	<u>2</u>		
Stage 2	558	552		769	714	1.1	-	100				
Platoon blocked, %								2	÷			-
Mov Cap-1 Maneuver	321	352	822	338	354	597	1352	25,241	المرجعين ا	1090		10 -
Mov Cap-2 Maneuver	321	352	-	338	354	-		(#)		*		-
Stage 1	769	711	-7-	563	550	11-140		11.00	191 ÷		11.00	-
Stage 2	528	548	-	755	710		×	(e):	*	•	•	-
									140			
Approach	EB		84.3	WB			NB	1.1		SB		
HCM Control Delay, s	10.8			15			0.1		-	0.2		
HCM LOS	В			С				_				
Minor Lane/Major Mymt	NBL	NBT	NBRI	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1352	•	- U 165	634 403	1090	8. m ÷						
HCM Lane V/C Ratio	0.005	-	640	0.016 0.107	0.005	-	1993					
HCM Control Delay (s)	7.7	0	10.005	10.8 15	8.3	0	1 T					
HCM Lane LOS	A	А	19 6 1	B C	А	А	2 4))					
HCM 95th %tile Q(veh)	0	1.1	142	0 0.4	0	10.0						

Intersection

Int Delay, s/veh

A THE REAL PROPERTY AND												and the second se
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	4	7	9	0	5	2	3	12	1	1	8	9
Future Vol, veh/h	4	7	9	0	5	2	3	12	1	1	8	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		Sec.	None	1.1		None	5 Y 4 17 1	- C	None	11	ti da el	None
Storage Length	1.551				-	-		-	1940		-	
Veh in Median Storage, #	1	0	1.7		0	-		0		15-11 ×	0	
Grade, %	-	0	1.7.	-	0	-		0		-	0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	8	10	0	6	2	3	14	1	1	9	10

Major/Minor	Minor2				Minor1			N	Aajor1			Major2	315	
Conflicting Flow All	41	38	14		47	43	14		19	0	0	15	0	0
Stage 1	16	16	-		21	21	10.142		1.2					11
Stage 2	25	22	-		26	22	-		349		-	7 82	4	-
Critical Hdwy	7.12	6.52	6.22		7.12	6,52	6.22		4.12			4.12	•	
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52				-				(2 4)
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52			•	1.1	-		1.04	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-		2.218		
Pot Cap-1 Maneuver	963	854	1066		954	849	1066		1597		1.0	1603		
Stage 1	1004	882	-		998	878	-				(12)	1965		
Stage 2	993	877			992	877	ALC: N		100		1.0	S - 4.	a de la competition de la comp	
Platoon blocked, %											1 2 11			
Mov Cap-1 Maneuver	954	851	1066		936	846	1066		1597		-	1603		
Mov Cap-2 Maneuver	954	851	-		936	846	-							
Stage 1	1002	881	121,14		996	876			1					-
Stage 2	982	875	-		973	876	-		141	-	120		÷	-
 March Mittals (22) 														
Approach	EB				WB		199	1.6.3	NB	2		SB		
HCM Control Delay, s	8.8	1994			9	191	ð er te	- 1. 1	1.4	1. 2. 1		0.4	hurri-	111
HCM LOS	А				А									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR					2-11.	Tice.
Capacity (veh/h)	1597	1 2	144	959	899	1603	- 4	1	1.012	-	1.1	11 12 17	100	
HCM Lane V/C Ratio	0.002		æ3	0.024	0.009	0.001								Contraction of the
HCM Control Delay (s)	7.3	0	(4)	8.8	9	7.2	0	112				14.64		
HCM Lane LOS	А	А	391	А	А	А	A	2						

0.1

-

-

0

0

.

0

HCM 95th %tile Q(veh)

Inters	ectio	n

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	11	15	2	11	7	6	6	246	10	0	337	25
Future Vol, veh/h	11	15	2	11	7	6	6	246	10	0	337	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		230	None		-	None	-	-	None			None
Storage Length			-	-		-	600	-	(2))	230		-
Veh in Median Storage, #		0			0			0			0	11-5-
Grade, %	-	0	-	-	0	-	-	0			0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	13	17	2	13	8	7	7	280	11	0	383	28

Major/Minor	Minor2		2	Minor1			Major1			Major2		
Conflicting Flow All	703	702	397	706	710	285	411	0	0	291	0	0
Stage 1	397	397	14	299	299	-		4	•			e 7
Stage 2	306	305		407	411	(a)	5 • 5	×				:e:
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12	•	•
Critical Hdwy Stg 1	6.12	5.52	19 0	6.12	5.52				: :	6 9 0	۶	
Critical Hdwy Stg 2	6.12	5.52	(4)	6.12	5.52		•		3.00		•	•
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	×		2.218		
Pot Cap-1 Maneuver	352	362	652	351	359	754	1148			1271	5	
Stage 1	629	603		710	666			5	1051	1		۲
Stage 2	704	662		621	595		*		1		8	1
Platoon blocked, %								5	۲			18
Mov Cap-1 Maneuver	341	360	652	336	357	754	1148	1	۲	1271	÷	100
Mov Cap-2 Maneuver	341	360	-	336	357	-	•		1	(4 4)	2	100
Stage 1	625	603	-	706	662			19	1121	- 121		
Stage 2	685	658		601	595	-	(A)	4	020	(1 4)	¥	(#)
Approach	EB			WB			NB			SB		_
HCM Control Delay, s	15.8		-	14.7			0.2			0		
HCM LOS	С			В								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1148			364	398	1271	185		
HCM Lane V/C Ratio	0.006			0.087	0.069			-	
HCM Control Delay (s)	8.2			15.8	14.7	0			
HCM Lane LOS	A			С	В	А		3	
HCM 95th %tile Q(veh)	0			0.3	0.2	0	•		

TO:	Matthew Harmon
FROM:	Michael Rogozen
COPY TO:	Tom DuBose
DATE:	Thursday, January 31, 2019
CONTRACT #:	UltraSystems Project No. 6084
RE:	Noise Analysis of Bridge and New Onsite Railroad Track at All American Grain

1.0 INTRODUCTION

On September 11, 2018, UltraSystems submitted to you "Noise Study Report for All American Grain Container Storage and Transfer Facility," for a proposed facility near Calipatria, California. After the report was submitted, two new elements were proposed for the project:

- A new rail spur, to be built inside the existing one
- A bridge over both rail spurs to allow access to the interior of the facility from surrounding roadways when one or both of the rail spurs is occupied by a unit train.

This memorandum is a supplement to the aforementioned noise study. It covers only the proposed rail spur and bridge although, where necessary, information from the previous report has been included.

2.0 **PROJECT DESCRIPTION**

Attachment 1 shows the revised new site plan, including the proposed inner rail spur and two alternative locations for the new bridge.

2.1 Inner Rail Spur

The new rail spur will be approximately 8,100 feet long, within a 15-foot right-of-way. It will roughly parallel the existing spur, with a minimum separation distance of 30 feet. Trains will enter from the existing spur from the Southern Pacific Railroad main line (on the east side of the project site), travel briefly on the outer spur, and then enter the inner spur. The new spur will be used primarily for unit trains that ship agricultural products to the Port of Long Beach.

Memo to Matthew Harmon Page 2 January 31, 2019

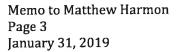
Track construction will precede construction of the bridge and will take four to five months. The construction starting date is estimated to be September 2019.

The addition of the rail spur will not result in an increase in the activity levels of trucks and trains over what was described in the November 2018 report.

2.2 Bridge

The overpass portion of the bridge will be 90 feet long and 30 feet wide. The remainder of the bridge structure (on either side of the overpass) will total 1000 feet long and be 40 to 45 feet wide. The maximum height of the bridge roadway surface will be 35 feet above the ground. The maximum number of trucks crossing the bridge per day will be 10.

3.0 SCOPE OF THE NOISE EVALUATION


After reviewing the September 11, 2018 submittal, UltraSystems determined that the same level of noise impact analysis that was used therein is not necessary for the rail and bridge addition, for the following reasons.

- Construction noise impacts for the original project were very minor, even for the nearest sensitive receiver. The maximum exposure from construction activities would be 46.8 dBA L_{eq}, and the maximum increase in exposure would be 0.02 dBA L_{eq}. This increase in exposure would not be detectable by people.
- The construction equipment used for the new construction is in many respects different from the usual, inasmuch as it is specialized for rail construction. Nevertheless, there is nothing about the equipment that suggests that noise or vibration levels would be significantly higher than those of the equipment types analyzed in the September 11, 2018 report.
- The addition of the new rail spur and the bridge is not expected to increase onroad traffic in the vicinity of the facility. The September 11, 2018 report concluded that the noise impacts of the project before the new rail spur and bridge were under consideration was less than significant. No change to this conclusion is supportable.

Furthermore, although the likelihood of having more than one active train at the site at one time raises the possibility of increased noise generation, the train on the outer spur would effectively block transmission of noise from the train on the inner spur.

One possible noise issue that would be new to the project would be an increase in noise exposure from trucks passing over the new bridge. Three reasons for such an increase would be:

- At the bridge elevation, trains, other equipment onsite would not block noise transmission from the trucks.
- With the noise source high above the ground surface, there would be less ground absorption.
- Since trucks would have to accelerate to go up onto the overpass, and decelerate going down, they would be noisier.

It was decided therefore to do a screening study of noise exposures from trucks crossing the rail spur on the future bridge. The northeastern bridge option was examined because it was closer to the nearest sensitive receiver than is the southwestern option.

4.0 TRUCK NOISE ANALYSIS

For the bridge traffic noise analysis, we used a vehicle "pass-by" method published by the Federal Transit Administration."¹ The method is based upon a metric called the sound exposure level (SEL), which is defined as the cumulative noise exposure from a single noise event, normalized to one second.² For a situation where noise sources pass by a point infrequently and intermittently, the one-hour equivalent noise level (L_{eq}) is calculated by the following formula:³

$$L_{eq} = SEL_{ref} + 10 \log(V) + 25 \log(S/50) - 35.6$$

where

SEL_{ref}	=	Reference SEL at 50 feet
V	=	Average number of vehicles per hour
S	Ξ	Average vehicle speed (miles per hour)

Note that the coefficient of (S/50) depends upon the type of vehicle. Since the cited FTA publication does not discuss heavy duty diesel trucks in defining this calculation, we used the recommended coefficient for buses.

The FTA publication does not include a reference SEL for heavy duty trucks. For that parameter, we use a measured value of 87 dB at 50 feet, as reported by Bollard Acoustical Consultants, Inc.⁴ Assuming ten trucks per day, and an eight-hour workday, V would be 1.25. An average vehicle speed of 15 miles per hour on the bridge was assumed. The resulting L_{eq} at 50 feet is:

$$L_{eq} = 87 + 10 \log(1.25) + 25 \log(15/50) - 35.6$$

= 44.5 dBA

This value applies within 50 feet of the sensitive receiver. The distance from the proposed bridge location to the nearest sensitive receiver's property line is about 1,600 feet. For a moving point source, the effect of attenuation with distance is $10 \log(1600/50) = 15.1 \text{ dBA}$. Therefore, at the sensitive receiver, the maximum hourly average exposure to bridge traffic noise would be 29.4 dBA L_{eq}. The increase in total noise (ambient plus bridge traffic) would be only 0.0004 dBA, which would not be noticeable to humans.

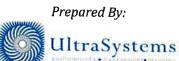
¹ Transit Noise and Vibration Impact Assessment. U.S. Department of Transportation, Federal Transit Administration. FTA Report No. 0123. September 2018. <u>https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-imnovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf</u>, p. 80.

Ibid., p. 208.
 Ibid., p. 80.

Environmental Noise Assessment. Home Depot Project, Thousand Oaks, California. Prepared by Bollard Acoustical Consultants, Inc., Auburn, CA for Lars Anderson & Associates, Inc., Fresno, CA. January 21, 2008.

Memo to Matthew Harmon Page 4 January 31, 2019

5.0 **DISCUSSION**


Adding the new rail spur and the bridge to the project would not result in significant noise impacts during project construction or operation. No mitigation measures would be needed.

NOISE STUDY REPORT FOR ALL AMERICAN GRAIN CONTAINER STORAGE AND TRANSFER FACILITY

Prepared for:

DuBose Design Group 1065 State Street El Centro, California 92243

UltraSystems Environmental 16431 Scientific Way Irvine, California 92618-4355

Job No. 6084

September 2018

Noise Study

This noise analysis was prepared in accordance with § 15063(d)(3) and Appendix G of the State CEQA Guidelines to determine the potential significant noise effects on the physical environment that could result from the implementation of the project.

NOISE STUDY REPORT FOR ALL AMERICAN GRAIN CONTAINER STORAGE AND **TRANSFER FACILITY**

Calipatria, California

September 2018

Prepared by:

stems Environmental Inc.

Date: SEPTEMBER 11, 2018

Reviewed by:

UltraSystems Environmental Inc.

Date: 09-11-2018

TABLE OF CONTENTS

1.0	INTF	RODUCTION	1
2.0	BAC	KGROUND INFORMATION	.1
	2.1	Characteristics of Sound	1
	2.2	Noise Measurement Scales	4
	2.3	Noise Attenuation	5
	2.4	Noise Sensitive Receivers	5
3.0	PRO	JECT DESCRIPTION	5
	3.1	Current Operations	
	3.2	Future Operations	6
	3.3	Construction Activities and Schedule	6
	3.4	Existing Sensitive Land Uses	7
	3.5	Existing Noise Environment	7
	3.6	Ambient Noise Measurements	8
4.0	APPI	LICABLE REGULATIONS	1
	4.1	Federal1	1
	4.2	State of California1	1
	4.3	Local Standards1	4
	Defin	ition of Sensitive Receptors1	4
	Cons	truction Noise	4
	Oper	ational Noise1	5
	4.4	Thresholds of Significance1	7
5.0	PROJ	ECT IMPACTS	7
	5.1	Short-Term Noise Impacts	
	5.2	Long-Term Noise Impacts	0
	5.3	Vibration Impacts	0
6.0	MITI	GATION MEASURES 2	2
7.0	IMPA	ACTS AFTER MITIGATION	2

LIST OF TABLES

Table 2.1-1 - Typical Sound Levels	4
Table 3.3-1 - Construction Characteristics	6
Table 3.3-2 - Overall Construction Schedule	7
Table 3.4-1 - Characteristics of Ambient Noise Measurement Locations at All American Grain	
Table 3.4-2 - Ambient Noise Measurement Results	
Table 4.2-1 - Land Use Compatibility for Community Noise Sources	
Table 4.3-1 - County of Imperial Construction Noise Standards	14
Table 4.3-2 - County of Imperial Operational Noise Standards	
Table 4.3-3 - Imperial County Noise/Land Use Compatibility Guidelines	16
Table 5.1-1 - Phase 1 Construction Equipment Characteristics	18

Noise Study 🗇

Table 5.1-2 - Estimated Construction Noise Levels	
Table 5.3-1 - Vibration Levels of Construction Equipment	21

LIST OF FIGURES

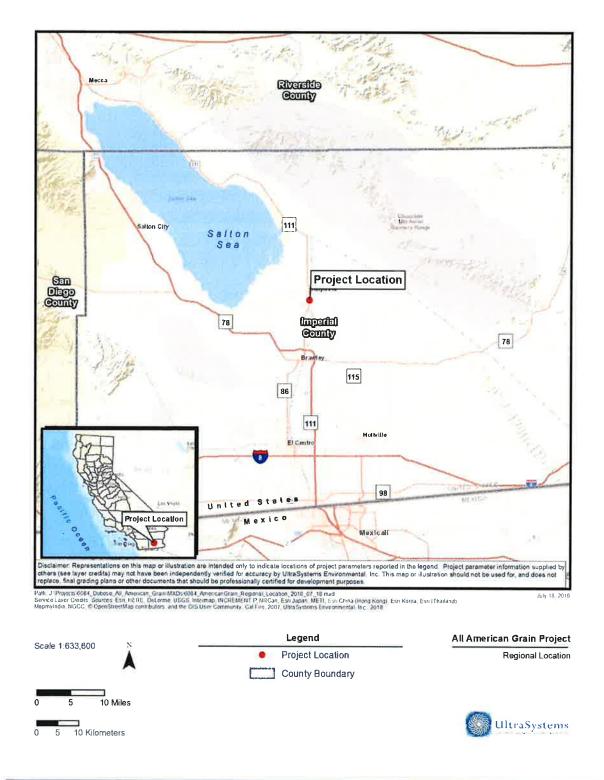
Figure 1.0-1 - Regional Location Map	2
Figure 1.0-2 - Vicinity Map	
Figure 3.4-1 - Ambient Noise Measurement Locations	

ATTACHMENT

ATTACHMENT 1 - AMBIENT NOISE MEASUREMENT DATA

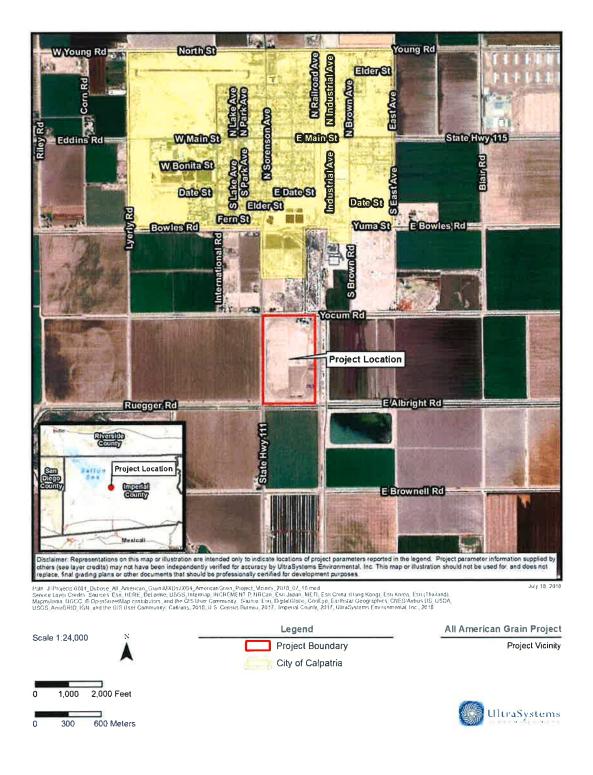
1.0 INTRODUCTION

All American Grain Company, the applicant, operates a grain transfer and storage facility for locally grown agricultural commodities shipped in containers on an 89-acre site at the northeast corner of East Albright Road and State Highway 111, south of Calipatria, California, in Imperial County. A railroad track circles the site within the boundaries, and is connected through a siding to a Union Pacific Railroad main line. As part of the project, portions of the interior surface of the lot, which is unpaved, will be paved. Containers will be trucked to the site from local farms and stored in the paved area. They will then be transferred by four mobile loaders to unit trains waiting on the interior track for shipment to the Port of Long Beach and other destinations. The regional location of the development is shown in **Figure 1.0-1**. The site and surrounding properties are shown in **Figure 1.0-2**.


Because the site is in a "noise impact zone" as defined by the Noise Element of the Imperial County General Plan, the County requires that an acoustical analysis be performed. This report satisfies the acoustical analysis requirement. It includes a discussion of the fundamentals of sound; an examination of federal, state, and local noise guidelines and policies; a review of existing conditions; an evaluation of potential noise impacts associated with the project; and the mitigation for all identified significant or potentially significant impacts.

2.0 BACKGROUND INFORMATION

2.1 Characteristics of Sound


Sound is a pressure wave transmitted through the air. It is described in terms of loudness or amplitude (measured in decibels), frequency or pitch (measured in hertz [Hz] or cycles per second), and duration (measured in seconds or minutes). The decibel (dB) scale is a logarithmic scale that describes the physical intensity of the pressure vibrations that make up any sound. The pitch of the sound is related to the frequency of the pressure vibration. Because the human ear is not equally sensitive to all frequencies, a special frequency-dependent rating scale is used to relate noise to human sensitivity. The A-weighted decibel scale (dBA) provides this compensation by discriminating against upper and lower frequencies in a manner approximating the sensitivity of the human ear. The scale is based on a reference pressure level of 20 micropascals (corresponding to zero dBA). The scale ranges from zero (for the average least perceptible sound) to about 130 (for the average human pain level).

The normal range of conversation is between 34 and 66 dBA. Between 70 and 90 dBA, sound is distracting and presents an obstacle to conversation, thinking, or learning. Above 90 dBA, sound can cause permanent hearing loss. Examples of various sound levels in different environments are shown in **Table 2.1-1** (Typical Sound Levels).

<u>Figure 1.0-1</u> REGIONAL LOCATION MAP

<u>Figure 1.0-2</u> VICINITY MAP

Common Sounds	A-Weighted Sound Level in Decibels	Subjective Impression
Oxygen Torch	120	Pain Threshold
Rock Band	110	i ani ini conolu
Pile Driver at 50 feet	100	Very Loud
Ambulance Siren at 100 feet	90	very Loud
Garbage disposal	80	
Vacuum Cleaner at 10 feet	70	Moderately Loud
Air Conditioner at 100 feet	60	
Quiet Urban Daytime	50	
Quiet Urban Nighttime	40	Quiet
Bedroom at Night	30	
Recording Studio	20	Just Audible
	10	Threshold of Hearing
	0	Threshold of Hearing

<u>Table 2.1-1</u> TYPICAL SOUND LEVELS

Sources: Aviation Planning Associates. 1978. Calculations of Maximum A-weighted Sound Levels (dBA) Resulting from Civil Aircraft Operations.

2.2 Noise Measurement Scales

Several rating scales have been developed to analyze adverse effects of community noise on people. Since environmental noise fluctuates over time, these scales consider that the effect of noise on people depends largely upon the total acoustical energy content of the noise, as well as the time of day when the noise occurs. Those that are applicable to this analysis are as follows:

- L_{eq}, the equivalent noise level, is an average of sound level over a defined time period (such as
 1 minute, 15 minutes, 1 hour or 24 hours). Thus, the L_{eq} of a time-varying noise and that of a
 steady noise are the same if they deliver the same acoustic energy to the ear during exposure.
- L₉₀ is a noise level that is exceeded 90 percent of the time at a given location; it is often used as a measure of "background" noise.
- CNEL, the Community Noise Equivalent Level, is a 24-hour average L_{eq} with a 5-dBA "penalty" added to noise during the hours of 7:00 p.m. to 10:00 p.m., and a 10-dBA penalty added to noise during the hours of 10:00 p.m. to 7:00 a.m. to account for noise sensitivity in the evening and nighttime.¹ The logarithmic effect of these additions is that a 60 dBA 24-hour L_{eq} would result in a measurement of 66.7 dBA CNEL.

 L_{dn} , the day-night average noise, is a 24-hour average L_{eq} with an additional 10-dBA "penalty" added to noise that occurs between 10 p.m. and 7 a.m. The L_{dn} metric yields similar values (within 1 dBA) as does the CNEL metric. As a matter of practice, L_{dn} and CNEL values are considered to be equivalent and are treated as such in this assessment.

¹ The evening weighting in the CNEL calculation is actually 4.77, but the Imperial County Noise Abatement and Control Ordinance defines it as 5.

A noise environment consists of a base of steady "background" noise that is the sum of many distant and indistinguishable noise sources. Superimposed on this background noise is the sound from individual local sources. These can vary from an occasional aircraft or train passing by to virtually continuous noise from, for example, traffic on a major highway.

When evaluating environmental community noise levels, a 3-dBA increase over 24 hours is barely perceptible to most people. A 5-dBA increase is readily noticeable and is considered a potentially significant impact. A 10-dBA increase is perceived as a doubling of loudness and is a clearly significant impact.²

2.3 Noise Attenuation

The noise level from a particular source generally declines as the distance to the receiver increases. Other factors such as the weather and reflecting or shielding also intensify or reduce the noise level at any given location. Typically, a single row of buildings between the receiver and the noise source reduces the noise level by about 5 dBA. Exterior noise levels can normally be reduced by 15 dBA inside buildings constructed with no special noise insulation.³ The U.S. Environmental Protection Agency (USEPA) estimates that residences in "warm" climates provide at least 12 dBA of exterior-to-interior noise attenuation with windows open and 24 dBA with windows closed.⁴

Noise from traffic on roads depends on the volume and speed of traffic and the distance from the traffic. A commonly used rule of thumb for traffic noise is that for every doubling of distance from the road, atmospheric spreading over "hard" or "soft" sites reduces the noise level by about 3 or 4.5 dBA, respectively. For a stationary source, the noise is reduced by at least 6 dBA for each doubling of distance. Further, because of the logarithmic nature of the decibel scale, a doubling of traffic on any given roadway or doubling a stationary source would cause a noise increase of approximately 3 dBA.

2.4 Noise Sensitive Receivers

This noise analysis focuses primarily upon project impacts on sensitive noise receivers located near the project site or along roadways that would carry project-generated traffic. Such noise-sensitive land uses in the project area are single-family and multifamily residences, churches, and schools.

3.0 PROJECT DESCRIPTION

3.1 Current Operations

At present,⁵ the facility receives one unit train⁶ per week. The train typically consists of two General Motors SD70M diesel locomotives and 105 well cars, which are freight cars that carry one or two stacked containers each. In the evening before the train's arrival, trucks enter the site from Yocum

² U.S. Environmental Protection Agency (US EPA), 1974. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. March.

³ U.S. Department of Housing and Urban Development (HUD), 1985. Noise Guidebook.

⁴ U.S. Environmental Protection Agency, Protective Noise Levels. Condensed Version of EPA Levels Document, Office of Noise Abatement and Control, Washington, DC, EPA-550/9-79-100 (November 1978).

⁵ The project would not include or affect an existing silo operation in the northeast corner of the property. Therefore, that operation will not be discussed.

⁶ A unit train is a type of freight train in which all the cars contain the same type of load (e.g., coal, chemicals, grain).

Road on the northeast and deliver containers of hay or alfalfa. The containers are stored on unpaved ground. Containers are transferred between trucks, trains and storage by Hyster RE 46-33CH container loaders with Tier 4 (final), 350-HP engines.

The next morning, the train arrives at about 6 a.m. Over the next six hours, empty containers are offloaded and placed in temporary storage. After ten cars are unloaded, the train moves so that ten new well cars are in position for unloading. When unloading is complete, the container loaders begin transferring the hay- or alfalfa-loaded containers from a storage area to the well cars. Loading takes about two hours. Meanwhile, trucks then take on the empty containers and depart the site via Yocum Road. (Other entry and exit points are available, but they are often blocked by trains on the site's inner track.)

All the time that the train is stationary, its diesel-electric engines are idling. During each repositioning of the train, the train moves at three to four miles per hour. After loading is finished, the train leaves the site and rejoins the Union Pacific main line, which is immediately east of the facility.

3.2 Future Operations

The project consists of adding a second train each week that is dedicated to exporting containers of local agricultural products to the Port of Long Beach Operations will be similar to the current ones. However, container-laden trucks will come east from SR-111 onto East Albright Road, and enter the facility through a new entrance on the southeast. Trucks with empty or no containers will exit the site at the southwest corner. About 80 to 100 trucks will visit the site each day.

3.3 Construction Activities and Schedule

Construction will consist of adding two paved driveways and up to three paved container storage pads to the site. **Table 3.3-1** quantifies the extent of proposed construction. The driveways will have two compositions. Where they are in the County road right-of-way, they will be comprised of four inches of Caltrans Type B asphalt concrete over 12 inches of Class 2 aggregate base. For a minimum of 100 feet inside the property line, the driveway will consist of four inches of Caltrans Type B asphalt concrete over 12 inches of container yard pavement will consist of six inches of Caltrans Class 2 aggregate base over 12 inches of crushed recycled concrete, over a mesh, and over 12 inches of compacted native soil. The native soil will be obtained from the project site.

Site Element		Value	
Site Element	Phase 1	Phase 2	Phase 3
Grading Area		606,316 ft ²	
Access Driveway Paving	9,171 ft ²	10,840 ft ²	None
Container Yard Paving	195,080 ft ²	189,020 ft ²	202,205 ft ²

Table 3.3-1 CONSTRUCTION CHARACTERISTICS

Table 3.3-2 shows the overall construction schedule and the main activities in each of three phases. For the purpose of the analysis in this report, it is assumed that Phase 1 will begin August 27, 2018 and that Phase 3 will be completed on August 2, 2020. As will be discussed in

Section 5.1, the noise impact analysis focused on Phase 1, which is anticipated to include the most noise generation.

OVERALL CONSTRUCTION SCHEDOLE							
Phase	To be Constructed Start Date		End Date				
1	Eastern container storage yard Drainage channel Eastern access driveway	August 27, 2018	October 19, 2018				
2	Western container storage yard Western access driveway	May 27, 2019	July 19, 2019				
3	Middle container storage yard	June 10, 2020	August 2, 2020				

Table 3.3-2 OVERALL CONSTRUCTION SCHEDULE

3.4 Existing Sensitive Land Uses

The area surrounding the site is designated for agricultural land uses. Five rural residences surrounded by agricultural land are located to the northwest across SR 111 and Yocum Road. The owner of the residence immediately across the intersection from the site expressed concern about noise, among other issues at a project scoping meeting for an ethanol plant that had previously been proposed for the site.⁷

3.5 Existing Noise Environment

The principal noise sources in the area surrounding the project are transportation sources (aircraft, rail lines, and motor vehicles) and off-road agricultural equipment. The nearest airport is the Calipatria Municipal Airport, whose runway is about 1.4 miles northeast of the northeast corner of the project. According to the *Airport Land Use Compatibility Plan, Imperial County Airports*,⁸ the project site is outside the future noise impact area of that airport. However, crop-dusting airplanes could be a noise source near the project. A Union Pacific Railroad branch line runs along the eastern boundary of the Site; a spur from this line connects with a "racetrack" rail line on the Site property. Current operations on the Union Pacific branch line are about four trains per day.⁹ Limited existing highway noise data are available for SR 111, which borders the Site on the west. In the general area of Calipatria, the distances from the roadway to the 70-, 65- and 60-dBA CNEL contours are 100, 210, and 980 feet, respectively.¹⁰ That means that the western half of the Site is currently exposed to more than 70 dBA CNEL.

The project site is within a "noise impact zone," as defined by the *Imperial County General Plan, Noise Element,* because it meets all the following criteria:

- Within 1,100 feet of a state highway;
- Within 750 feet of the centerline of any railroad; and
- Within 1,320 feet of existing farmland which is in an agricultural zone.

⁷ Email from Christina Keller, Pacific Municipal Consultants, San Diego, California to Michael Rogozen, UltraSystems Environmental, Irvine, California (September 15, 2006).

⁸ Cited in Imperial County General Plan, Noise Element. County of Imperial Planning and Development Services, El Centro, CA. Approved October 6, 2015. <u>http://www.icpds.com/CMS/Media/Noise-Element-2015.pdf</u>, p. 32. Accessed August 30, 2018.

⁹ Ibid., p. 6.

¹⁰ Ibid., p. 9.

3.6 Ambient Noise Measurements

On Wednesday, July 18, 2018, UltraSystems made sound level measurements on the project site and at the nearest sensitive receiver (a house on the northwest corner of SR 111 and Yocum Road). The purpose of the measurements was to obtain information on "existing conditions," which include current container storage, truck operations, and rail operations. Because the project would include similar operations, the sampling data were also used to estimate future exposures. (See **Section 5.2.1**.)

Figure 3.4-1 shows the noise sampling locations and **Table 3.4-1** describes the sampling points and activities onsite and offsite during each measurement. Measurement results are summarized in **Table 3.4-2**. Some of the measurement results may appear counterintuitive; for example, the exposure at the residence was higher in the absence of onsite activity than it was when the trains, trucks and container loaders were active onsite. A reasonable explanation for this is that noise levels anywhere on or near the project site are influenced mainly by traffic on SR-111. The train acted as a noise barrier, thus insulating the residence from exposure to noise generated onsite, leaving the highway traffic as the only variable noise source.

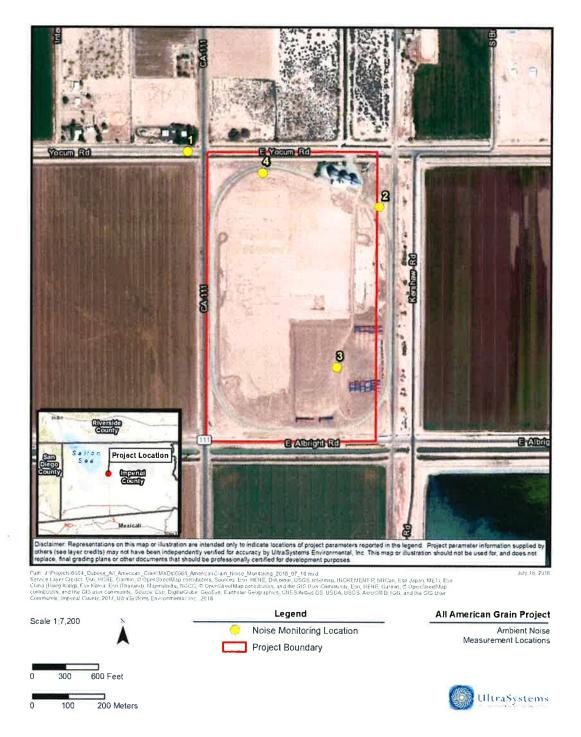


Figure 3.4-1 AMBIENT NOISE MEASUREMENT LOCATIONS

<u>Table 3.4-1</u> CHARACTERISTICS OF AMBIENT NOISE MEASUREMENT LOCATIONS AT ALL AMERICAN GRAIN

Pointa	Identification	Latitude and Longitude	Purpose	Data Set	Time Interval	Comments
1	Residence at northwest corner of R-111 and East Yocum Road	33.63124 N	Measure exposure	S007	0840-0851	No onsite activity; main noise sources are highway truck traffic and agricultural machinery
		115.73334 W	73334 W during operations	S008	0856-0911	Onsite activity; brief train movement; trucks entering site
		33.110133 N	Measure locomotive noise	S009	1002-1005	Locomotive idling at 50 feet
2	Onsite, outside the track, near silos	115.50955 W	Measure train noise	S010	1005-1007	Train moving counterclockwise at 50 feet
3	Onsite, inside the track, in southeast 33.10580 N	33.10580 N	Measure noise from container loading and unloading	S011	1030-1045	Container loaders loading and unloading containers, 100 – 300 feet away
5	corner of site, near container storage	of site, near container storage 115.51084 W	Measure noise in absence of container loading and unloading	S012	1100-1106	No container movements
4	Onsite, inside the track, in northwest		Measure locomotive noise	S013	1123-1138	Locomotive idling at 50 feet
	corner of site	115.51302 W	Measure train noise	S014	1218-1224	Train moving counterclockwise

^aLocations shown in Figure 3.4-1.

Data Set	Description	Measured Sound Level (dBA)			
Jet		Leq	Lmax	L90	
S007	Residential exposure, no site activity	70.1	92.7	52.4	
S008	Residential exposure, onsite truck, train and loader activity ^a	65.8	86.6	52.2	
S009	Onsite, locomotive idling @ 50 feet	80.9	98.3	67.2	
S010	Onsite, train moving @ 50 feet	77.4	86.1	70.6	
S011	Container loading and unloading @ 100 – 300 feet	63.4	78.0	53.8	
S012	Onsite, no container activity	65.9	79.8	53.8	
S013	Onsite, locomotive idling @ 50 feet	69.8	89.7	63.7	
S014	Onsite, train moving @ 50 feet	78.9	96.5	69.6	

Table 3.4-2 AMBIENT NOISE MEASUREMENT RESULTS

^aSound path to residence blocked by onsite train.

4.0 APPLICABLE REGULATIONS

To limit population exposure to noise levels that are physically and/or psychologically damaging or intrusive, the federal government, the State of California, various county governments, and most municipalities in the state have established noise policies, standards, and ordinances.

4.1 Federal

The U.S. Department of Housing and Urban Development (HUD) has set a goal of 45 dBA L_{dn} as a desirable maximum interior standard for residential units developed under HUD funding. While HUD does not specify acceptable exterior noise levels, standard construction of residential dwellings constructed under Title 24 of the California Code of Regulations typically provide 20 dBA of acoustical attenuation with the windows closed and 10 dBA with the windows open. Based on this assumption, the exterior L_{dn} or CNEL should not exceed 65 dBA under normal conditions.

4.2 State of California

The California Department of Health Care Services (DHCS)¹¹ Office of Noise Control¹² studied the correlation of noise levels and their effects on various land uses. The most current guidelines are contained in the "General Plan Guidelines" issued by the Governor's Office of Planning and Research

¹¹ Formerly called the California Department of Health Services (DHS).

¹² The Office of Noise Control no longer exists.

in 2017.¹³ These guidelines establish four categories for judging the severity of noise intrusion on specified land uses:

- Normally Acceptable: Is generally acceptable, with no mitigation necessary.
- Conditionally Acceptable: May require some mitigation, as established through a noise study.
- Normally Unacceptable: Requires substantial mitigation.
- Clearly unacceptable: Probably cannot be mitigated to a less-than-significant level.

The types of land uses addressed by the State standards and the acceptable noise categories for each are presented in **Table 4.2-1**. There is some overlap between categories, which indicates that some judgment is required in determining the applicability of the numbers in some situations. Note that Imperial County has modified this table for the purpose of implementing the noise element of its general plan. The Imperial County version of the table is presented in **Section 4.3.1**.

¹³ State of California General Plan Guidelines. Appendix D. Guidelines for the Preparation and Content of the Noise Element of the General Plan. Office of Planning and Research, Sacramento, CA. 2017. <u>http://opr.ca.gov/docs/ OPR Appendix D final.pdf</u>. Accessed August 23, 2018.

Land Use Category	Noise Exposure (dBA, CNE		EL)			
	55	60	65	70	75	80
Residential – Low-Density Single-Family, Duplex, Mobile Homes				- BARK	944	
Residential – Multiple Family						
Transient Lodging – Motel, Hotels					Your Sta	
Schools, Libraries, Churches, Hospitals, Nursing Homes						
Auditoriums, Concert Halls, Amphitheaters			4,01		Nord Street	
Sports Arena, Outdoor Spectator Sports				40%		elem ()
Playgrounds, Neighborhood Parks						
Golf Courses, Riding Stables, Water Recreation, Cemeteries				(111)		NI.
Office Buildings, Business Commercial and Professional						
ndustrial, Manufacturing, Utilities, Agriculture						
Normally Acceptable : Specified land use is satisfa any buildings involved are of normal conventional insulation requirements.	actory, b constru	ased u ction v	pon th vithou	e assui t any sj	nptio pecial	n that noise
Conditionally Acceptable : New construction or d after a detailed analysis of the noise reduction req insulation features included in the design. Conven windows and fresh air supply system or air condit	uiremen tional co	ts is m nstruc	ade ar tion. b	nd need ut with	ed no	ise
Normally Unacceptable : New construction or development of noise reduction requirements must be made and m in the design.	velopme does pro	nt sho ceed. a	uld gei i detail	nerally led ana	be Ivsis (of the Icluded
Clearly Unacceptable : New construction or develo undertaken.	opment s	should	genera	ally not	be	

 <u>Table 4.2-1</u>

 LAND USE COMPATIBILITY FOR COMMUNITY NOISE SOURCES

Source: State of California, General Plan Guidelines, Governor's Office of Planning and Research, 2017.

4.3 Local Standards

The primary regulatory documents that establish noise standards in the county are the Imperial County General Plan, Noise Element¹⁴ and the Imperial Noise Abatement and Control Ordinance.¹⁵ Relevant standards from both documents are discussed below by type of standard (e.g., for construction noise or operation noise). Note that the Imperial County General Plan and the Noise Abatement and Control Ordinance apply only to unincorporated area in the county.

4.3.1 Imperial County General Plan, Noise Element

Definition of Sensitive Receptors

As defined in the Imperial General Plan, Noise Element, "sensitive noise receptors" are, in general, "areas of habitation where the intrusion of noise has the potential to adversely impact the occupancy, use or employment of the environment."¹⁶ Sensitive receptors include, but are not limited to, residences, schools, hospitals, parks and office buildings. Sensitive receptors may also be non-human species, such as riparian birds.

Construction Noise

The Imperial County General Plan limits sound levels from construction activities during specific hours of the day and night through a set of construction noise standards, presented below in **Table 4.3-1**. The standards apply to the noise measured at the nearest sensitive receptor.

Construction Duration	Sound Level (dB Leq)	Averaging Period	Hours of Operation Restriction
Short-Term (days or weeks)	75	8 hours	7:00 a.m. – 7:00 p.m. Monday to Friday 9:00 a.m. – 5:00 p.m. Saturday No commercial construction operation is permitted on Sundays and holidays
Extended Periods	75	1 hour	 7:00 a.m. – 7:00 p.m. Monday to Friday 9:00 a.m. – 5:00 p.m. Saturday No commercial construction operation is permitted on Sundays and holidays

<u>Table 4.3-1</u> COUNTY OF IMPERIAL CONSTRUCTION NOISE STANDARDS

Source: County of Imperial, General Plan, Noise Element, 2015, p. 21.

¹⁴ Imperial County General Plan, Noise Element. County of Imperial Planning and Development Services, El Centro, CA. Approved October 6, 2015. http://www.icpds.com/CMS/Media/Noise-Element-2015.pdf. Accessed August 30, 2018.

¹⁵ Title 9, Land Use Ordinance for the County of Imperial, Division 7: Noise Abatement and Control (Last amended April 18, 2017). http://www.icpds.com/CMS/Media/TITLE9Div7_2015.pdf. Accessed August 30, 2018.

¹⁶ Imperial County General Plan, Noise Element, p. 15.

Operational Noise

The Imperial County General Plan, Noise Element includes Property Line Noise Limits, which are listed in **Table 4.3-2**, and apply to noise generation from one property to an adjacent property. The standards imply the existence of a sensitive receptor on the adjacent, or receiving, property. In the absence of a sensitive receptor, an exception or variance to the standard may be appropriate. An analysis is required for any project that has the potential to generate noise in excess of the Property Line Noise Limits. Note that when the ambient noise level equals or exceeds a property line standard, the <u>increase</u> of the existing or proposed noise shall not exceed 3 dB L_{eq}.

Land Use Zone	Hours	Noise Limit One-hour Average Sound Level (dBA)
Residential	7:00 a.m. – 10:00 p.m.	50
Residential	10:00 p.m 7:00 a.m.	45
Multi-residential	7:00 a.m. – 10:00 p.m.	55
Multi-residential	10:00 p.m. – 7:00 a.m.	50
Commercial	7:00 a.m. – 10:00 p.m.	60
Commerciar	10:00 p.m. – 7:00 a.m.	55
Light Industrial/Industrial Park	Anytime	70
General Industrial	Anytime	75

Table 4.3-2 COUNTY OF IMPERIAL OPERATIONAL NOISE STANDARDS

Source: County of Imperial, General Plan, Noise Element, 2015, p. 21.

As was discussed in **Section 3.5**, the project site is located in a "noise impact zone," as defined by the Imperial County General Plan, Noise Element. An acoustical analysis is therefore required to "demonstrate project compliance with land use compatibility requirements and other applicable environmental noise standards."¹⁷ The Imperial County-specific land use compatibility guidelines are shown in **Table 4.3-3**.

4.3.2 Imperial County Noise Ordinance

The Imperial County Noise Abatement and Control Ordinance includes property line noise limits that are essentially the same as those listed in **Table 4.3-2**.¹⁸ No other Noise Abatement and Control Ordinance provisions are relevant to the propose project.

¹⁷ Imperial County General Plan, Noise Element, p. 16.

¹⁸ County of Imperial Codified Ordinances, Title 9, Division 7: Noise Abatement and Control, § 90702.00(A).

Land Use Category	Community Noise Exposure L or CNEL, dB					
	55	60	65	70	75	80
Residential					1000	
Transient Lodging-Motels, Hotels		22	1919/06-5			IKIQ.
Schools, Libraries, Churches, Hospitals, Nursing Homes		1259	news			
Auditoriums, Concert Halls, Amphitheaters		10 Norman		CORE CONTRACTOR	alaati a quito i antii	
Sports Arena, Outdoor Spectator Sports				1000	N/VO	
Playgounds, Neighborhood Parks			-	0200	REED	
Golf Courses, Riding Stables, Water Recreation, Cemeteries				P 1 1 P	IN RANK - TH	SKIII TO SKIII
Office Buildings, Business Commercial and Professional			100	and all	NORD B1-MR	1941
ndustrial, Manufacturing Utilities, Agriculture				\$-101	10201	

<u>Table 4.3-3</u> IMPERIAL COUNTY NOISE/LAND USE COMPATIBILITY GUIDELINES

Interpretation (For Land Use Planning Purposes)

Normally Acceptable

Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.

Normally Unacceptable

New construction or development should be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

Conditionally Acceptable

New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design.

Clearly Unacceptable

New construction or development clearly should not be undertaken.

Source: County of Imperial, General Plan, Noise Element, 2015, p. 18.

4.3.3 Imperial County Right-to-Farm Ordinance

In recognition of the role of agriculture in the county, Imperial County has adopted a right-to-farm ordinance.¹⁹ A "right-to-farm" ordinance creates a legal presumption that ongoing, standard farming practices are not a nuisance to adjoining residences. It requires a disclosure to land owners near agricultural land operations, or areas zoned for agricultural purposes. The disclosure advises persons that discomfort and inconvenience from machinery resulting from conforming and accepted agricultural operations are normal and necessary aspects of living in the agricultural areas of the county.

4.4 Thresholds of Significance

There are two criteria for judging noise impacts. First, noise levels generated by the project must comply with all relevant federal, state, and local standards and regulations. Noise impacts on the surrounding community are limited by local noise ordinances, which are implemented through investigations in response to nuisance complaints. It is assumed that all existing regulations for the construction and operation of the project would be enforced. In addition, the project should not produce noise levels that are incompatible with adjacent noise sensitive land uses as defined in the General Plan.

The second measure of impact used in this analysis is the significant increase in noise levels above existing ambient noise levels as a result of the introduction of a new noise source. An increase in noise level due to a new noise source has a potential to adversely impact people.

Based on the applicable noise regulations stated above, the project would have a significant noise impact if it would:

- Conflict with applicable noise restrictions or standards imposed by regulatory agencies.
- Result in future (operational) noise levels within the "normally acceptable" ranges shown in **Table 4.3-3**, but would also result in an increase of 5 dBA CNEL or greater.
- Result in future (operational) noise levels greater than the "normally acceptable" ranges shown in **Table 4.3-3**, and result in an increase of 3 dBA CNEL or greater.
- Result in a substantial temporary or periodic increase in ambient noise levels above levels existing without the project at sensitive receiver locations.

5.0 **PROJECT IMPACTS**

Noise impacts associated with land use development projects include short-term and long-term impacts. Construction activities, especially heavy equipment operation, would create noise increases on and adjacent to the construction site.

Long-term noise impacts include project-generated onsite and offsite operational noise sources. Onsite (stationary) noise sources would include operation of container loaders, trucks and trains; and landscape and building maintenance. Offsite noise would be attributable to project-induced

¹⁹ County of Imperial Codified Ordinances, Division 2, Title 6: Right to Farm, § 62950-62955.

traffic, which would cause an incremental increase in noise levels within and near the project vicinity.

This section also evaluates potential groundborne vibration that would be generated from the construction or operation of the project.

5.1 Short-Term Noise Impacts

Noise generated during construction of the project could generate noise levels in excess of standards adopted in local ordinances. Noise impacts from construction activities occurring within the project site would be a function of the noise generated by construction equipment, the equipment location, and the timing and duration of the noise-generating activities.

As discussed in **Section 3.3**, construction will comprise three phases. The construction noise impact analysis considered only Phase 1, because (1) it has the highest concentration of simultaneous noise-generating activities and (2) as will become evident below, construction noise impacts are so low that it is not necessary to do a detailed analysis for all three phases. The types and numbers of pieces of equipment to be deployed during Phase 1 were determined as part of the air quality and greenhouse gas emissions analysis for this project.²⁰ Phase 1 was divided into five construction stages. Equipment characteristic for the subphases are shown in **Table 5.1-1**.

Construction Stage	Equipment Type	Horse- power	No. of Pieces	Utilization Factor	dBA @ 50 Feet
CP1 – Subgrade Preparation for Access Driveway	Excavators	81	1	0.4	80
	Graders	187	1	0.4	85
	Rollers	80	1	0.2	85
	Rubber-Tired Dozers	247	1	0.4	85
CP2 – Subgrade Preparation for Container Storage	Excavators	81	1	0.4	80
	Graders	187	2	0.4	85
	Rollers	80	1	0.2	85
	Rubber-Tired Dozers	247	2	0.4	85
CP3 – Crushed Rock for Container Storage Yard	Graders	187	2	0.4	85
	Rollers	80	2	0.2	85
	Rubber-Tired Loader ^a	97	2	0.4	84
CP4 – Class II Aggregate Base – Container Yard and Access Driveway	Graders	187	2	0.4	85
	Rollers	80	2	0.2	85
	Rubber-Tired Loader ^a	97	2	0.4	84

Table 5.1-1 PHASE 1 CONSTRUCTION EQUIPMENT CHARACTERISTICS

²⁰ Air Quality and Greenhouse Gas Emissions Report for All American Grain Container Storage and Transfer Facility, Calipatria, California. Prepared by UltraSystems Environmental Inc. for DuBose Design Group, El Centro, CA. September 2018.

Construction Stage	Equipment Type	Horse- power	No. of Pieces	Utilization Factor	dBA @ 50 Feet
CP5 – Paving – Access Driveway	Pavers	130	1	0.5	85
	Rollers	90	1	0.2	85
	Tractors/Loaders/ Backhoes	97	1	0.4	84

Source: RCM, unless otherwise noted.

^aNoise emissions characteristics assumed same as for tractors/loaders/backhoes.

One sensitive receiver²¹—the closest residence—was analyzed. The estimated composite hourly L_{eq} values at this receiver from the source of construction activities on the container storage area and on the new access driveways were calculated using the noise source values from **Table 5.1-1** and methods suggested by the Federal Transit Administration (FTA).²² Results are presented in **Table 5.1-2**. The first column of the table accounts for the fact that some construction stages will be simultaneous for parts of the project. The maximum exposure from construction activities would be 46.8 dBA L_{eq} and the maximum increase in exposure would be 0.02 dBA L_{eq} . This exposure would not be detectable by people.

Based on the project construction schedule, no pile driving or blasting would be required for construction of the project.

Please note that these estimated construction noise levels represent a conservative (worst-case) scenario, in which the loudest type of construction equipment would be operating on the same schedule and in the same area on the construction site. These worst-case values would not be continuous, nor would they be typical of noise levels throughout the construction period.

Construction Stage CP1 + CP2	Noise Exposure, dBA L _{eq}									
	From Container Storage Area	From Driveway Area	Ambient	New Total	Increase					
CP1 + CP2	43.4	39.9	70.1	70.113	0.013					
CP2	43.4	0	70.1	70.109	0.009					
CP3	43.7	0	70.1	70.11	0.010					
CP4	43.7	42.0	70.1	70.116	0.016					
CP4 + CP5	43.7	44.0	70.1	70.12	0.020					

Table 5.1-2 ESTIMATED CONSTRUCTION NOISE LEVELS

²¹ UltraSystems' convention is to use "receiver" for noise impacts and "receptor" for air quality impacts, except when referencing laws and regulations that use "receptor;" the two terms should be considered interchangeable here.

²² U.S. Department of Transportation (USDOT). 1995. Federal Transit Administration (FTA): Transit Noise and Vibration Impact Assessment. April.

5.2 Long-Term Noise Impacts

5.2.1 Onsite Sources

As discussed in **Section 3.5**, the sensitive receiver evaluated for this report already is exposed to more than 70 dBA CNEL from SR-111 traffic. The ambient sampling performed for this study found 70.1 dBA L_{eq} with no activity on the project site and 65.8 dBA L_{eq} with the exact same type of activity that will occur under the project. For a worst case (the greatest increase in exposure, measured as CNEL) assume that all of the 65.8 dBA L_{eq} was from the project (i.e. none from SR-111), and that the current daily average exposure is 70 dBA CNEL. The new CNEL value (ambient plus project contribution) would be 71.2 dBA, and the increase would be only 1.2 dBA CNEL. That value would not be detected by the average person. The increase in noise due to the project would be less than significant.

5.2.2 Roadway Noise

The principal noise source in the project area is traffic on local roadways. A noise impact would occur if the project contributes to a permanent increase in ambient noise levels affecting sensitive receivers along roadways that would carry project-generated traffic. Using unit trains instead of trucks to transport agricultural products to the Port of Long Beach will reduce daily onroad traffic in the project area, thereby reducing traffic-related noise impacts. In the worst case, traffic would remain at about 80 to 100 trucks per day. The traffic study for the project²³ estimates about 6,700 to 7,500 annual average daily trips on SR-111 near the project site. The maximum increase due to the project would be about 1.5%. Given the logarithmic nature of the decibel, traffic volume needs to be doubled in order for the noise level to increase by 3 dBA,²⁴ the minimum level perceived by the average human ear. A doubling is equivalent to a 100% increase. Therefore, the onroad noise impact would be less than significant.

5.2.3 Train Noise

The project will generate up to three additional train trips per week along the Union Pacific branch line that runs along the site's eastern boundary. Because the noise exposure would be of short duration and would occur only three times per week, the impact is less than significant.

5.3 Vibration Impacts

Vibration is sound radiated through the ground. Groundborne noise is the rumbling sound caused by the vibration of building interior surfaces. The ground motion caused by vibration is measured as peak particle velocity (PPV) in inches per second and is referenced as vibration decibels (VdB). Typical outdoor sources of perceptible groundborne vibration are construction equipment and traffic on rough roads.

The American National Standards Institute (ANSI) indicates that vibration levels in critical care areas, such as hospital surgical rooms and laboratories, should not exceed 0.2 inch per second of PPV.²⁵ The FTA also uses a PPV of 0.2 inch per second as vibration damage threshold for fragile

²³ Report is in preparation; data from Linscott, Law and Greenspan Engineers, June 18, 2018.

²⁴ Technical Noise Supplement. Prepared by ICF Jones & Stokes, Sacramento, California for California Department of Transportation, Division of Environmental Analysis, Sacramento, California. November 2009.

²⁵ American National Standards Institute (ANSI). 1983. "Guide to the Evaluation of Human Exposure to Vibration in Buildings," ANSI S.329-1983.

buildings and a PPV of 0.12 inch per second for extremely fragile historic buildings. The FTA criterion for ground-borne vibration that may cause human annoyance is 80 VdB for operational sources.²⁶

5.3.1 Construction Impact

It is expected that groundborne vibration from project construction activities would cause only intermittent, localized intrusion. The project's construction activities most likely to cause vibration impacts are:

- **Heavy Construction Equipment**: Although all heavy, mobile construction equipment has the potential of causing at least some perceptible vibration while operating close to buildings, the vibration is usually short-term and is not of sufficient magnitude to cause building damage. It is not expected that heavy equipment such as large bulldozers would operate close enough to any residences to cause vibration impact.
- **Trucks**: Trucks hauling building materials to construction sites can be sources of vibration intrusion if the haul routes pass through residential neighborhoods on streets with bumps or potholes. Repairing the bumps and potholes almost always eliminates the problem.

The FTA has published standard vibration levels for construction equipment operations.²⁷ The calculated vibration levels expressed in VdB and PPV for construction equipment at distances of 50 and 100 feet are listed in **Table 5.3-1**.

Equipment	PPV at 50 ft (in/sec)	Vibration Decibels at 50 ft (VdB)	PPV at 271 ft (in/sec)	Vibration Decibels at 271 ft (VdB)
Large Bulldozer	0.0315	81	0.0025	66
Loaded Truck	0.0269	80	0.0021	65
Small Bulldozer	0.0011	52	0.00008	37
Vibratory Roller	0.0742	88	0.0059	73

Table 5.3-1 VIBRATION LEVELS OF CONSTRUCTION EQUIPMENT

The closest sensitive receivers in the project vicinity are residences to the northwest of project site. The distance between the nearest residence and the project site boundary is 271 feet. As shown in **Table 5.3-1**, vibration level of construction equipment at a distance of 271 feet is less than the FTA damage threshold of 0.12 inch per second PPV for fragile historic buildings. In addition, since it is not expected that heavy equipment such as large bulldozers would operate close enough to any residences, the construction would not generate groundborne vibrations that cause human annoyance. Therefore, there would be no impact from groundborne vibration or groundborne noise as a result of project construction.

²⁶ Federal Transit Administration. 1995. Transit Noise and Vibration Impact Assessment (April).

²⁷ Federal Transit Administration, Transit Noise and Vibration Impact Assessment, April 1995.

5.3.2 Operational Impact

Operation of the project would not involve significant sources of groundborne vibration or groundborne noise. Thus, operation of the project would result in no impact.

6.0 MITIGATION MEASURES

As no significant short- or long-term noise impacts due to the project would occur, no mitigation measures are necessary.

7.0 IMPACTS AFTER MITIGATION

As no significant short- or long-term noise impacts are expected for the project, no mitigation measures are necessary.

ATTACHMENT 1

AMBIENT NOISE MEASUREMENT DATA

Date: 7(18/18_ Day of Week: willasday_ Time: 8:40 Project Number: 6084
Monitoring Segment / Area: Monitoring Site Address:
Measurement Taken By: Mohamed of UltraSystems Environmental
Approximate Wind Speed: 6.6 mph [km/hr] Approximate Wind Direction: From the 6.6 mph [km/hr]
Approximate distance of sound level meter from receptor location:
Approximate distance of sound level meter from construction site:
Receptor Land Use (Check One): 🔲 Residential 🗍 Institutional 🔟 Comm./Ind. 🗌 Recreational
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004
Meter Setting: 🔽 A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)
Measurement Start Time: <u>8:40</u> Measurement End Time: <u>8:55</u>
Total Measurement Time: 15 Session File Name (e.g., S012):

Check the measurement purpose:

Baseline condition	Ongoing construction	🛛 Major change	🗌 Complaint response
--------------------	----------------------	----------------	----------------------

Measurement Results

Measurement Type	Measured Levels (dB)
Calibration	Pre: 14.1 Post: 14.1
L _{eq (h)}	Slow: 70.2 Fast: 70.1
L _{max}	Slow: 92. 7Fast: 94.3
L90	Slow: 55. Fast: 55.
4	SE1: 99.7 dl

Field Notes:

1. 67 2. at o ad! 3. 010 Date: Noise Monitor's Signature:

Noise Measurement Report Form

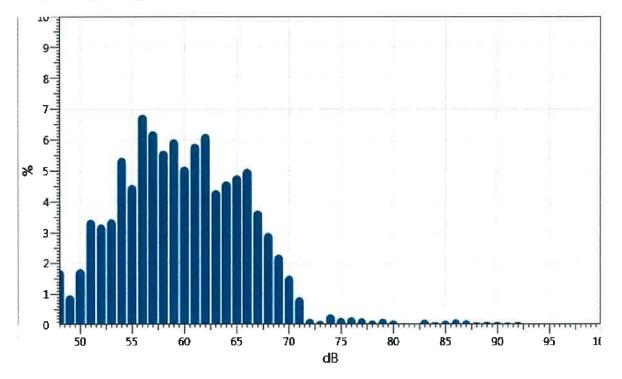
ul ul	traSystems Invine, CA 92618 949.788.4900 Noise Measurement Report Form – Part B
Date: 7/18/	B Day of Week: wid shy Time: S, A Project Number: 6089
Monitoring Seg	nent / Area: Monitoring Site Address:
	Site Map
Plan View North Arrow (fill-in)	Indicate site location, receptor location, meter location, distance in feet to landmarks, roadways, travel lane directions, geographical objects: trees, water, buildings, signs, store names, hydrants, power & telephone lines, manholes, etc.)
Elevation View	(Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, buildings, etc.)
	JEFt Jaft
Latitude: 33	63124 Longitude: 117,73334 Elevation: -17977
Noise Monito	r's Signature: Date: Date:

Session Report

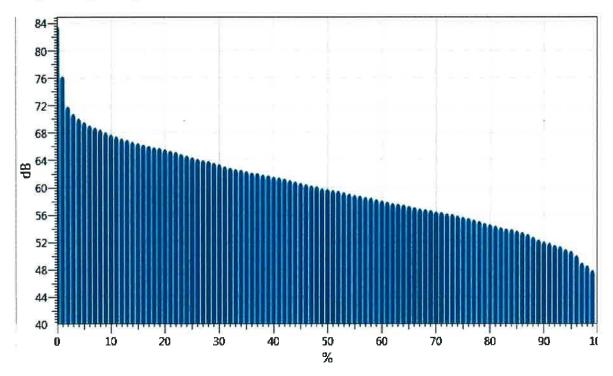
7/20/2018

Information Panel

Name	S007_BLH080004_19072018_165022
Start Time	7/18/2018 8:40:21 AM
Stop Time	7/18/2018 8:55:21 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

Description	Meter	Value	Description	<u>Meter</u>	<u>Value</u>
Leq	1	70.1 dB			
Exchange Rate	1	3 dB	Weighting	1	А
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	А
Response	2	FAST			


Statistics Chart

S007_BLH080004_19072018_165022: Statistics Chart

Exceedance Chart

S007_BLH080004_19072018_165022: Exceedance Chart

Statistics Table

dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
48:	0.06	0.05	0.02	0.14	0.20	0.21	0.17	0.40	0.39	0.16	1.79
49:	0.17	0.14	0.10	0.10	0.07	0.04	0.08	0.06	0.09	0.12	0.96
50:	0.07	0.11	0.10	0.12	0.16	0.16	0.16	0.23	0.33	0.38	1,81
51:	0.35	0.26	0.12	0.21	0.35	0.35	0.45	0.46	0.41	0.46	3.42
52:	0.42	0.39	0.36	0.27	0.24	0.35	0.33	0.29	0.30	0.30	3.26
53:	0.25	0.23	0.21	0.21	0.33	0.31	0.44	0.51	0.46	0.48	3.43
54:	0.81	0.79	0.40	0.55	0.61	0.46	0.48	0.46	0.43	0.42	5.42
55:	0.39	0.31	0.61	0.40	0.37	0.36	0.49	0.52	0.54	0.55	4.54
56:	0.58	0.69	0.64	0.60	0.62	0.87	0.65	0.72	0.82	0.65	6.82
57:	0.59	0.81	0.42	0.46	0.50	0.70	0.80	0.60	0.69	0.72	6.28
58:	0.64	0.48	0.53	0.42	0.48	0.52	0.59	0.62	0.74	0.64	5.65
59:	0.69	0.64	0.55	0.58	0.56	0.49	0.65	0.63	0.59	0.64	6.02
60:	0.62	0.60	0,38	0.50	0.65	0,54	0,43	0.51	0.47	0.45	5.13
61:	0,53	0.55	0.52	0.61	0.67	0.55	0.59	0.66	0.59	0.61	5.88
62:	0.60	0.79	0.70	0.64	0.60	0.60	0.54	0.64	0.53	0.54	6.19
63:	0.59	0.52	0.38	0.52	0.39	0.35	0.39	0.39	0.40	0.44	4.37
64:	0.54	0.55	0.56	0.48	0.51	0.44	0.40	0.36	0.44	0.37	4.66
65:	0.38	0.45	0.42	0.43	0.56	0.59	0.49	0.43	0.58	0.51	4.85
66:	0.55	0.57	0.42	0.60	0.48	0.55	0.55	0.46	0.45	0.43	5.06
67:	0.46	0.47	0.41	0.34	0.45	0.33	0.36	0.34	0.29	0.26	3.71
68:	0.25	0.29	0.30	0.27	0.32	0.30	0.26	0.38	0.28	0.32	2.98
69:	0.27	0.35	0.20	0.19	0.26	0.24	0.22	0.22	0.15	0-19	2.28
70:	0.21	0.16	0.14	0.15	0.16	0.14	0.18	0.17	0.17	0,12	1,59
71:	0.13	0.15	0.09	0.07	0.04	0.05	0.07	0.08	0.14	0-08	0.90 🛛
72:	0.03	0.02	0.02	0.01	0.02	0.02	0.03	0.02	0.01	0.01	0.19
73:	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.13
74:	0.02	0.02	0.03	0.02	0.03	0.04	0.06	0.04	0.04	0.05	0.34
75:	0.02	0.03	0.03	0.01	0.01	0.01	0.03	0.02	0.04	0.02	0.22
76:	0.03	0.03	0.02	0.02	0.02	0.03	0.02	0,02	0.02	0.03	0.24
77:	0.03	0.03	0.04	0.03	0-02	0.01	0.01	0.01	0.01	0.01	0.21
78:	0.02	0.02	0.02	0.01	0.01	0.01	0,01	0.01	0.02	0.01	0.14
79:	0.03	0.03	0.05	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.19
80:	0.01	0.01	0.02	0.01	0.04	0.02	0.01	0.01	0.01	0.01	0.14
81:	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.05
82:	0.01	0,00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.04

83:	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.04	0.04	0.04	0.16
84:	0.00	0.01	0.01	0.00	0.01	0.01	0.01	0.02	0.02	0.01	0_09
85:	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.13
86:	0.02	0.05	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.17
87:	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.14
88;	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.08
89:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
90:	0.02	0.01	0.01	0.01	0,01	0.01	0.01	0.01	0.01	0.01	0.09
91:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.07
92:	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.09
Exceedance Table											
	0%	1%	2%	3%	4%	5%	6	6%	%7	%8	%9
• 0%:	070	83.7	76.3	71.9	70.8	70		69.6	69.1	68.8	68.5
10%:	68.1	67.8	67.5	67.2	67.0	66		66.5	66.3	66.1	65.9
20%:	65.8	65.6	65.4	65.2	64.9	64		64.4	64.2	64.0	63,9
30%:	63.6	63.4	63.1	62.9	62.7	62		62.4	62.2	62.1	61.9
40%:	61.8	61.6	61.5	61.3	61.1	60	.9	60.7	60.5	60.3	60.2
50%:	59.9	59.8	59.6	59.5	59.3	59	.1	58.9	58.8	58.6	58.5
60%:	58.3	58.1	57.9	57.7	57.6	57	.5	57.3	57.1	56.9	56.8
60%: 70%:	58.3 56.7	58.1 56.5	57.9 56.4	57.7 56.2	57.6 56.1	57 55		57.3 55.7	57.1 55.5	56.9 55.3	56.8 55.1

100%: 47.9

80%:

90%:

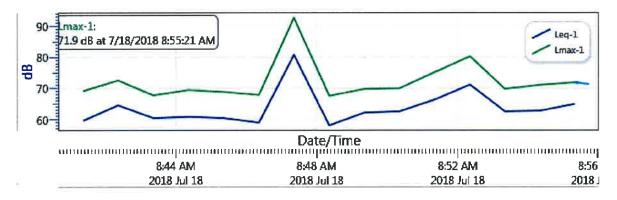
Logged Data Chart

54.8

52.4

S007_BLH080004_19072018_165022: Logged Data Chart

54.6


52.1

54.4

51.9

54.2

51.6

54.0

51.4

53.9

51.0

53.7

50.7

53.5

50.1

53.2

49:0

52.8

48.6

UltraSystems	16431 Scientific Way Irvine, CA 92618 949.788.4900
Noise Measurement Report Form – Pa	rt A
Date: 7/18/18 Day of Week: wed-s Time: 8:56 Pro	ject Number: 6084
Monitoring Segment / Area: Monitoring Site Address:	
Measurement Taken By: of UltraSystems E	nvironmental
Approximate Wind Speed S [mph [km/hr] Approximate Wind Direc	tion: From the 🖉 🕠
Approximate distance of sound level meter from receptor location:	
Approximate distance of sound level meter from construction site:(Leave	Blank for Baseline Ambient)
Receptor Land Use (Check One): 🗌 Residential 🖬 Institutional 🔲 Comm	/Ind. 🔲 Recreational
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial	Number: BLH080004
Meter Setting: 🛛 A-Weighted Sound Level (SLOW) 🔲 A-Weighted So	ound Level (FAST)
Measurement Start Time:S6 Measurement End	Time: <u>9:11</u>
Total Measurement Time: 15m) Session File Name (e.g	., S012): <u>Soo8</u>

Check the measurement purpose:

Baseline condition Ongoing construction Major change Complaint response

Measurement Results

Measured Levels (dB)
Pre: 114.4 Post: 114.2
Slow: 65,8 Fast: 65.8
Slow: 85,0 Fast: 89,0
Slow: 50 & Fast: CD.7

Field Notes:

incts trya sie, heavy trucks moving a forabit trun Sta Teo 1. 2. offer 3.

____ Date: 7/18/18 Noise Monitor's Signature: OL

Noise Measurement Report Form

	traSystems	16431 Scientific Way Irvine, CA 92618 949.788.4900
	Noise Measurement Report Form - Part B	
Date: 7(8	8_ Day of Week: wedned ay Time: 8:56 Project 1	Number: 6089
Monitoring Seg	nent / Area: Monitoring Site Address:	
	Site Map	
Plan View Logical Arrow (fill-in)	(Indicate site location, receptor location, meter location, distance in feet to landmar directions, geographical objects: trees, water, buildings, signs, store names, hydrant manholes, etc.)	
Elevation View	(Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, bui	ldings, etc.)
Latitude: 33	.65 24° Longitude: [[7,73334]	Elevation: $-(75ft)$
Noise Monito	r's Signature: Date:	18/18

Noise Measurement Report Form

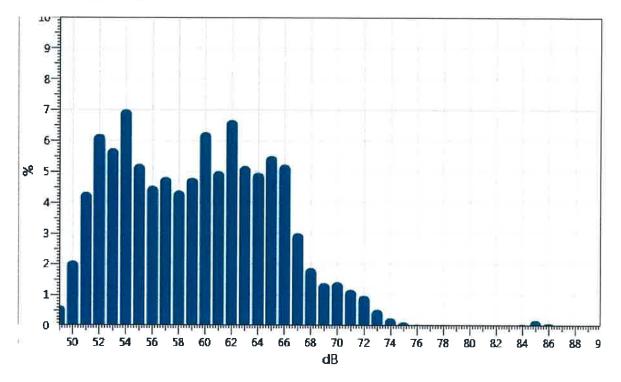
Page 2 of 2

Session Report

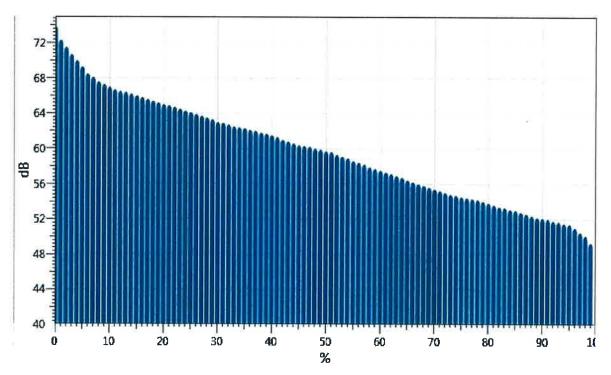
7/20/2018

Information Panel

Name	S008_BLH080004_19072018_165026
Start Time	7/18/2018 8:57:08 AM
Stop Time	7/18/2018 9:12:08 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

Description	<u>Meter</u>	<u>Value</u>	Description	Meter	<u>Value</u>
Leq	1	65.8 dB			
Exchange Rate	1	3 dB	Weighting	1	А
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	А
Response	2	FAST			

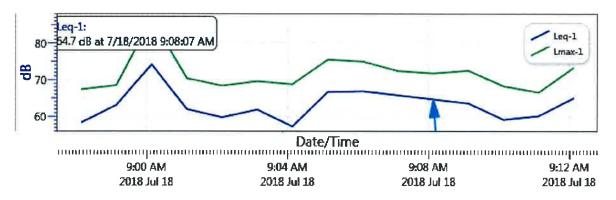

Statistics Chart

S008_BLH080004_19072018_165026: Statistics Chart

Exceedance Chart

S008_BLH080004_19072018_165026: Exceedance Chart

Statistics Table


dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
49:	0.00	0.00	0.00	0.00	0.05	0.14	0.04	0.10	0.19	0.12	0.65
50:	0.14	0.17	0.25	0.23	0.21	0.19	0.24	0.21	0.20	0.26	2.10
51:	0.23	0.29	0.13	0.19	0.29	0.45	0.78	0.54	0.60	0.83	4.33
52:	0.69	0.87	0.88	0.61	0.59	0,55	0.59	0.48	0.47	0.46	6.20
53:	0.52	0.76	0.69	0.58	0.53	0.69	0.59	0.48	0.46	0.44	5.74
54:	0.53	0.79	0.60	0.81	0.83	0.74	0.74	0.70	0.70	0.57	7.01
55:	0.54	0.70	0.63	0.45	0.41	0.50	0.52	0.38	0.55	0.56	5.24
56:	0.49	0.55	0.57	0.60	0.43	0.31	0.34	0.34	0.44	0.45	4.52
57:	0.55	0.63	0.47	0.55	0.44	0.50	0.46	0.41	0.42	0.37	4.82
58:	0.42	0.38	0.44	0.53	0.48	0.60	0.44	0.36	0.37	0.36	4.37
59:	0.46	0.42	0.36	0.43	0.47	0.46	0.41	0.44	0.61	0.73	4.79
60:	0.85	0.78	0.60	0.73	0.65	0.68	0.53	0.52	0.50	0.43	6.27
61:	0.49	0.49	0.40	0.34	0.38	0.51	0.53	0.53	0.61	0.72	5.01
62:	0.68	0.67	0.76	0.72	0.78	0.71	0.62	0.52	0.54	0,66	6.66
63:	0.66	0.65	0.39	0.51	0.51	0.50	0.43	0.51	0.56	0.45	5.18
64:	0.48	0.49	0.47	0.48	0.59	0.58	0.49	0.46	0.48	0.43	4.96
65:	0.62	0.61	0.48	0.54	0.48	0.45	0.60	0.60	0.60	0.53	5.51
66:	0.54	0.53	0.38	0.55	0.55	0.56	0.55	0.60	0.52	0.44	5.23
67:	0.38	0.31	0.35	0.35	0.32	0.25	0.25	0.25	0.29	0.25	3.01
68:	0.21	0.19	0.20	0.25	0.24	0.22	0.15	0.13	0.14	0.14	1.87
69:	0.14	0.14	0.11	0.12	0.18	0.13	0.15	0.15	0.15	0.14	1.39
70:	0.14	0.13	0.15	0.16	0.17	0.13	0.09	0.11	0.16	0.17	1.42
71:	0.11	0.09	0.09	0.10	0.11	0.12	0.12	0.15	0.13	0.15	1.18
72:	0.15	0.15	0.11	0.09	0.11	0.11	0.06	0.08	0.06	0.06	0:98
73:	0.09	0.08	0.05	0.07	0.09	0.03	0.02	0.03	0.04	0.04	0.53
74:	0.04	0.02	0.02	0.03	0.02	0.03	0.02	0.02	0.02	0.03	0.25
75:	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.13
76:	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.01	0.00	0.05
77:	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.04
78:	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.04
79:	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.04
80:	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.04
81:	0.01	0.01	0.00	0,00	0,00	0.01	0.00	0.00	0.00	0.01	0.04
82:	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.03
83:	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.04

84:	0.01	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.05	
85:	0.03	0.02	0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.01	0.19	
86:	0.01	0.01	0.01	0.01	0.02	0,02	0.03	0.00	0.00	0.00	0.09	
Exceedance Table												
						_						
•	0%	1%	2%	3%	4%	5	%	6%	%7	%8	%9	
0%:		73.9	72.3	71.5	70.7	70	0.0	69.3	68.5	68.1	67.6	
10%:	67.3	67.0	66.7	66.5	66.4	60	6.2	66.0	65.8	65.6	65.4	
20%:	65.2	65.0	64.9	64.7	64.5	64	4.3	64.1	63.9	63.7	63.5	
30%:	63.3	63.0	62.9	62.7	62.5	62	2.4	62.3	62.1	62.0	61.8	
40%:	61.7	61.5	61.3	61.0	60.8	60	D.6	60.4	60.3	60.2	60.0	
50%:	59,9	59.7	59.6	59,3	59.1	58	8.9	58.6	58.4	58.2	57.9	
60%:	57.7	57.5	57.3	57.1	56.9	56	6.7	56.4	56.2	56.0	55.8	
70%:	55.6	55.4	55.2	55.0	54.8	54	4.7	54,5	54.4	54.3	54.2	
80%:	54.0	53.8	53.6	53.4	53.3	53	3.1	53.0	52.8	52.6	52.4	
90%:	52.2	52.1	52.0	51.8	51.7	52	1.5	51.4	51.0	50.5	50.1	
100%:	49.3											

Logged Data Chart

S008_BLH080004_19072018_165026: Logged Data Chart

Noise Measurement Report Form – Part A
Date: 2/18/18 Day of Week: widns day Time: 10:02 Project Number: 6089
Monitoring Segment / Area: Monitoring Site Address:
Measurement Taken By:
Approximate Wind Speed:mph [km/hr] Approximate Wind Direction: From the
Approximate distance of sound level meter from receptor location:
Approximate distance of sound level meter from construction site:
(Leave Blank for Baseline Ambient)
Receptor Land Use (Check One): 🗌 Residential 🔲 Institutional 📴 Comm./Ind. 🔲 Recreational
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004
Meter Setting: 🗹 A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)
Measurement Start Time: 10:02 Measurement End Time: 10:05
Total Measurement Time: Session File Name (e.g., S012):
2:31

Check the measurement purpose:

Baseline condition	n 📋 Major change 🛛 🗋 Co	mplaint response
--------------------	-------------------------	------------------

Measurement Results

Measured Levels (dB)

Measurement Type

	and a second sec		1
	Calibration	Pre: [14.3 Post: 114.3	
	Leq (h)	Slow: 81.9 Fast: 80.9	
	L _{max}	Slow: 98. 3Fast: 100.7	
	L90	Slow: 58.2 Fast: 66.2	
Field Notes:	B	SEL: 102.8	aß
1 † G. 2 3	ain Idling (g soft	
Noise Monitor's	Signature:	Date: _	7118118.

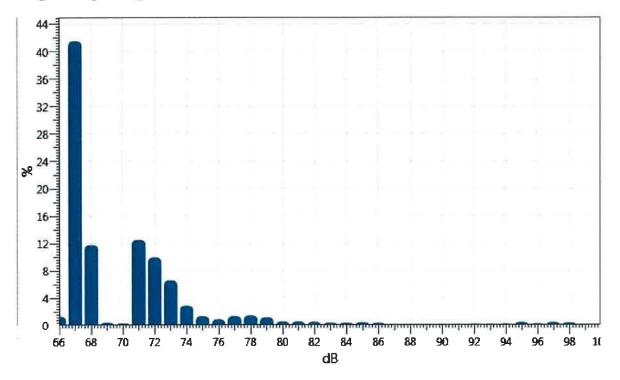
Noise Measurement Report Form - Part B 18 Day of Week: Welas Jay Time: 10:02 Project Number: 6089 Date: Monitoring Site Address: ____ 07 Monitoring Segment / Area: Site Map **Plan View** (Indicate site location, receptor location, meter location, distance in feet to landmarks, roadways, travel lane directions, geographical objects: trees, water, buildings, signs, store names, hydrants, power & telephone lines, manholes, etc.) tractes North Arrow (fill-in) 51/05 0 0 Elevation (Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, buildings, etc.) View Longitude: 115, 50955. -68ft D Elevation: Latitude: Date: Noise Monitor's Signature:

Session Report

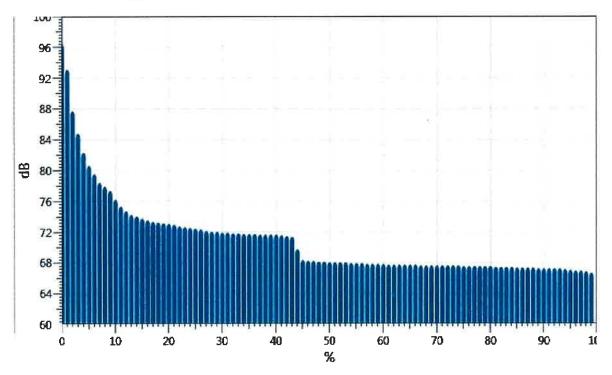
7/20/2018

Information Panel

Name	S009_BLH080004_19072018_165030
Start Time	7/18/2018 10:02:32 AM
Stop Time	7/18/2018 10:05:03 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

Description	Meter	<u>Value</u>	Description	Meter	Value
Leq	1	80.9 dB			
Exchange Rate	1	3 dB	Weighting	1	А
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	A
Response	2	FAST			


Statistics Chart

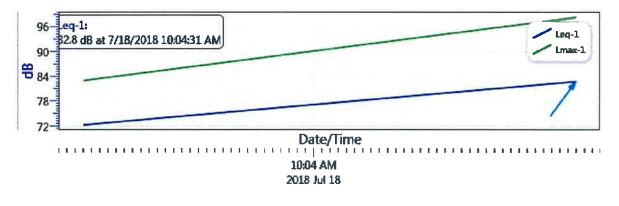
S009_BLH080004_19072018_165030: Statistics Chart

Exceedance Chart

S009_BLH080004_19072018_165030: Exceedance Chart

Statistics Table

dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8,0	0.9	%
66:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.57	0.67	1.31
67:	1.83	0.92	1.37	5.16	3.88	4.23	5.68	8.08	6.35	4.01	41.53
68:	2.93	3.69	2.18	2.21	0.34	0.12	0.08	0.11	0.06	0_04	11.79
69:	0.07	0.05	0.04	0.03	0.06	0.04	0.04	0.03	0.05	0.03	0.46
70:	0.04	0.02	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.03	0.31
71:	0.03	0.03	0.03	0.09	0.89	0.70	1.43	4.22	2.60	2.49	12.52
72:	1.79	1.36	1.21	0.52	1.08	0.99	0.87	0.94	0.55	0.64	9.94
73:	0.87	1.05	0.84	0.73	0.76	0.64	0.59	0.43	0.32	0.35	6.58
74:	0.42	0.37	0.49	0.41	0.26	0.25	0.19	0.16	0.17	0.18	2.89
75:	0.17	0,17	0.17	0.16	0.18	0.09	0.10	0.14	0.11	0.07	1.36
76:	0.09	0.11	0.09	0.08	0.07	0.08	0.08	0.10	0.08	0.08	0.89
77:	0.08	0.14	0.09	0.08	0.07	0.08	0.23	0.21	0.19	0.20	1.38
78:	0.33	0.31	0.23	0.09	0.08	0.08	0.08	0.09	0.08	0.07	1.46
79:	0.08	80.0	0.09	0.07	0.09	0.12	0.17	0.14	0.19	0.13	1.18
80:	0.04	0.06	0.05	0.06	0.05	0.04	0.06	0.05	0.07	0.07	0.57
81:	0.06	0.06	0.06	0.04	0.06	0.07	0.04	0.05	0.06	0.06	0.58
82:	0.03	0.06	0.07	0.04	0.06	0.04	0.05	0.05	0.06	0.05	0.53
83:	0.06	0.03	0.03	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.39
84:	0.04	0.05	0.04	0.02	0.04	0.03	0.04	0.03	0.04	0.04	0.38
85:	0.03	0.04	0.05	0.04	0.04	0.05	0.04	0.04	0.06	0.06	0.47
86:	0.08	0.13	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0,02	0.36
87:	0.02	0.01	0.02	0.01	0.02	0.02	0.01	0.02	0.01	0.03	0.18
88:	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.03	0.01	0.02	0.17
89:	0.01	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.17
90:	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.19
91:	0.01	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.18
92:	0.01	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.03	0.22
93:	0-03	0.01	0.03	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.21
94:	0.02	0.02	0.01	0.03	0.01	0.03	0.01	0.01	0.03	0.05	0.23
95:	0.04	0.04	0.04	0.05	0.04	0.04	0.06	0.03	0.05	0.07	0.48
96:	0.02	0.03	0,03	0.02	0.03	0.02	0.03	0,01	0.03	0.02	0.25
97:	0.03	0.02	0.03	0.02	0.03	0-05	0.08	0.06	0.08	0.07	0.49
98:	0.10	0.06	0.09	0.14	0.00	0.00	0.00	0,00	0.00	0.00	0.40


.

Exceedance Table

œ.	0%	1%	2%	3%	4%	5%	6%	%7	%8	%9
0%:		96.4	93.1	87.7	84.8	82.3	80.6	79.5	78.4	77.9
10%:	77.3	76.2	75.3	74.7	74.2	74.0	73.7	73.5	73.3	73.2
20%:	73.1	73.0	72.9	72.7	72.6	72.5	72.4	72.3	72.1	72.0
30%:	72.0	71.9	71.9	71.8	71.8	71.7	71.7	71.7	71.6	71.6
40%:	71.6	71.6	71.5	71.4	71.3	69.7	68.3	68.2	68.2	68.1
50%:	68.1	68.0	68.0	68.0	68.0	67.9	67.9	67.9	67.8	67.8
60%:	67.8	67.8	67.7	67.7	67.7	67.7	67.7	67.7	67.6	67.6
70%:	67.6	67.6	67.6	67.6	67.6	67.6	67.5	67.5	67.5	67.5
80%:	67.5	67.5	67.4	67.4	67.4	67.4	67.3	67.3	67.3	67.3
90%:	67.2	67.2	67.2	67.2	67.2	67.1	67.0	66.9	66.9	66.8
100%:	66.6									

Logged Data Chart

S009_BLH080004_19072018_165030: Logged Data Chart

Noise Measurement Report Form – Part A						
Date: 7(18/18 Day of Week: wednesday. Time: 10:04 Project Number: 6084						
Monitoring Segment / Area: Monitoring Site Address:						
Measurement Taken By:						
Approximate Wind Speed: 5.6 mph [km/hr] Approximate Wind Direction: From the						
Approximate distance of sound level meter from receptor location:						
Approximate distance of sound level meter from construction site:						
Receptor Land Use (Check One): 🗌 Residential 🗋 Institutional 🖆 Comm./Ind. 🔲 Recreational						
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004						
Meter Setting: 🔲 A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)						
Measurement Start Time: 10:04 Measurement End Time: 10:06						
Total Measurement Time: 2.129 Session File Name (e.g., S012): SOUL						

Check the measurement purpose:

Baseline condition	Ongoing construction	🗖 Major change	Complaint response
--------------------	----------------------	----------------	--------------------

Measurement Results

Measurement Type	Measured Levels (dB)
Calibration	Pre: 14.3 Post: 14.3
Leq (h)	Slow: 77,4 Fast: 77.4
L _{max}	Slow: 8 6.1 Fast: 91.4
L90	Slow: 54.6 Fast: 54.5

Field Notes:

So ft 1. 2. 3. Uhmd. Date: 7 Noise Monitor's Signature:

Noise Measurement Report Form - Part B Date: 2118(18 Day of Week: _____ Time: 10:010 Project Number: _____ 6084 Monitoring Segment / Area: Monitoring Site Address: ____ Site Map **Plan View** (Indicate site location, receptor location, meter location, distance in feet to landmarks, roadways, travel lane directions, geographical objects: trees, water, buildings, signs, store names, hydrants, power & telephone lines, manholes, etc.) VACKE 55105. North Arrow (fill-in) (Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, buildings, etc.) **Elevation** View Longitude: 115. 50955 33 33,110 Latitude: Elevation: -6 shared Date: _______ 18 Noise Monitor's Signature:

Noise Measurement Report Form

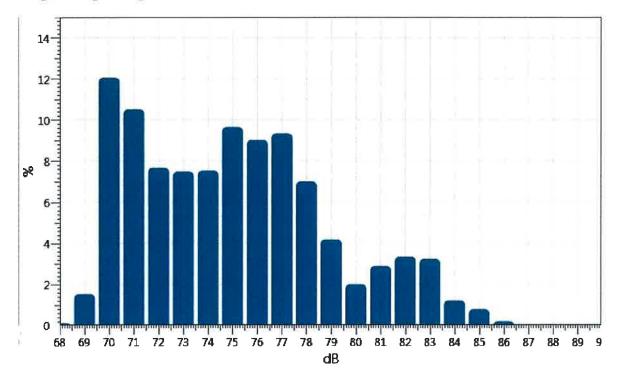
Session Report

7/20/2018

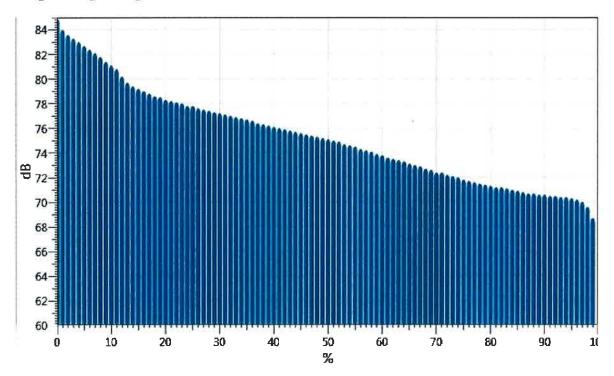
Information Panel

Name	S010_BLH080004_19072018_165034
Start Time	7/18/2018 10:05:09 AM
Stop Time	7/18/2018 10:07:38 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	

Summary Data Panel


 \sim

Description	Meter	Value	Description	Meter	<u>Value</u>
Leq	1	77.4 dB			
Exchange Rate	1	3 dB	Weighting	1	А
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	А
Response	2	FAST			


Statistics Chart

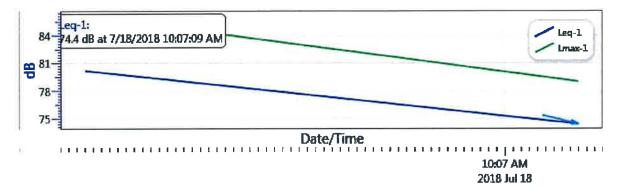
S010_BLH080004_19072018_165034: Statistics Chart

Exceedance Chart

S010_BLH080004_19072018_165034: Exceedance Chart

Statistics Table

dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
68:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.13
69:	0.07	0.09	0.09	0.06	0.08	0.13	0.21	0.23	0.26	0.30	1.54
70:	0.30	0.41	0,39	0.73	1.28	1.75	1.99	2,40	1.48	1,33	12.07
71:	1.10	0.96	1.06	1.27	1.50	1.30	0.86	0.92	0.89	0.66	10.53
72:	0,72	0.88	0.84	0.49	0.78	1.05	0.79	0.66	0.77	0,71	7.6 9
73:	0.95	0.66	0.61	0.70	0.77	0.90	0.78	0.68	0.67	0.78	7.50
74:	0.70	0.64	0.74	0.74	0.77	0.67	0.70	0.78	0.91	0.88	7.54
75:	0.84	0.93	1.09	0.69	0.95	1.11	1.18	1.12	0.85	0.88	9.66
76:	0.80	0.85	0,79	0.95	1.09	0.89	0.85	1.01	0.98	0.83	9.03
77:	0.79	1.05	1.10	0.79	1.08	1.00	0.79	0.78	0.87	1.12	9.35
78:	0.90	0.89	0.78	0.57	1.01	0.79	0.65	0.51	0.48	0.44	7.02
79:	0.66	0.62	0.41	0.44	0.55	0.46	0.25	0.29	0.30	0.21	4.19
80:	0.20	0.17	0.27	0.27	0.19	0.08	0.12	0,20	0.25	0.26	2.01
81:	0.23	0.33	0.34	0.34	0.39	0.27	0.22	0.24	0.24	0.31	2.90
82:	0.25	0.28	0,31	0.35	0.34	0.47	0.47	0.35	0.26	0.27	3.36
83:	0.25	0.27	0.35	0.28	0.38	0.36	0.45	0.27	0.39	0.25	3.25
84:	0.20	0.17	0.21	0.08	0.18	0.15	0.05	0.06	0.06	0.06	1.23
85:	0.06	0.08	0,06	0.07	0.08	0.07	0.09	0.13	0.05	0.08	0.80
86:	0.12	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21


Exceedance Table

•	0%	1%	2%	3%	4%	5%	6%	%7	%8	%9
0%:		84.9	84.0	83.6	83.3	83.0	82.7	82.4	82.1	81.8
10%:	81,4	81.1	80.8	80.2	79.7	79.4	79.2	79.0	78.8	78.6
20%:	78.5	78.3	78.2	78.1	78.0	77.8	77.8	77.6	77.5	77.4
30%:	77.3	77.2	77.1	77.0	76.9	76.8	76.7	76.6	76.4	76.3
40%:	76.2	76.1	76.0	75.9	75.8	75.7	75.6	75.5	75.4	75.3
50%:	75,2	75.1	75.0	74.9	74.7	74.6	74.5	74.3	74.2	74.1
60%:	73.9	73.8	73.6	73.5	73.4	73.3	73.1	73.0	72.9	72.7
70%:	72.6	72.4	72.4	72.2	72.1	72.0	71.8	71.7	71.6	71.5
80%:	71.4	71.3	71.2	71.2	71.1	71.0	70.9	70.8	70.7	70.7
90%:	70.6	70.6	70.5	70.5	70,4	70.4	70.3	70.2	70.0	69.6
100%:	68.7									

Logged Data Chart

S010_BLH080004_19072018_165034: Logged Data Chart

Noise Measurement Report Form – Part A						
Date: 7/ 18/18 Day of Week: weaksday Time: 10:30 Project Number: 6084						
Monitoring Segment / Area: Monitoring Site Address:						
Measurement Taken By: of UltraSystems Environmental						
Approximate Wind Speed: 57 mph [km/hr] Approximate Wind Direction: From the						
Approximate distance of sound level meter from receptor location:						
Approximate distance of sound level meter from construction site:						
(Leave Blank for Baseline Ambient)						
Receptor Land Use (Check One): 🗌 Residential 🗌 Institutional 📑 Comm./Ind. 🔲 Recreational						
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004						
Meter Setting: 🔲 A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)						
Measurement Start Time: 1017 a Measurement End Time: 18145						
Total Measurement Time: Session File Name (e.g., S012): SOP						

Check the measurement purpose:

Baseline conditio	Ongoing construction	🛛 Major change	Complaint response
-------------------	----------------------	----------------	--------------------

Measurement Results

	Measurement Type	Measured Levels (dB)	
	Calibration	Pre: 14. Post: 114.0	×
	L _{eq (h)}	Slow: 63.4 Fast: 63.2	
	L _{max}	Slow: 78,0 Fast: 8 .0	
	L90	Slow: 48.4 Fast: 48.2	
Field Notes:		SEL 93.0 J	B
1loc 2	iding and w	100-300ft	<u>ح</u>
Noise Monitor's S	Signature:M	when Date:_	7/18/18.

Noise Measurement Report Form

1

	traSystems Irvine, CA 92618 949.788.4900
	Noise Measurement Report Form – Part B
Date: 718/ 8	B Day of Week: wednesday Time: 0.30 Project Number: 6084
	nent / Area: Monitoring Site Address:
	Site Map
Plan View North Arrow (fill-in)	Indicate site location, receptor location, meter location, distance in feet to landmarks, roadways, travel lane directions, geographical objects: trees, water, buildings, signs, store names, hydrants, power & telephone lines, manholes, etc.)
Elevation View	(Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, buildings, etc.)
Latitude: 33	10580 Longitude: 5.51084 Elevation: -186
Noise Monito	r's Signature: MAnd Date: Date:

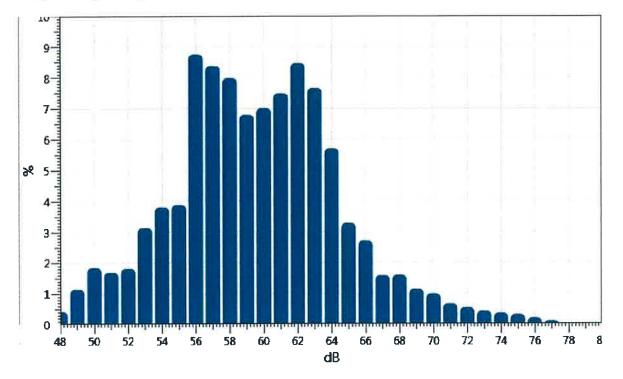
Noise Measurement Report Form

Session Report

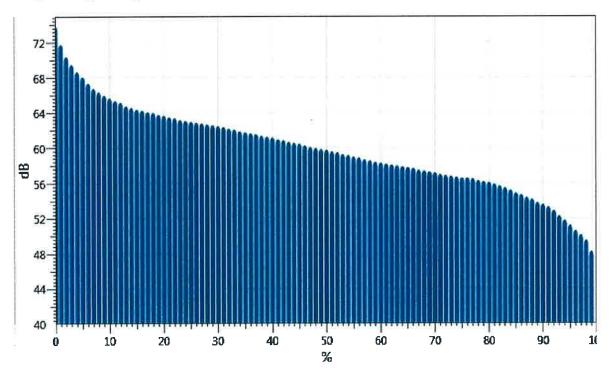
7/20/2018

Information Panel

Name	S011_BLH080004_19072018_165038
Start Time	7/18/2018 10:31:27 AM
Stop Time	7/18/2018 10:46:27 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

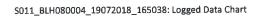
Description	Meter	<u>Value</u>	Description	Meter	Value
Leq	1	63.4 dB			
Exchange Rate	1	3 dB	Weighting	1	Α
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	А
Response	2	FAST			

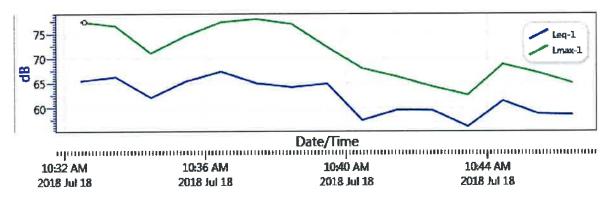

Statistics Chart

S011_BLH080004_19072018_165038: Statistics Chart

Exceedance Chart

S011_BLH080004_19072018_165038: Exceedance Chart


Statistics Table


dB:	0.0	0,1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
48:	0.00	0.00	0.00	0.02	0.03	0.09	0.07	0.08	0.05	0.08	0.42
49:	0.06	0.04	0.14	0.07	0.08	0.14	0.16	0.16	0.12	0.16	1.14
50:	0.15	0.18	0.18	0.13	0.18	0.29	0.19	0.19	0.21	0.14	1.84
51:	0.18	0.19	0.14	0.18	0.22	0.19	0.13	0.14	0.13	0.19	1.69
52:	0.19	0.21	0.21	0.20	0.14	0.20	0.19	0.15	0.13	0.19	1.81
53:	0.20	0.23	0.34	0.25	0.24	0.36	0.44	0.39	0.34	0.35	3.14
54:	0.29	0.30	0.25	0.41	0.46	0.46	0.42	0.36	0.41	0.46	3.80
55:	0.35	0.33	0.39	0.36	0.39	0.34	0.33	0.46	0.44	0.50	3.88
56:	0.56	0.71	0.71	0.71	0.77	0.81	1.00	1.19	1.24	1.06	8.76
57:	0.89	0.87	0.42	0.85	0.87	0.78	0.86	0.91	0.87	1.06	8.39
58:	0.97	0,95	0.92	0.90	0.83	0.65	0.77	0.65	0.68	0.66	7,99
59:	0.68	0.69	0.72	0.65	0.70	0.55	0.65	0.77	0.73	0.65	6.80
60:	0.85	0.92	0.59	0.73	0.62	0.64	0.66	0.65	0,74	0.64	7.02
61:	0.65	0.84	0.68	0.68	0.82	0.76	0.71	0.71	0.79	0.86	7.49
62:	0.91	0.77	0.63	0.68	0.74	0.81	0.89	0.95	1.04	1.05	8.48
63:	1.01	0.96	0.63	0.95	0.75	0.60	0.72	0.67	0.79	0.59	7.67
64:	0.69	0.62	0.57	0.61	0.62	0.73	0.53	0.46	0.40	0.48	5.71
65:	0.33	0.30	0.35	0.38	0.32	0.37	0.36	0.29	0.29	0.30	3.29
66:	0.32	0.41	0.30	0.28	0.25	0.27	0.24	0.22	0.22	0.20	2.72
67:	0.19	0.19	0.17	0.15	0.18	0,15	0.16	0.14	0.13	0.15	1.59
68:	0.15	0.16	0.16	0.18	0.17	0.14	0.18	0.16	0.17	0.14	1.61
69:	0.12	0,12	0.10	0.10	0.13	0.13	0,12	0,08	0.10	0.14	1.14
70:	0.15	0.10	0.11	0.13	0.09	0.09	0.09	0.09	0.08	0.07	0.99
71:	0.07	0.07	0.06	0.06	0.08	0.07	0.09	0.05	0,06	0.06	0.67
72:	0.06	0.07	0.06	0.05	0.06	0.05	0.05	0.05	0.05	0.05	0.54
73:	0.04	0.05	0.05	0.04	0.05	0.05	0.05	0.03	0.03	0.04	0.43
74:	0.03	0.03	0.05	0.04	0.05	0.03	0.03	0.03	0.03	0.03	0.36
75:	0.03	0.06	0.05	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.32
76:	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.21
77:	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.11
78:	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
F	T	P. 1.1 -									
Exce	edance 1	adle									
9	0%	1%	2%	3%	4%	ı	5%	6%	%7	%8	%9

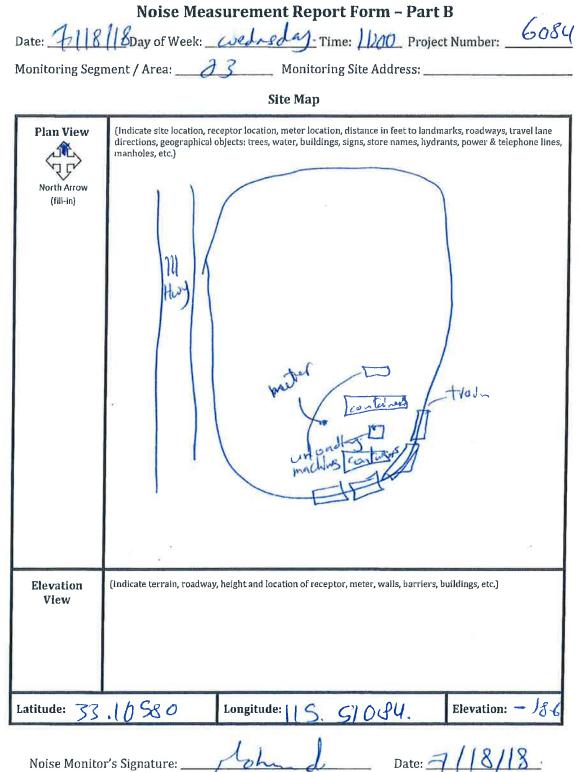
0%:		73.9	71.8	70.4	69.5	68.7	68.1	67.4	66.8	66.4
10%:	66.0	65.7	65.4	65.2	64.8	64.6	64.4	64.3	64.1	64.0
20%:	63.8	63.7	63.5	63.4	63.2	63.1	63.0	62.9	62.8	62.7
30%:	62.6	62.5	62.4	62.2	62.1	61.9	61.8	61.7	61.6	61.4
40%:	61.3	61.2	61.0	60.9	60.7	60.6	60.5	60.3	60.1	60.0
50%:	59.9	59.8	59.6	59.5	59.3	59.2	59.0	58.9	58.7	58.6
60%:	58.4	58.3	58.2	58.1	58.0	57.9	57.8	57.7	57.5	57.4
70%:	57.3	57.2	57.0	56.9	56.8	56.7	56.6	56.6	56.5	56.3
80%:	56.2	56.1	55.9	55.7	55.5	55.2	54.9	54.7	54.4	54.2
90%:	53.8	53.6	53.3	52.9	52.3	51.8	51.2	50.6	50.1	49.5
100%:	48.2									

Logged Data Chart

Noise Measurement Report Form – Part A
Date: 7/18/18 Day of Week: Weans Lay Time: 10:00 Project Number: 6084
Monitoring Segment / Area: Monitoring Site Address:
Measurement Taken By:Kohand of UltraSystems Environmental
Approximate Wind Speed: G_{+} [mph [km/hr] Approximate Wind Direction: From the E_{+}
Approximate distance of sound level meter from receptor location:
Approximate distance of sound level meter from construction site:
Receptor Land Use (Check One): 🔲 Residential 🛄 Institutional 🛗 Comm./Ind. 🔲 Recreational
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004
Meter Setting: 🗹 A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)
Measurement Start Time: Measurement End Time:
Total Measurement Time: $6:34$ Session File Name (e.g., S012): 502

Check the measurement purpose:

🗌 Baseline condition 🛛 🗍 Ongoing con	struction 🛛 Major change	Complaint response
--------------------------------------	--------------------------	--------------------


Measured Levels (dB) **Measurement Type** Pre: Post: ζ Calibration Slow: 9 Fast: Leq (h) Fast: Slow: L_{max} Slow: ast: L90 ß Field Notes: 1. 2. 3. 8 8 Date: Noise Monitor's Signature:

Measurement Results

Noise Measurement Report Form

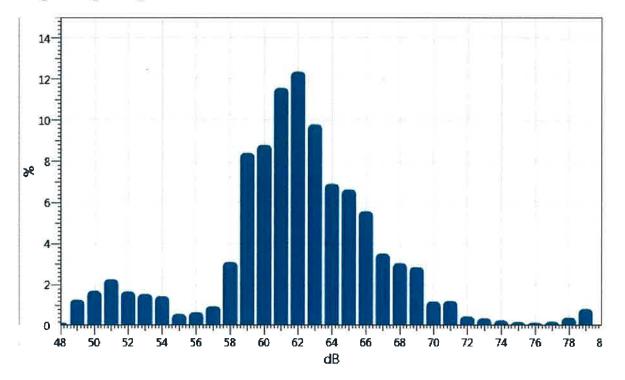
16431 Scientific Way Irvine, CA 92618 949.788.4900

Session Report

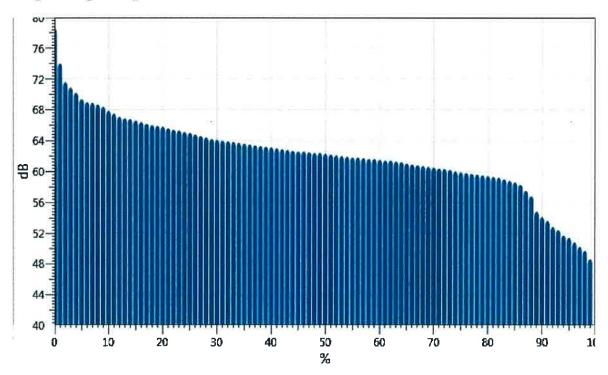
7/20/2018

Information Panel

Name	S012_BLH080004_19072018_165043
Start Time	7/18/2018 11:00:23 AM
Stop Time	7/18/2018 11:06:57 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

Description	Meter	Value	Description	Meter	Value
Leq	1	65.9 dB			
Exchange Rate	1	3 dB	Weighting	1	А
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	А
Response	2	FAST			


Statistics Chart

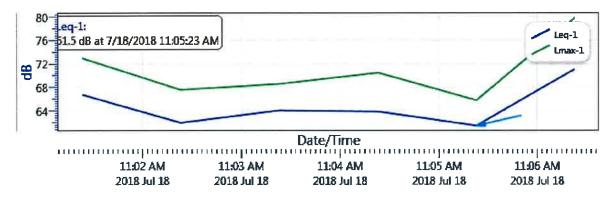
5012_BLH080004_19072018_165043: Statistics Chart

Exceedance Chart

S012_BLH080004_19072018_165043: Exceedance Chart

Statistics Table

dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0,8	0,9	%
48:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.06	0.15
49:	0.02	0.14	0.06	0.05	0.11	0.12	0,16	0.14	0.30	0.16	1.27
50:	0.13	0.15	0.19	0.20	0.17	0,23	0.18	0.13	0.14	0.16	1.69
51:	0.16	0.19	0.07	0,11	0.23	0.23	0.18	0.44	0.35	0.31	2.26
52:	0.16	0.09	0.08	0.12	0.11	0.17	0.16	0.43	0.26	0.10	1.67
53:	0.06	0.06	0.11	0.12	0.12	0.19	0.25	0.21	0.21	0.22	1.55
54:	0.20	0.18	0.09	0.14	0.13	0.18	0.15	0.15	0.10	0.11	1.43
55:	0.11	0.09	0.09	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.57
56:	0.03	0.05	0.04	0.03	0.03	0.03	0.03	0.04	0.09	0.30	0.65
57:	0.20	0.12	0.10	0.08	0.12	0.10	0.06	0.04	0.04	0.07	0.95
58:	0.05	0.05	0.24	0.24	0.47	0.23	0.25	0.31	0.33	0.95	3.11
59:	0.48	0.53	0.60	0.60	0.91	1.18	1,29	1.05	0.88	0.89	8.41
60:	0.90	1.02	0.37	0.70	0.75	0.77	1.04	0.99	1.15	1.12	8,80
61:	1.06	0.79	0.58	0.81	1.00	1,40	1.59	1.69	1.49	1.16	11.58
62:	1.05	1.02	1.34	1.04	1.28	1.30	1.50	1.52	1.40	0.91	12.37
63:	1.27	1.18	0.80	0.82	1.05	1.04	0.86	0.78	0.85	1.15	9.80
64:	1.00	1.10	1.13	0.73	0.57	0.42	0.51	0.48	0.48	0.50	6.91
65:	0.51	0.71	0.65	0.81	0.59	0.68	0.54	0.63	0.62	0.90	6.63
66:	0.76	0.74	0.38	0.52	0.57	0.56	0.44	0.54	0.41	0.65	5.57
67:	0.76	0.61	0.43	0.20	0.25	0.27	0.35	0.25	0.15	0.23	3.51
68:	0.24	0.18	0.14	0.20	0.23	0.25	0.42	0.42	0.39	0.56	3.04
69:	0.53	0.57	0.39	0.33	0.24	0.16	0.11	0.23	0.17	0.13	2.85
70:	0.08	0.08	0.08	0.10	0.11	0.09	0.07	0.07	0.22	0,28	1.17
71:	0.45	0.28	0.14	0.05	0.05	0.05	0.05	0.05	0.04	0.05	1.20
72:	0.06	0.08	0.06	0.03	0.05	0.04	0.04	0.04	0.04	0.04	0.46
73:	0.03	0.04	0.02	0.03	0.03	0.05	0.04	0.04	0.04	0.04	0.36
74:	0.03	0.03	0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.27
75:	0.03	0.03	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.19
76:	0.02	0.02	0.01	0.02	0.02	0,02	0.02	0.01	0.02	0.01	0.16
77:	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.21
78:	0.03	0.02	0.03	0.02	0.03	0.03	0.03	0.06	0.07	0.09	0.40
79:	0.04	0.06	0.08	0.14	0.19	0.09	0.08	0.09	0.06	0.00	0.82



Exceedance Table

	0%	1%	2%	3%	4%	5%	6%	%7	%8	%9
0%:		78.6	74.0	71.6	70.9	70.2	69.4	69.0	68.9	68.7
10%:	68.4	67.9	67.5	67.1	66.9	66.8	66.6	66.4	66.2	66.0
20%:	65.9	65.8	65.6	65.4	65.3	65.1	65.0	64.8	64.6	64.4
30%:	64.2	64.1	64.0	63.9	63.8	63.7	63.6	63.5	63.4	63.3
40%:	63.2	63.1	63.0	62.9	62.8	62.7	62.6	62.6	62.5	62.4
50%:	62.4	62.3	62.2	62.1	62.0	61.9	61.8	61,8	61.7	61.6
60%:	61.6	61.5	61.4	61.4	61.3	61.2	61.0	60.9	60.8	60.7
70%:	60.6	60.5	60.4	60.3	60.2	60.0	59.9	59.8	59.7	59.6
80%:	59.5	59.4	59.3	59.2	59.0	58.8	58.6	58.3	57.5	56.8
90%:	54.8	54.1	53.6	52.8	52.4	51.7	51.4	50.8	50.2	49.7
100%:	48.6									

Logged Data Chart

S012_BLH080004_19072018_165043: Logged Data Chart

16431 Scientific Way Irvine, CA 92618 949.788.4900

Noise Measurement Report Form - Part A

1									
Date: 2 8 18 Day of Week: wednesday Time: Hill Project Number: 6084.									
Monitoring Segment / Area: Monitoring Site Address:									
Measurement Taken By:									
Approximate Wind Speed:mph [km/hr] Approximate Wind Direction: From the									
Approximate distance of sound level meter from receptor location:									
Approximate distance of sound level meter from construction site:									
(Leave Blank for Baseline Ambient)									
Receptor Land Use (Check One): 🗌 Residential 🗍 Institutional 📮 Comm./Ind. 🔲 Recreational									
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004									
Meter Setting: 🔟-A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)									
Measurement Start Time: Measurement End Time:									
Total Measurement Time: <u>ISmm</u> Session File Name (e.g., S012): <u>Sol 3</u>									

Check the measurement purpose:

1. 1			
Baseline condition	Ongoing construction	Major change	Complaint response

		Measurement Type	Measured Levels (dB)	
		Calibration	Pre: 14.1 Post: 14.2	
		L _{eq (h)}	Slow: 69.9 Fast: 69.8.	
		L _{max}	Slow: 89.7 Fast: 96.3	
		L90	Slow: 54.8 Fast: 54.8	
Fie	ld Notes:		SEL : 55	udB
1. 2.		pinothe Idlin	2 @ 50 ft "	why.
3.		-		
	Noise Monitor's	Signature:	Date:	7/18/18

Measurement Results

16431 Scientific Way Irvine, CA 92618 949.788.4900

Noise Measurement Report Form - Part B Date: 7/18/18 Day of Week: wednesdow Time: 11:22 Project Number: 6084 04 Monitoring Segment / Area: Monitoring Site Address: _ Site Map (Indicate site location, receptor location, meter location, distance in feet to landmarks, roadways, travel lane **Plan View** directions, geographical objects: trees, water, buildings, signs, store names, hydrants, power & telephone lines, manholes, etc.) () (North Arrow (fill-in) (Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, buildings, etc.) Elevation View Latitude: 33.11069 Longitude: 119,51302 Elevation: - 187 ft Noise Monitor's Signature: Date:

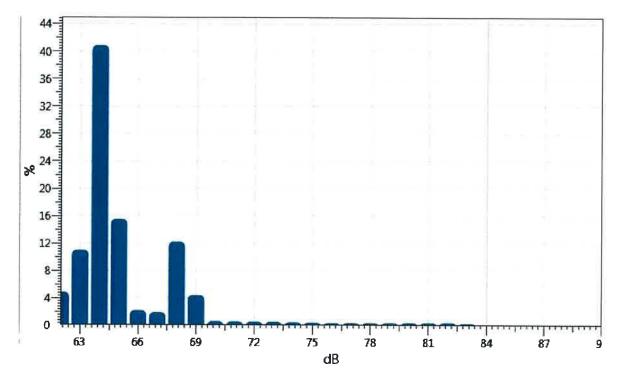
Noise Measurement Report Form

Session Report

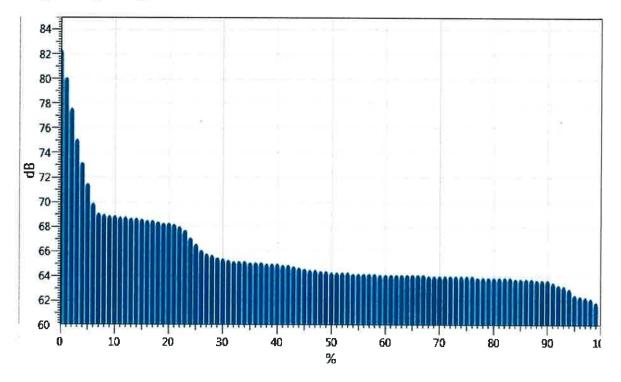
7/20/2018

Information Panel

Name	S013_BLH080004_19072018_165047
Start Time	7/18/2018 11:23:03 AM
Stop Time	7/18/2018 11:38:03 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

Description	<u>Meter</u>	Value	Description	Meter	<u>Value</u>
Leq	1	69.8 dB			
Exchange Rate	1	3 dB	Weighting	1	Α
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	Α
Response	2	FAST			


Statistics Chart

S013_BLH080004_19072018_165047: Statistics Chart

Exceedance Chart

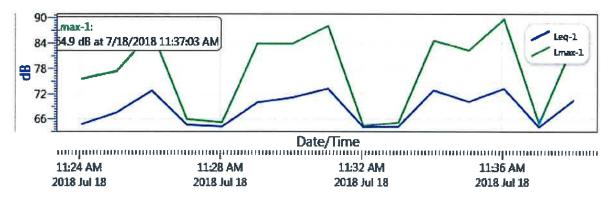
S013_BLH080004_19072018_165047: Exceedance Chart

Statistics Table

 \propto

dB:	0.0	0.1	0.2	0,3	0,4	0,5	0.6	0.7	0.8	0,9	%
62:	0.02	0.20	0.43	0.57	0.91	1.36	0.72	0.29	0.20	0.15	4.86
63:	0.07	0.18	0.28	0.83	1.00	0.73	0.15	0.56	2.34	4.84	10.99
64:	6.52	8.76	8.96	5.80	3.33	2.16	1.83	1.35	1.23	0.93	40.86
65:	1.53	3.01	3.22	2.59	1.55	1.03	0.74	0.38	0.68	0.78	15.49
66:	0.44	0.29	0.19	0.17	0.21	0.16	0.19	0,15	0.20	0.19	2.21
67:	0.19	0.19	0.22	0,15	0.18	0.22	0.23	0.14	0.15	0.22	1.89
68:	0.40	0.55	0.74	0.82	1.20	1.53	1.64	1.69	1.99	1.64	12.21
69:	1.99	1.19	0.37	0.34	0.16	0.10	0.07	0.07	0.07	0.09	4.43
70:	0.06	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.64
71:	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.62
72:	0.07	0.06	0.06	0.04	0.06	0,05	0.06	0.06	0.05	0.06	0.58
73:	0.05	0.06	0.05	0.06	0.06	0.04	0.06	0.06	0.05	0.07	0.57
74:	0.05	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.05	0.50
75:	0.05	0.05	0.06	0.03	0.04	0.05	0.06	0.03	0.04	0.03	0.45
76:	0.03	0.04	0.03	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.38
77:	0.04	0.04	0.04	0.04	0.05	0.04	0.03	0.04	0.03	0.04	0.39
78:	0.04	0.04	0.04	0.03	0.03	0.04	0.05	0.04	0.04	0.04	0.40
79:	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.41
80:	0.05	0.04	0.05	0.06	0.03	0.04	0.04	0.03	0.04	0.05	0.43
81:	0.04	0.05	0.05	0.03	0.04	0.04	0.04	0.05	0.04	0.04	0.43
82:	0.06	0.05	0.06	0.05	0.03	0.04	0.04	0.05	0.06	0.04	0.46
83:	0.04	0.05	0.02	0.03	0.02	0.03	0.03	0.04	0.03	0.03	0.33
84:	0.02	0.03	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.16
85:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
86:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
87:	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.06
88:	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
89:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.03

Exceedance Table


98. 1	0%	1%	2%	3%	4%	5%	6%	%7	%8	%9
0%:		82.4	80.1	77.6	75.1	73.2	71.5	69.9	69.1	69.0
10%:	68.9	68.9	68.8	68.8	68.7	68.7	68.6	68.5	68.5	68.4
20%;	68.3	68.3	68.2	68.0	67.7	67.1	66.6	66.1	65.8	65.7

30%:	65.5	65.4	65.3	65.2	65.2	65.2	65.1	65.1	65.1	65.0
40%:	65.0	65.0	64.9	64.9	64.8	64.7	64.6	64.5	64.5	64.4
50%:	64.4	64.3	64.3	64.3	64.3	64.2	64.2	64.2	64.2	64.2
60%:	64.1	64.1	64.1	64.1	64.1	64.1	64.1	64.1	64.1	64.0
70%:	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	63.9	63.9
80%:	63.9	63.9	63.9	63.9	63.9	63.8	63.8	63.8	63.8	63.7
90%:	63.7	63.7	63.5	63.3	63.2	63.0	62.5	62.4	62.3	62.2
100%:	61.9									

Logged Data Chart

S013_BLH080004_19072018_165047: Logged Data Chart

16431 Scientific Way Irvine, CA 92618 949.788.4900

Noise Measurement Report Form – Part A
Date: 118/18 Day of Week: wed as day Time: 2718 Project Number: 6084
Monitoring Segment / Area: Monitoring Site Address:
Measurement Taken By: of UltraSystems Environmental
Approximate Wind Speed:mph [km/hr] Approximate Wind Direction: From the
Approximate distance of sound level meter from receptor location:
Approximate distance of sound level meter from construction site:
Receptor Land Use (Check One): 🔲 Residential 🗖 Institutional 🗍 Comm./Ind. 🗌 Recreational
Sound Level Meter: Make and Model: Quest SoundPro DL-1-1/3 Serial Number: BLH080004
Meter Setting: 🔲 A-Weighted Sound Level (SLOW) 🔲 A-Weighted Sound Level (FAST)
Measurement Start Time: <u>2,18</u> . Measurement End Time: <u>2,24</u>
Total Measurement Time: 6:44 ml Session File Name (e.g., S012): 503

Check the measurement purpose:

r

□ Baseline condition □ Ongoing construction	🗋 Major change	🛛 Complaint response
---	----------------	----------------------

Measurement Results

	Measurement Type	Measured Levels (dB)	
	Calibration	Pre: 114.2 Post: 114.1	
	L _{eq (h)}	Slow: 78,9 Fast: 787	
	L_{max}	Slow: 96.5 Fast: 99.8	
	L90	Slow: BOIL Fast: 60.4	
Field Notes:		SEL 105.0	
1 2 3	moving.	6:44 ml ~	SMID
Noise Monitor's	Signature: <u>No he</u>	and Date: =	+118/18

1

16431 Scientific Way Irvine, CA 92618 949.788.4900

Date: 7/18/18 Day of Week: wednesting Time: 12:18 Project Number: 6084. Monitoring Segment / Area: _ Monitoring Site Address: ____ Site Map (Indicate site location, receptor location, meter location, distance in feet to landmarks, roadways, travel lane directions, geographical objects: trees, water, buildings, signs, store names, hydrants, power & telephone lines, **Plan View** manholes, etc) ocm kd North Arrow (fill-in) /// (Indicate terrain, roadway, height and location of receptor, meter, walls, barriers, buildings, etc.) Elevation View Latitude: Longitude: **Elevation:** Topand Date: ____7 Noise Monitor's Signature:

Noise Measurement Report Form - Part B

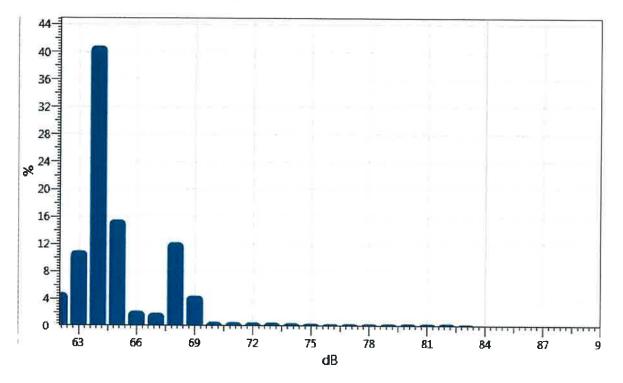
Page 2 of 2

Session Report

7/20/2018

Information Panel

Name	S013_BLH080004_19072018_165047
Start Time	7/18/2018 11:23:03 AM
Stop Time	7/18/2018 11:38:03 AM
Device Name	BLH080004
Model Type	SoundPro DL
Device Firmware Rev	R.13H
Comments	


Summary Data Panel

Description	<u>Meter</u>	Value	Description	Meter	<u>Value</u>
Leq	1	69.8 dB			
Exchange Rate	1	3 dB	Weighting	1	А
Response	1	SLOW	Bandwidth	1	OFF
Exchange Rate	2	3 dB	Weighting	2	А
Response	2	FAST			


Statistics Chart

S013_BLH080004_19072018_165047: Statistics Chart

Exceedance Chart

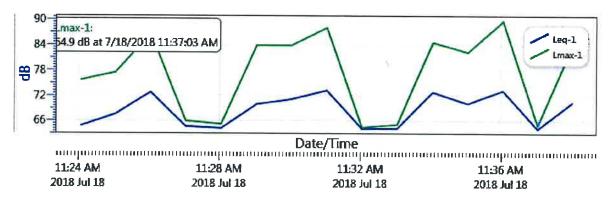
S013_BLH080004_19072018_165047: Exceedance Chart

1

Statistics Table

dB:	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	%
62:	0.02	0.20	0.43	0.57	0.91	1.36	0.72	0.29	0.20	0.15	4.86
63:	0.07	0.18	0.28	0.83	1.00	0.73	0.15	0.56	2.34	4.84	10.99
64:	6.52	8.76	8.96	5.80	3.33	2.16	1.83	1.35	1.23	0.93	40.86
65:	1.53	3.01	3.22	2.59	1.55	1.03	0.74	0.38	0.68	0.78	15.49
66:	0.44	0.29	0.19	0.17	0.21	0.16	0,19	0.15	0.20	0.19	2.21
67:	0.19	0.19	0.22	0.15	0.18	0.22	0.23	0.14	0.15	0.22	1.89
68:	0.40	0.55	0.74	0.82	1.20	1.53	1.64	1.69	1.99	1.64	12.21
69:	1.99	1.19	0.37	0.34	0.16	0.10	0.07	0.07	0.07	0.09	4.43
70:	0.06	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.64
71:	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.62
72:	0.07	0.06	0.06	0.04	0.06	0.05	0.06	0.06	0.05	0.06	0.58
73:	0.05	0.06	0.05	0.06	0.06	0,04	0.06	0.06	0.05	0.07	0.57
74:	0.05	0.05	0.05	0,05	0.05	0.06	0.05	0.05	0.05	0.05	0.50
75:	0.05	0.05	0.06	0.03	0.04	0.05	0.06	0.03	0.04	0.03	0.45
76:	0,03	0.04	0.03	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.38
77:	0.04	0.04	0.04	0.04	0.05	0.04	0.03	0.04	0.03	0.04	0.39
78:	0.04	0.04	0.04	0.03	0.03	0.04	0.05	0.04	0.04	0.04	0.40
79:	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.41
80:	0.05	0.04	0.05	0.06	0.03	0.04	0.04	0.03	0.04	0.05	0.43
81:	0.04	0.05	0.05	0.03	0.04	0.04	0.04	0.05	0.04	0.04	0.43
82:	0.06	0.05	0.06	0.05	0.03	0.04	0.04	0.05	0.06	0.04	0.46
83:	0.04	0.05	0.02	0.03	0.02	0.03	0.03	0.04	0.03	0.03	0.33
84:	0.02	0.03	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.16
85:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
86:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.09
87:	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.06
88:	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
89:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.03

Exceedance Table


÷	0%	1%	2%	3%	4%	5%	6%	%7	%8	%9
0%:		82.4	80.1	77.6	75.1	73.2	71.5	69.9	69.1	69.0
10%:	68.9	68.9	68.8	68.8	68.7	68.7	68.6	68.5	68.5	68.4
20%:	68.3	68.3	68.2	68.0	67.7	67.1	66.6	66.1	65.8	65.7

30%:	65.5	65.4	65.3	65.2	65.2	65.2	65.1	65.1	65.1	65.0
40%:	65.0	65.0	64.9	64.9	64.8	64.7	64.6	64.5	64.5	64.4
50%:	64.4	64.3	64.3	64.3	64.3	64.2	64.2	64.2	64,2	64.2
60%:	64.1	64.1	64.1	64.1	64.1	64.1	64.1	64.1	64.1	64.0
70%:	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	63.9	63.9
80%:	63.9	63.9	63.9	63.9	63.9	63.8	63.8	63.8	63.8	63,7
90%:	63.7	63.7	63.5	63.3	63.2	63.0	62.5	62.4	62.3	62.2
100%:	61.9									

Logged Data Chart

S013_BLH080004_19072018_165047: Logged Data Chart

Matthew Harmon
Michael Rogozen
Tom DuBose
Thursday, January 31, 2019
UltraSystems Project No. 6084
Air Quality and Greenhouse Gas Emission Analysis of Bridge and New Onsite Railroad Track at All American Grain

1.0 INTRODUCTION

On November 20, 2018, UltraSystems submitted to you a report, Air Quality and Greenhouse Gas Emissions Study for All American Grain Container Storage and Transfer Facility, for a proposed facility near Calipatria, California. After the report was submitted, two new elements were proposed for the project:

- A new rail spur, to be built inside the existing one.
- A bridge over both rail spurs to allow access to the interior of the facility from surrounding roadways when one or both of the rail spurs is occupied by a train.

This memorandum is a supplement to the aforementioned air quality and greenhouse gas (GHG) emissions study. It covers only the proposed rail spur and bridge although, where necessary, information from the previous report has been included.

2.0 PROJECT DESCRIPTION

Attachment 1 shows the revised new site plan, including the proposed inner rail spur and two alternative locations for the new bridge.

2.1 Inner Rail Spur

The new rail spur will be approximately 8,100 feet long, within a 15-foot right-of-way. It will roughly parallel the existing spur, with a minimum separation distance of 30 feet. Trains will enter from the existing spur from the Southern Pacific Railroad main line (on the east side of the project site), travel briefly on the outer spur, and then enter the inner spur. The new spur will be used primarily for unit trains that ship agricultural products to the Port of Long Beach.

Memo to Matthew Harmon Page 2 January 31, 2019

Track construction will precede construction of the bridge and will take four to five months. The construction starting date is estimated to be September 2019.

The addition of the rail spur will not result in an increase in the activity levels of trucks and trains over what was described in the November 2018 report.

2.1 Bridge

The overpass portion of the bridge will be 90 feet long and 30 feet wide. The remainder of the bridge structure (on either side of the overpass) will total 1000 feet long and be 40 to 45 feet wide. The maximum height of the bridge roadway surface will be 35 feet above the ground. The maximum number of trucks crossing the bridge per day will be 10.

3.0 EMISSION CALCULATION METHODS

3.1 Rail Spur

The Rail Line construction did not fit the common CalEEMod Model,¹ so emissions were estimated using methods and formulas included in the CalEEMod Guidelines to address the unique aspects of railway construction. Although railway construction appears very straightforward, it requires more advanced technology and uses more sophisticated equipment. A new line consists of two tracks: the permanent one and a temporary track that is used to supply material for the former. Unique equipment, including a track laying machine, track lifting machine, tamping machine, ballast grader, and dynamic track stabilizers, is used. Details of calculations are provided in **Attachment 2**. Two rail spur construction phases were assumed: (1) site preparation and grading and (2) rail line construction.

3.2 Bridge

Emissions from the overpass/bridge construction activity were estimated using the latest version of the Sacramento Metropolitan Air Quality Management District's Roadway Construction Emissions Model.² The Roadway Model is recommended for linear construction projects such as new roadway, road widening, roadway overpass, levee, or pipelines. Model defaults for the Bridge/Overpass Construction project type were used, except for the addition of hauling of asphalt from Salton City.

4.0 EMISSIONS ESTIMATES

4.1 Rail Spur

4.1.1 Construction Emissions

Table 1 and **Table 2** summarize the criteria pollutant and greenhouse gas emissions estimates,respectively, by construction phase, for the new rail spur.

¹ California Emissions Estimator Model®, Version 2016.3.2. California Air Pollution Control Officers Association. November 2017.

² Roadway Construction Emissions Model. Sacramento Metropolitan Air Quality Management District. May 2018.

Memo to Matthew Harmon Page 3 January 31, 2019

A	Location	Maximum Daily Emission				
Activity	Location	ROG	CO	NOx	PM10	PM2.5
	Offroad	0.9	6.6	9.1	0.5	0.5
Grading & Site Preparation	Onroad	0.022	0.683	0.09	0.001	0.018
	Total	0.92	7.28	9.19	0.50	0.52
	Offroad	3.4	20.0	41.1	1.6	1.5
Rail Line Construction	Onroad	1.52	6.58	21.71	1.03	0.44
	Total	4.92	26.58	62.81	2.63	1.94
ICAPCD Significance Thr	eshold	75	550	100	150	N/A

Table 1 RAIL SPUR CONSTRUCTION EMISSIONS OF CRITERIA POLLUTANTS

These rail spur construction emissions are generally lower than the *mitigated* construction emissions estimated for the first three phases of the project in the November 2018 report. They are also below the ICAPCD's significance thresholds for all the pollutants. Therefore, they are less than significant.

A	Location	GHG Emissions (tonnes)					
Activity	Location	CO ₂	CH ₄	N ₂ O	CO ₂ e		
	Offroad	8.6	0.003	N/A	8.7		
Grading & Site Preparation	Onroad	1.15	0.0001	0.0001	1.19		
	Total	9.75	0.003	0.0001	9.89		
	Offroad	174.5	0.056		176.0		
Rail Line Construction	Onroad	111.61	0.0552	0.0511	128.25		
	Total	286.11	0.1112	0.0511	304.25		
Project GHG Emissions		296	0.11	0.051	314		

 Table 2

 RAIL SPUR CONSTRUCTION EMISSIONS OF GREENHOUSE GASES

4.1.2 Operational Emissions

4.1.2.1 Criteria Pollutant Emissions

The new rail spur will not increase the amount of truck or rail traffic associated with the site. Therefore, there is no change in the significance of criteria pollutant emissions.

4.1.2.2 Greenhouse Gas Emissions

As discussed in the November 2018 report, total construction GHG emissions are amortized over 30 years and added to operational GHG emissions. Operational GHG emissions would not change. The amortized GHG emissions from the rail spur construction are **10.5 tonnes per year**.

Memo to Matthew Harmon Page 4 January 31, 2019

4.2 Bridge

4.2.1 Construction Emissions

Table 3 and **Table 4** summarize the criteria pollutant and greenhouse gas emissions estimates, respectively, by construction phase, for the bridge.

A	Maximum Daily Emissions (lb/day) ^a						
Activity	ROG	CO	NOx	PM 10	PM _{2.5}		
Grubbing/Land Clearing	0.66	12.99	1.84	20.10	4.24		
Grading/Excavation	6.05	86.39	32.79	21.54	5.52		
Drainage/Utilities/Subgrade	3.95	59.38	15.51	20.92	5.01		
Paving	1.14	14.84	18.99	0.85	0.57		
Maximum	6.05	86.39	32.79	21.54	5.52		
ICAPCD Significance Threshold	75	550	100	150	N/A		

Table 3 BRIDGE CONSTRUCTION EMISSIONS OF CRITERIA POLLUTANTS

^aSum of emissions from offroad construction and onroad worker commuting and material hauling.

Daily emissions are below the ICAPCD's significance thresholds for all the pollutants. Therefore, they are less than significant.

A	GHG Emissions (tonnes)								
Activity	CO ₂	CH4	N20	CO ₂ e					
Grubbing/Land Clearing	5.87	0.0020	0.00013	5.94					
Grading/Excavation	256.41	0.077	0.0030	259.25					
Drainage/Utilities/Subgrade	173.97	0.045	0.0021	175.73					
Paving	140.90	0.0094	0.017	146.30					
Project GHG Emissions	577.15	0.13	0.022	587					

Table 4 BRIDGE CONSTRUCTION EMISSIONS OF GREENHOUSE GASES

^aSum of emissions from offroad construction and onroad worker commuting and material hauling.

4.2.2 Operational Emissions

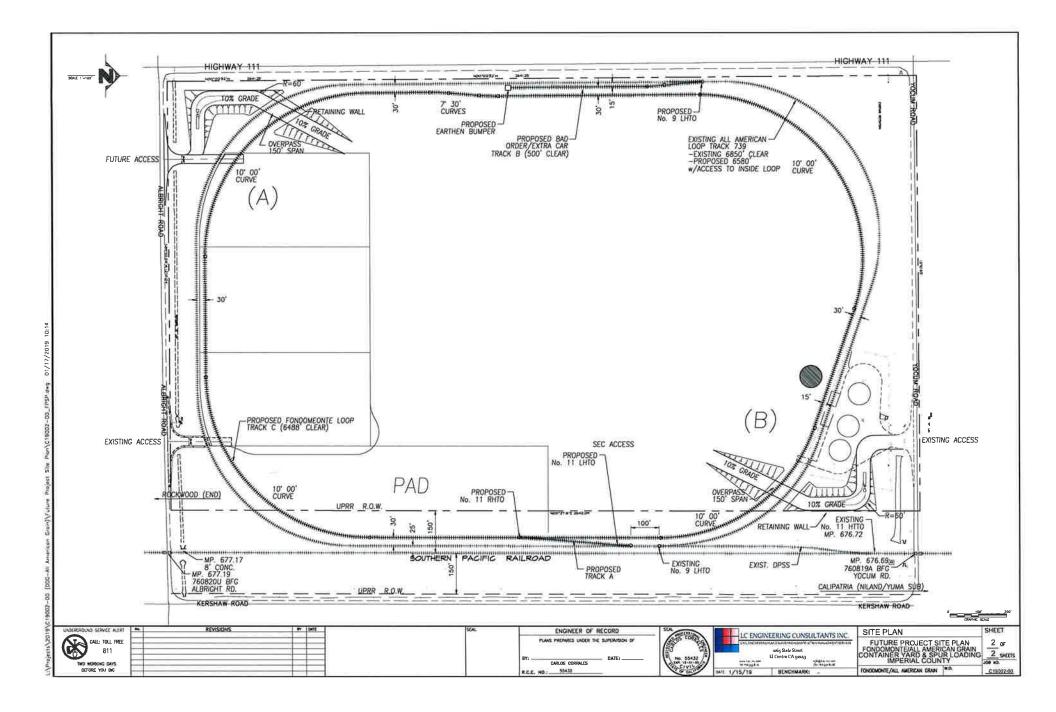
4.2.2.1 Criteria Pollutant Emissions

The new bridge will not increase the amount of truck or rail traffic associated with the site. Therefore, there is no change in the significance of criteria pollutant emissions.

4.2.2.2 Greenhouse Gas Emissions

As discussed in the November 2018 report, total construction GHG emissions are amortized over 30 years and added to operational GHG emissions. Operational GHG emissions would not change. The amortized GHG emissions from the bridge construction are **19.6 tonnes per year**.

Memo to Matthew Harmon Page 5 January 31, 2019


5.0 DISCUSSION

Because the rail spur and the bridge would be built in separate phases, which will not overlap any other phases of project construction, their criteria pollutant emissions are not cumulative. Therefore, criteria pollutant emissions would be less than significant throughout construction and for the life of the project.

On the other hand, GHG emissions are cumulative, given their long lives in the atmosphere. The November 20, 2018 report estimated annual GHG emissions of 1,338 tonnes (including annualized emissions from construction). The rail spur and bridge additions to the project would contribute annualized emissions of 10.5 and 19.6 tonnes per year, respectively. Cumulative emissions would therefore be **1,368 tonnes per year**.

Total annual GHG emissions would remain below an interim threshold that the South Coast Air Quality Management District (SCAQMD) has recommended for various type of development projects.³ The SCAQMD proposes that if a residential or commercial project generates GHG emissions below 3,000 tonnes CO_2e annually, it could be concluded that the Project's GHG contribution is not "cumulatively considerable" and is therefore less than significant under CEQA. The project's GHG contribution would be determined to be not "cumulatively considerable" and therefore would be less than significant under CEQA.

Interim CEQA GHG Significance Threshold for Stationary Sources, Rules, and Plans. South Coast Air Quality Management District Board. Adopted December 5, 2008.

ATTACHMENT 2 EMISSION CALCULATION DETAILS

Road Construction Emissions Model, Version 9.0.0

	AAG - Overpass Const			Total	Exhaust	Fugitive Dust	Total	Extraunt	Fugitive Dust					
Project Phases (Pounds)	ROG (Ibs/day)	CO (Ibs/day)	NOx (Ibelday)	PM10 (Realday)	PM10 (Iba/day)	PM10 (Ibs/day)	PM2.5 (Ibs/day)	PM2.5 (Ibalday)	PM2.5 (Ibs/day)	SOx (lbs/day)	CO2 (Ibs/day)	CH4 (iba/day)	N2O (ibs/day)	CO2e (Bald
Grubbing/Land Clearing	0.66	12.99	1.84	20.10	0.10	20.00	4,24	0.08	4.16	0.02	2,132.94	0.58	0.05	2,161_1
Grading/Excavation	6.05	86.39	32,79	21,54	1.54	20.00	5,52	1,36	4 16	0_16	15,540,00	4,69	0.18	15,711.8
Drainage/Utilities/Sub-Grade	3.95	59,38	15.51	20,92	0 92	20.00	5.01	0.85	4 16	0.11	10,543,54	2 74	D_13	10,650 4
Paving	1,14	14.84	18.99	0.85	0.85	0.00	0,57	0.57	0,00	0.08	8,539,64	0,57	1_05	8,865.4
Maximum (pounds/day)	6,05	85,39	32.79	21,54	1.54	20,00	5,52	1,36	4,16	0_16	15,540.00	4,69	1_05	15,711,8
Total (tons/construction project)	0_19	2,69	1_12	0,77	0.05	0.72	0.19	0.05	0.15	0.01	577.15	0.13	0.02	587.22
Notes Project Start Year ->	2020													
Project Length (months) ->	5													
Total Project Area (acres) ->	6													
Maximum Area Disturbed/Day (acres) ->	2													
Water Truck Used? ->>	Yes													
	Total Material Im	ported/Exported		Daily MMT	(miles/dav)		5							
	Volume ((yd²/day)			(mies/day)									
Phase	Sail	Asphalt	Soil Hauling	Asphalt Hauling	Worker Commute	Water Truck								
Grubbing/Land Cleaning	0	D	0	0	210	40								
	n	0	0	0	1,176	40								
Grading/Excavation		0	1.7.1											
Grading/Excavation Drainage/Utilities/Sub-Grade	p	0	D	o	756	40								
Drainage/Utilities/Sub-Grade Paving	0	0 593	0	0 1,602	336	40 40								
DrainagerUtilitiee/Sub-Grade Paving PM10 and PM2.5 estimates assume 50% control of fugitive dust from wath Total PM10 emissions shown in column F are the sum of exhaust and fug	tive dust emissions s	dust control measu hown in columns G	and H. Total PM2 5	mber of water trucks emissions shown in	336 are specified. Column I are (he su	40 n of exhaust and fu								
Drainage/Utilities/Sub-Grade Paving PM10 and PM2.5 estimates assume 50% control of fugitive dust from wate Total PM10 emissions shown in column F are the sum of exhaust and fug CO2e emissions are estimated by multiplying mass emissions for each GF	tive dust emissions s HG by its global warm	dust control measu hown in columns G ning potential (GWP	and H. Total PM2 5	mber of water trucks emissions shown in CO2, CH4 and N2O	336 are specified. Column I are the sur , respectively. Total (40 n of exhaust and fue CO2e is then estimat	ted by summing CO	2e estmales over al	I GHGs					
Drainage/Utilities/Sub-Grade Paving 2010 and PM2.5 estimates assume 50% control of fugitive dust from well fotal PM10 emissions shown in column F are the sum of exhavet and fug 202e emissions are estimated by multiplying mass emissions for each GH 202e emissions are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH	tive dust emissions s HG by its global warm AAG - Overpass Const	dust control measur hown in columns G ning potential (GWP	and H. Total PM2 5), 1 , 25 and 206 for	mber of water trucks emissions shown in CO2, CH4 and N2O Totał	335 are specified. Column I are the sur respectively. Total (Exhaust	4D n of exhaust and fug CO2e is then estima Fugilive Dust	ted by summing CO Total	2e estimales over al Exhaust	GHGs Fugitive Dust				NO2 //	
Drainage/Utilities/Sub-Grade Paving 2010 and PM2.5 estimates assume 50% control of fugitive dust from well fotal PM10 emissions shown in column F are the sum of exhavet and fug 202e emissions are estimated by multiplying mass emissions for each GH 202e emissions are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH 202e emission are estimated by multiplying mass emissions for each GH	tive dust emissions s HG by its global warm	dust control measu hown in columns G ning potential (GWP	and H. Total PM2 5	mber of water trucks emissions shown in CO2, CH4 and N2O	335 are specified. Column I are the sur respectively. Total (Exhaust	4D n of exhaust and fug CO2e is then estima Fugilive Dust	ted by summing CO Total	2e estimales over al Exhaust	I GHGs	SOx (lons/phase)	CO2 (lone/phase)	CH4 (tons/phase)	N2O (ions/phase)	CO2e (MT/pl
Drainage/Utilities/Sub-Grade Paving 2010 and PM2.5 estimates assume 50% control of fugitive dust from wait fotal PM10 emissions shown in column F are the sum of exhaust and fugi CO2e emissions are estimated by multiplying mass emissions for each GH Total Emission Estimates by Phase for -> Total Emission Estimates by Phase for -> Tons for all except CO2e. Metric tonnes for CO2e)	tive dust emissions s HG by its global warm AAG - Overpass Const	dust control measur hown in columns G ning potential (GWP	and H. Total PM2 5), 1 , 25 and 206 for	mber of water trucks emissions shown in CO2, CH4 and N2O Totał	335 are specified. Column I are the sur respectively. Total (Exhaust	4D n of exhaust and fug CO2e is then estima Fugilive Dust	ted by summing CO Total	2e estimales over al Exhaust	GHGs Fugitive Dust	SOx (lons/phase) 0.00	CO2 (lone/phase) 5 87	0.00	N2O (lons/phase) 0.00	5,39
Drainage/Utilities/Sub-Grade Paving PM10 and PM2.5 estimates assume 50% control of fugitive dust from wate Total PM10 emissions shown in column F are the sum of exhaust and fug 202e emissions are estimated by multiplying mass emissions for each GF	tive dust emissions s -IG by its global warm AAG - Overpass Const ROG (tons/phase)	dust control measur hown in columns G ning potential (GWP CO (tons/phase)	and H. Total PM2,5), 1 , 25 and 298 for NOx (tons/phase)	mber of water trucks emissions shown in CO2, CH4 and N2O Total PM10 (lons/phase)	336 are specified. Column I are the sur respectively. Total (Exhaust PM10 (tons/phase)	40 n of exhaust and fug CO2e is then estima Fugilive Dust PM10 (tons/phase)	Total PM2.5 (Ions/phase)	2e estimales over al Exhaust PM2.5 (lons/phase)	Fugitive Dust PM2.5 (tons/phase)					5,39
Drainage/Utilities/Sub-Grade Paving PM10 and PM2.5 estimates assume 50% control of fugitive dust from wath Total PM10 emissions shown in column F are the sum of exhaust and fug CO2e emissions are estimated by multiplying mass emissions for each GP Total Emission Estimates by Phase for -> Total Emission Estimates by Phase for -> Total Emission Estimates by CO2e) Grubbing/Land Clearing	tive dust emissions s (G by its global warm AAG - Overpase Cons ROG (tons/phase) 0.00	dust control measu hown in columns G ung polential (GWP CO (tons/phase) 0.04	and H. Total PM2.5), 1 , 25 and 298 for NOx (tons/phase) 0.01	mber of water trucks emissions shown in CO2, CH4 and N2O Total PM10 (lons/phase) 0.06	336 are specified. Column I are the sur, respectively. Total i Exhaust PM10 (ions/phase) 0.00	40 n of exhaust and fuy CO2e is then estima Fugilive Dust PM10 (tons/phase) 0.06	Total PM2,5 (Ions/phase) 0,01	2e estimales over al Exhaunt PM2.5 (tons/phase) 0,00	I GHGs, Fugitive Dust PM2,5 (tons/phase) 0,01	0.00	5 87	0.00	0.00	
Drainage/Utilities/Sub-Grade Paving PM10 and PM2.5 estimates assume 50% control of fugitive dust from web Total PM10 emissions shown in column F are the sum of exhaust and fug CO2e emissions are estimated by multiplying mass emissions for each GH Total Emission Estimates by Phase for -> Project Phases Totas for all except CO2e. Metric tonnes for CO2e) Grubbing/Land Clearing Grading/Exavation Drainage/Utilities/Sub-Grade	tive dust emissions s (G by its global warm AAG - Overpass Const ROG (tons/phase) 0.00 0.10	dust control measur hown in columns G ning polential (GWP CO (tons/phase) 0,04 1,43	and H. Total PM2.5), 1 , 25 and 286 for NOx (tons/phase) 0,01 0,54	mber of water trucks emissions shown in CO2, CH4 and N2O Total PM10 (lons/phase) 0.06 0,36	336 are specified. Column I are the sur, respectively. Total I Exhaust PM10 (Ions/phase) 0.00 0.03	40 n of exhaust and fuy CO2e is then eshima Fugilive Dust PM10 (tona/phase) 0.06 0.33	Ted by summing CO Total PM2.5 (lons/phase) 0.01 0.09	Ze estimales over al Exhaust PM2.5 (lons/phase) 0,00 0,02	Fugitive Dust PM2.5 (tons/phase) 0.01 0.07	0.00	5 87 256 41	0.00	0.00	5,39 235,19
Drainage/Utilities/Sub-Grade Paving PM10 and PM2.5 estimates assume 50% control of fugtive dust from web Total PM10 emissions shown in column F are the sum of exhaust and fug CO2e emissions are estimated by multiplying mass emissions for each GH Total Emission Estimates by Phase for -> Total Emission Estimates by Phase for -> Grubbing/Land Clearing Grading/Excavation	tive dust emissions s IG by its global warr AAG - Overpass Cons ROG (tons/phase) 0.00 0,10 0.07	dust control measur hown in columns G ning potential (GWP CO (tons/phase) 0.04 1,43 0.98	and H, Total PM2 5), 1 , 25 and 286 for NOx (tons/phase) 0,01 0,54 0,26	mber of water trucks emissions shown in CO2, CH4 and N2O Total PM19 (lons/phase) 0.06 0.36 0.35	336 are specified. Column I are the sur , respectively. Total I Exhaust PM10 (Ions/phase) 0.00 0.03 0.02	40 n of exhaust and fue CO2e is then estima Fugilitive Dust PM10 (tona/phase) 0.06 0.33 0.33	Total Total PM2.5 (Ions/phase) 0.01 0.09 0.08	2e estimales over al Exhaust PM2.5 (lons/phase) 0,00 0,02 0,01	Fugitive Dust PM2.5 (tons/phase) 0.01 0.07 0.07	0.00 0.00 0.00	5 87 256 41 173.97	0.00 0.08 0.05	0.00 0.00 0.00	5,39 235,19 159,42

CO2e emissions are estimated by multiplying mass emissions for each GHG by its global warming potential (GWP), 1, 25 and 298 for CO2, CH4 and NZO, respectively. Total CO2e is then estimated by summing CO2e estimates over all GHGs. The CO2e emissions are reported as metric tons per phase.

Rail Line Construction Employee Commute

Construction Employee Vehicle Activity

Activity	Total Work Days	Trips per day	Round Trip (mi)	VMT per day	Total VMT (mi)
Grading & Site Preparation	22	4	43	172	3,737
Rail Line Construction	76	15	43	645	49,047
			Totals	645	49,047

Construction Employee Criteria Emissions

Anti-iter	Pounds per Day								
Activity	ROG	со	NOx	PM ₁₀	PM _{2.5}				
Grading & Site Preparation	0.022	0.683	0.090	0.001	0.018				
Rail Line Construction	0.083	2.559	0.339	0.002	0.066				
Maximum Pounds per Day	0.08	2.56	0.34	0.00	0.07				

Construction Employee GHG Emissions

		Total 1	onnes	
Activity	CO2	CH4	N₂O	CO2e
Grading & Site Preparation	1.15	0.0001	0.0001	1.19
Rail Line Construction	15.11	0.0015	0.0017	15.65
Totals	15.1	0.001	0.002	15.7

Rail Line Off-road Equipment Emissions

Grading & Site Preparation

	Activity						Criteria Emissions (lbs/d)					GHG Emissions (tonnes)			
Equipment Type	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NO _x	PM ₁₀	PM _{2.5}	CO2	CH₄	COze	
Grader	187	0.41	22	8	1	174	0.77	4.90	7.48	0.42	0.38	6.37	0.0021	6.42	
Tractors/Loaders/Backhoes	97	0.37	22	6	1	130	0.16	1.71	1.58	0.10	0.09	2.22	0.0007	2.24	
	Grading Totals					0.9	6.6	9.1	0.5	0.5	8.6	0.003	8.7		

Rail Line Construction

	Equivalent Offroad			Act	ivity				Criteria	Emissions	(lbs/d)		GHG E	missions (to	nnes)
Equipment Type	Category	BHP	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM ₁₀	PM _{2.5}	CO2	CH₄	COze
Track Laying Machine ¹	skid steer loaders	247	0.37	76	6	1	456	0.65	4.31	6.73	0.36	0.33	19.79	0.0064	19.95
Track Lifting Machine ²	сгапе	142	0.29	76	6	1	456	0.39	2.27	3.48	0.25	0.23	8.83	0.0029	8.90
Railroad Crane	crane	241	0.29	76	6	1	456	0.36	1.66	4.22	0.17	0.16	15.08	0.0049	15.20
Ballast Wagon ³	off hiway tractor	561	0.44	76	4	1	304	0.39	2.44	3.73	0.14	0.13	35.42	0.0115	35.71
Tamping machine	off hiway truck	758	0.38	76	4	1	304	0.77	3.48	12.18	0.32	0.29	41.17	0.0133	41.50
Ballast grader	grader	295	0.41	76	4	1	304	0.38	1.43	4.99	0.16	0.15	17.49	0.0057	17.63
Dynamic track stabilizers	other const	475	0.42	76	4	1	304	0.39	2.87	4.64	0.17	0.15	28.84	0.0093	29.07
Railroad excavator	excavator	121	0.38	76	6	1	456	0.11	1.50	1.11	0.05	0.05	7.93	0.0026	7.99
Construction Totals					n Totals	3.4	20.0	41.1	1.6	1.5	174.5	0.056	176.0		
	Rail Line Criteria Maximum Daily / GHG Totals				G Totals	3.4	20.0	41.1	1.6	1.5	183.1	0.059	184.6		

¹ Machine is towed by front-end loader

² Powered by Caterpillar C4.4 diesel engine

³ Towed by small diesel locomotive

Note: For rail line construction equipment, bhp obtained from manufacturers' websites, emission & load fcators were from most appropriate CalEEMod OFFROAD equipment type for calendar year 2020.

Hauling Truck Activity

Hauling Truck Activity

Project Phase	Days per Phase	Trips/day	Round Trip (mi)	VMT per day	Total VMT (mi)		
Ballast for Rail Line Construction	76	26	45	1,170	89,000		
Ballast Truck Totals							

Trip mileage for ballast is based on product from Hiway 111 & Frink Rd (44.5 miles 1-way)

Hauling Truck Criteria Emissions

Designet Disease	Pounds per Day								
Project Phase	ROG	со	NO _x	PM ₁₀	PM _{2.5}				
Ballast for Rail Line Construction	1.444	4.020	21.369	1.025	0.367				
Max Daily	1.44	4.02	21.37	1.03	0.37				

Hauling Truck GHG Emissions

Design to Disease	Total Tonnes							
Project Phase	CO2	CH₄	N ₂ O	COze				
Ballast for Rail Line Construction	96.54	0.05373	0.04943	112.61				
Totals	96.5	0.0537	0.0494	112.6				

		Criteria	a Emissions	GHG Emissions (MT)					
Category	ROG	со	NO _x	PM ₁₀	PM _{2.5}	CO2	CH₄	N _z O	CO ₂ e
Grubbing/Land Clearing	0.66	12.99	1.84	20.10	4.24	5.39	0.00	0.00	5.87
Grading/Excavation	6.05	86.39	32.79	21.54	5.52	235.19	0.08	0.00	256.41
Drainage/Utilities/Sub-Grade	3.95	59.38	15.51	20.92	5.01	159.42	0.05	0.00	173.97
Paving	1.06	14.05	13.28	0.64	0.48	79.32	0.01	0.01	84.75
Critera Max Daily/GHG Total	6.1	86.4	32.8	21.5	5.5	479.3	0.14	0.01	521.0

Emissions Summary for Overpass/Bridge

Data from Road Construction Model, Version 9.0.0

Faultment Tune	внр	Load			Emissio	n Factor (g/	bhp-hr)		
Equipment Type	ВПР	Factor	ROG	со	NO _x	PM ₁₀	PM _{2.5}	CO2	CH ₄
Excavator	158	0.38	0.231	3.086	2.278	0.110	0.102	472.3	0.153
Grader	187	0.41	0.567	3.621	5.530	0.309	0.284	478.0	0.155
Tractors/Loaders/Backhoes	97	0.37	0.331	3.601	3.326	0.210	0.193	475.2	0.154
Track Laying Machine	247	0.37	0.537	3.562	5.570	0.298	0.274	474.6	0.153
Track Lifting Machine	142	0.29	0.723	4.171	6.381	0.453	0.417	469.9	0.152
Railroad Crane	241	0.38	0.384	1.790	4.563	0.188	0.173	472.9	0.153
Ballast Wagon	561	0.44	0.181	1.122	1.715	0.063	0.058	471.8	0.153
Tamping machine	758	0.39	0.303	1.372	4.794	0.125	0.115	469.9	0.152
Ballast grader	295	0.41	0.352	1.342	4.678	0.150	0.138	475.3	0.154
Dynamic track stabilizers	475	0.42	0.224	1.634	2.637	0.096	0.088	475.2	0.154
Railroad excavator	121	0.38	0.231	3.086	2.278	0.110	0.102	472.3	0.153

2020 Offroad Emission Factors

From: CalEEMod Users Guide - Appendix D (October 2017)

Equipment List & Number of Workers for Rail Line

Construction Activity

Grading & Site Preparation	Off-road Equipment	Number	# Equip	# Emp	Extra	Total Emp
Preparation of site	Grader	1	2	25	4.5	4
	Excavator	1	2	2.5	1.5	
Constructing Rail Line	Off-road Equipment	Number	# Equip	# Emp	Extra	Total Emp
Laying of temporary track (rails & ties) used to transport the equipment; using temporary track to discharge the rails and ties for the main track onto the formation; laying of ties and rails on permanent track; laying ballast, tamping, and dynamic stabalization to complete rail leveling; final finishing with ballast grading.	Track Laying Machine	1		10		15
	Track Lifting Machine	1				
	Railroad Crane	1	- 8			
	Ballast Wagon	1			5	
	Tamping machine	1	0			
	Ballast grader	1				
	Dynamic track stabilizers	1				
	Railroad excavator	1				

	Bridge	e / Overpass			
90	feet	overpass			
1,000	ieet	rest of bridge			
1,200	tons	asphalt			
315	tons	concrete			
1,090	feet	Total distance			
0.21	mi				
800	feet				
300	icct	area disturbed			
240,000	ft^2				
5.51	acres				
20.7	mi	1-way asphalt			
44.5	mi	1-way concrete & ballast			

Data Asssumptions

Rail Line						
8,100	feet	length of inner rail line				
1.53	miles	length of finite fait line				
15	feet	width of rail area				
121,500	ft^2	area of project				
2.79	acres	area of project				
24,000	су	base material				
1	mo	grading & site prep				
21.7	wd	grading & site prep				
3.5	mo	rail construction				
76.0	wd					
2,000	total tr	ucks				
26	trucks p	per day				

ON-SITE IMPROVEMENT PLANS FOR ALL AMERICAN GRAIN - PHASE 1 CONTAINER YARD AND SPUR LOADING IMPROVEMENTS PORTION OF SECTION 22, T.12 S., R.14 E., S.B.M.

GRADING PLAN GENERAL NOTES: 1. APPROVE OF THIS GRADING PLAN DOES NOT CONSTITUTE APPROVE OF VESTION, OR HORIZONTAL MISSINGH OF ON THAT PROVE ROUGH SHOPS IN HORIZONTAL TORIC RUPPECTS.

1. RUNL APPEDIX, OF THESE ORADING PLANES SUBJECT TO RIVELAPPEDIX. OF THE ASSOCIATED IMPROVINGENT PLANES WHERE APPLICABLE. RIVEL CURB CRACE ELEVATIONS WAY RECEIVED CHANGES IN THESE PLANES.

2. MPORT WITTHE DWL DE CODENED FROM & LEDAL SITE.

THE CONTRACTOR SHALL BE RESPONSIBLE TO SECURE AN ENCROLONIENT PERMIT FROM THE COUNTY OF PERMIL DEPARTMENT OF PUBLIC WORKS FOR ANY EXCANATION OF CONSTRUCTION WITHIN COUNTY ROAD

Redi-Const. This most const, we have an analysis of all states ((42) 255-1818. Additionally, indications some acts (and) wast be called the density formation for some to tendencies have excent that contact makes (i) and () and () and () and () and () and () and and () and 5. THE CONTINUED SHALL VERY THE EXISTENCE AND LOCATION OF ALL UTILITIES BEFORE COMMENCEM WORK, NOTICE OF PROPOSED WORK SHALL BE CAUDI TO THE FOLLOWING ADDIVIDES:

Сиз ПЕЛинон (ко) (200) 335-7716/780) 332-410 в разве в интер: ПЕЛинон ко, (соо) 335-7716/780 332-410 в интер: ПЕЛинон ко, (соо) 335-7716/780 332-410 в интер: ПЕЛинон ко, (соо) 336-340 в интер: Вистанов ко, (соо) 336-340 в интер: Вистанов ко, (соо) 336-4102 в интер: ПЕЛинон ко, (соо) 336-181 в интер: ПЕЛинон ко, (соо) 336-181 в интер: ПЕЛинон Ко, (соо) 336-181

6_A SOLS REPORT MAY BE REQUIRED PROR TO THE ISSUANCE OF A BUILDING PERMIT AND/OR GRADING PLAN APPROVAL.

5 THE DREETER OF PUBLIC WORLD' APPROVAL OF THESE PLANS DOES NOT CONSTITUTE DOWNY BUILDING OFFICIAL APPROVAL OF MY FOUNDATION FOR STRUCTURES TO BE PLACED ON THE ITDAS COVERED BY THESE PLANE INFO UNDER ANY DEPENDENT OF DEPENDENT OF DETERMENT WILL ST

9 ALL MAKER SLOPES SHALL BE ROUNDED INTO EXISTING TERRAIN TO PRODUCE A CONTOURED TRANSITION FROM CUT OR FILL FACIS TO NATIONAL CROUND AND ARUTTING CUT ON FILL SURFACES.

IT STOLL, CONDITION IF ANY ARCHEOLOGEAL RESILIEST ARE DESCOVED IN THE SITE OF THE CANON OPERATON, SUCH OFFICIATION HILL COSE INAUDIMITLY AND THE PROTITEE HILL NOTIFY THE DIRECTION OF THE FLANKING & HOUSDAPPLING STRUCTURES DOMAINION AND THE OSCIALIZATION HILL NOT RECOMMENCE WITH, THE PROTITEE HAS RECEIVED WRITTEN AUTHORITY FROM THE ORDERTOR OF PLANKING & DOLLANMENT STRUCTS TO DO SO.

12. THE CONSTRUCTION OF DHE POEL STIMUARD DIBLEMAY PUB LOT, LOCATION TO BE DEPENDED IN THE FIELD BY DIRAMEDIA OF INDER AND APPROVED BY COUNTY PUBLIC WORKS INSPECTOR. PCC SURFACING OF DIRAMENT TO JUTTOD FROM LEARY TO PROPERTY LINE. 13. ALL GRADUC BHALL CONFORM TO THE UNFORM BIVEDING CODE APPENDIX CHAP. 33, AS AMENDED BY TITLE & LINE USE OFFICIATE

14. ALL PROPERTY COMMENS SHALL BE CLEARLY DELINEATED IN THE FIELD PRIOR TO THE COMMENCEMENT O ANY CONSTRUCTION MAD/OR CRADING.

15. DURNE ROUCH GROAMS OPENITORS AND PROR TO THE CONSTRUCTION OF ANY PERMANENT DRAINAGE STRUCTURED, TOMPORARY DRAINAGE CONTROL SHALL BE PREVISED TO PREVENT PORTAGE BATER AND DAMAGE TO CONTROLOGY PROFESTION

10. Выст унц. ве сонтоплает пт пе сонтиском и насоявлике нати на витопла солиту на Працитон контакто, котакта (исто) токати силт сонтак, высе мое везанатоке мое знаш сошруг ити пол Транитыя пракакцости, в личеланае.

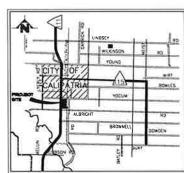
17 NO FILL SWALL BE FLACED ON EXISTING GROUND LIVITL THE EXISTING GROUND HAS BEEN DLEAVED OF WEEDS, DEBRIS, TOPSIDL, AND OTHER DELITERIOLS MATCHIN.

IN THE MAXIMUM ALLOWINGLE CUT INFO PALL SLOPES ANY 2/1. UNLESS A SLOPE STRAILTY ANALYSIS AUTHORIZED A STREFTCH BLOPE AND INSI BEEN APPROVED.

19. A 6' WIDE BT 1' HIGH BERM, OR EQUANLENT, SHALL BE CONSTRUCTED ALONG THE TOP OF ALL FILL SLOPES OVER 5' W VERTICAL HIGHT, ALL SLOPES LESS THAN OR EQUAL TO 5' SHALL HAVE A BERM TO DEVENT INSAME FROM FOR ANY

20. A BROW DITCH DESIGNED TO HANDLE THE FLOWS (0) FROM A 100-YR STORM EVENT SHALL HE CONSTRUCTED ALDING THE TOP OF ALL CUT SLOPIS.

21. NO DESTRUCTION OF FLOOD FLOOD ON INFLOOD, WHICH COLUMNS WILL BE FORMETED.


22. ALL DESTING ARNINGE COURSES ON THE PROJECT SITE MAST CONTINUE TO PUNCTION DURING STORM COMMINENT PROFESSION MARKS AND TEMPORARY DRAWACE PROVISIONS MUST BE USED TO PROTECT CONTENUES PROFESSION COURSE CANADA OFFICIAL DRAWACE PROVISIONS MUST BE USED TO PROTECT

23. THE FINISHED GOINE SHALL BE SLOPED ANY FROM ALL ENTERIOR SHILDING WALLS AT NOT LESS THAN 43 (1/2) POR DEUT) TOR A MINIMAM OF 3 FEET, UNLESS A SOL REPORT PROVIDES ALTERNATE

ALL A DUALTED AND ADDRETED PROFESSIONED DURINGS SMULL SUBMIT A WRITCH CONFIGNATION TO THE MULLIC INDUCT DOWNLOT FOR THE THE ADDRET MAS BEDI CONFILED IN ADDRETION ADDRET AND THE AWRINGD PLANS TORIAL GROUND CONCINTO AS "DISARDED ORDER", AS-INLE PLANS SWILL BE PROVIDED PROFE TO THE ADDRET DESCRIPTION OF THE ADDRET ADDRET ADDRET ADDRET ADDRET

25. THE CONTRACTOR SHALL NOTRY THE FUELC WORTS DEPARTMENT AT LEAST 44 HOURS IN ADMANCE OF REDUCTING A PINED LIST ERADE AND DRAMACE INSPECTION. THIS INSPECTION MUST BE APPRIVED PROVE TO THE RAMARKE FRANT FANIL MARKETORY AND PLANCE WORTS FOR EACH LIST.

28. THE CONTRACTOR SHALL NOTEY "UNDERGROUND SERVICE ALERT" AT B11 (formary (800) 422-4133) A MARANA OF THE DATE PROP TO THE COMMENCEMENT OF ANY DIRONG OF ECOMMEND.

 LEGAL DESCRIPTION: UNITY MADE IN EXPONENT WATER AND ALL AND			DRAINAGE FACLITIES FRADI DAWAGE DURING LISTAGES OF CONSTRUCTION THE DUPTH OF COPER ON THE STANDAR DAWAGE PRIE DE SERVICE TON THAT STANDAR DE STANDAR DE USED DURING CONSTRUCTION TO MAINTAIN COVER OF PROTECT THE PRES.
QMNER: DEVELOPER: BATTOR LUCK UNK OF ************************************	THE GON YOUND THE SUBJECTS CONTROL OF SUCCESS 140 THE WEST WHE D'THE SUCCESS TO WARTER OF SUBJECTS 25 TORONOM THE SUBJECT IN SUBJECTS THE SUBJECTS OF SUBJECTS AND ADD THE SUBJECTS TO THE SUBJECT IN SUBJECTS ADD THE SUBJECT SUBJECTS ADD THE SUBJECTS TO THE SUBJECT IN SUBJECTS ADD THE SUBJECT IN THE SUBJECT SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS TO THE SUBJECTS ADD SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS TO THE SUBJECTS ADD SUBJECTS ADD THE SUBJECT ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE SUBJECTS ADD THE S	VICINITY MAP	CARTIMORIX GUANTITIES OR THAT THE EARTIMORIX FOR THIS PROJECT WILL BRANNEE DUE TO THE WARKING PROJECTIONIS, ENANGUES GUILT PES, ALLOWAUEL CONSTRUCTION TOLEDWARES MOR CONSTRUCTION METHODS THAT HE CONTRACTOR SHALL THOGOLANICY SATISYT HUBBLEY AND THAT THE CONTRACTOR SHALL THOGOLANICY SATISYT HUBBLEY AND THAT THAT CONTRACTOR SHALL THOGOLANICY SATISYT HUBBLEY AND THAT THAT CONTRACTOR SHALL THOGOLANICY SATISYT HUBBLEY AND THAT BE AND CONTRACTOR SHALL THOGOLANICY SATISYT HUBBLEY AND THE AND THE AND CONTRACTOR SHALL THOGOLANICY SATISYT HUBBLEY AND THE AND THE AND CONTRACTOR SATISTICATION OF AND THE AN
		EXISTING NEW FORCHORD * * * * * * * * * * * * * * * * * * *	LIGGTOR VECLOUE Not I all Not Descent of the gene of the descent of the desc

QUANTITIES

PHASE L STIE SURFACING (195 080 SF) 5" CLASS II AC BASC 12" CRUSHO CONCRITE AND BASC 12" SUBGRADE PHEP

PHANE 2. SITE SURFACING (189,020 SF) B" CLASS II AG BASC 12" CRUSHED CONCRETE ACG BASE 12" SUBCRADE PREP.

PHASE J STIE SURFACINE (202,205 ST) 6" ELASS II AG BASE 12" CRUSHED CONCRITE AGG BASE 12" SUBGRADE PREP

ACCESS (REVENALY (10,840 SF) 4° ASPHALI CONCRETE 13° CLASS X AC BASE 13° CLASS X AC BASE

ACCESS DRIVEMAY (0,171 SF) 4° ASPHALI CONCRETE 12° CLASS IN AC BASE 11° CLASS IN AC BASE

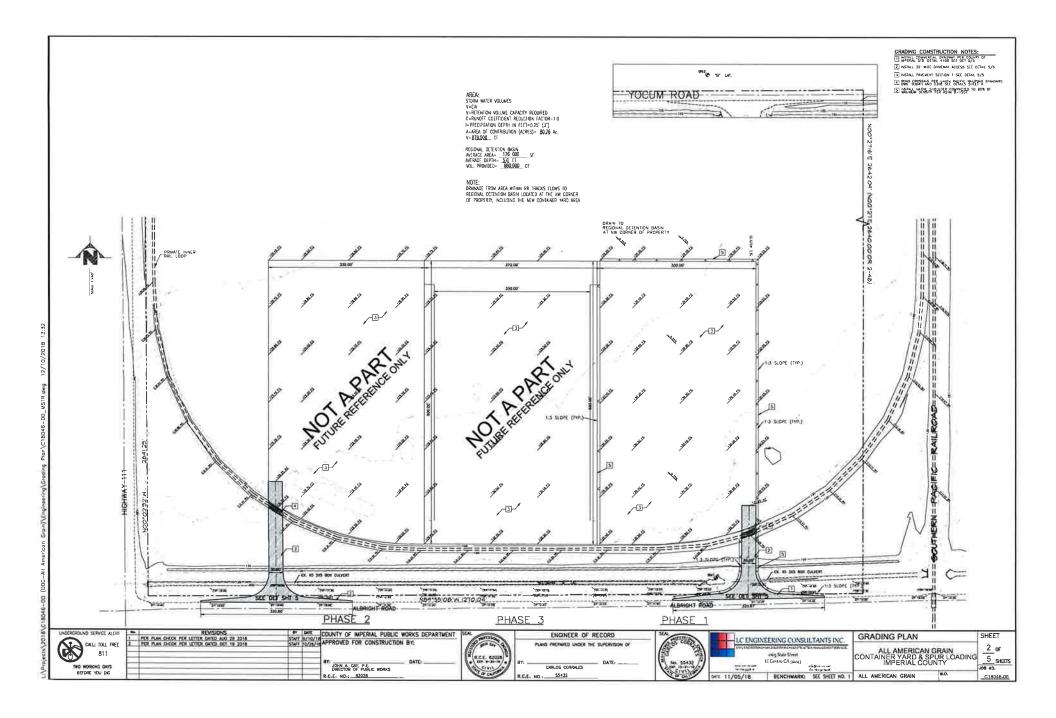
CTT M

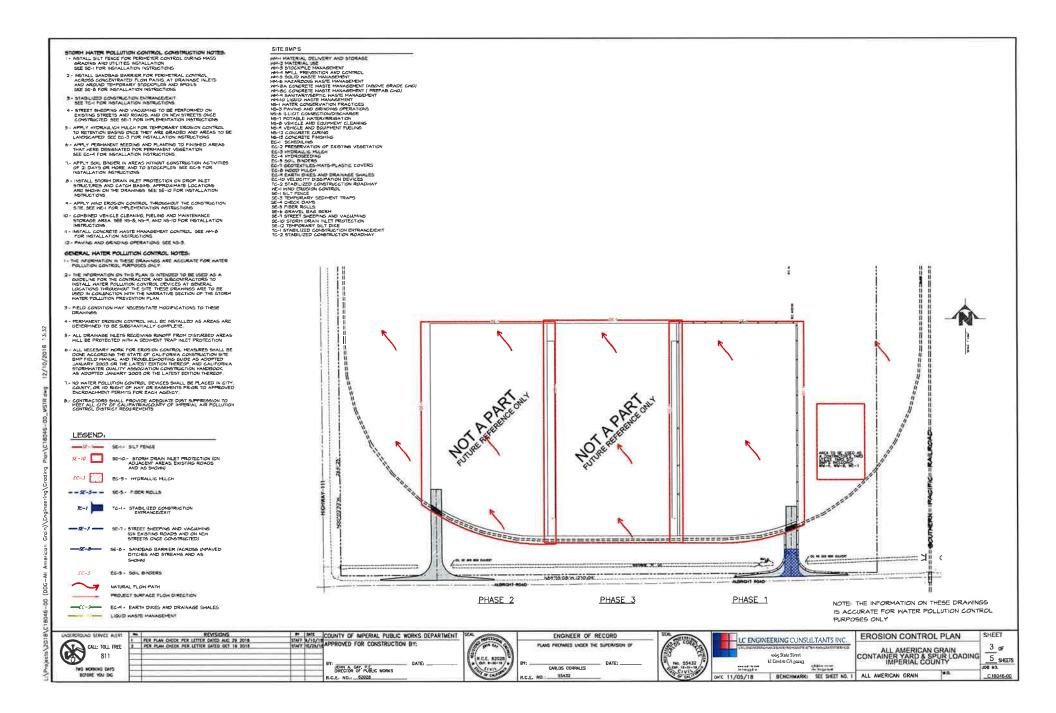
UNDERCRONOUND S	SURVEL ALERI	I PER PLAN CHE	REVISIONS IX PER LETTER GATED AND 20 2018	IV DAT	COUNTY OF IMPERIAL PUBLIC WORKS DEPARTMENT	SEAL COLLING	ENGINEER OF RECORD	SOR ALSTRIA	I C ENCINEERING CONSULTANTS INC	TITLE SHEET	SHEET
	L: TOLL FREE		OC PER LETTER SAULS OCT 19 2018	5107 10/24/1	APPROVED FOR CONSTRUCTION BY:	RCL AND	PLANS PREPARED UNDER THE SUPERVISION OF	and the second second	CELEBRATING CONTRACTOR AND A CONTRACTOR	ALL AMERICAN GRAIN	1 OF
	811				BY: JOHN & CAP. PE. DATE:	(+ CON +- 30-18 / +)	BTI DATE:		El Centro CA gz243	CONTAINER YARD & SPUR LOADIN	NG 5 SHETTS
	KING DAYS				R.C.E. NO.: 62028	ALL CONTRACT	R.C.E. HD.: 55432	Civilia	DATE 11/05/18 BENCHMARK: SEE SHEET NO. 1	ALL AMERICAN GRAIN	C18346-00

ENGINEERING NOTES:

UNIT QUANTITY

10N 8.616 10N 13.2,11 C1D 7.000


10N 7.077 10N 14.154 CT0 7.488


229 543

TON TON 268 759

6 8.10 13 855 7,225 TON TON EYD

- 1. NOTHING CONTAINED IN THE CONTRACT DOCUMENTS SHALL CREATE, NOR SHALL BE CONSTRUED TO CREATE, ANY CONTRACTUAL RELATIONSHIP BETWEEN THE ENGINEER AND THE CONTRACTOR OR ANY SUBCONTRACTOR.
- 2. ANY VARIATIONS FROM THESE PLANS SHALL BE PROPOSED ON CONSTRUCTION FIELD PRINTS AND TRANSMITTED TO THE ENGINEER
- THE CONTRACTOR SHALL PROTECT AND MANTAIN ALL DOSTING UTLITIES ON THE SHE. ANY DAMAGE TO EXISTING UTLITIES, INICIDER SHOWN OR HOT SHOWN ON THE DIMMENTS, SHALL BE REPARED AT THE CONTRACTOR'S DEPOSE.
- 4. EXISTING SURFACE FEATURES AND FENCING SHALL BE REPLACED IN KIND IF DAMAGED BY THE CONTRACTOR DURING CONSTRUCTION.
- 5. ANY INSPECTION BY THE COUNTY OR THE ENGINEER SHALL NOT, IN ANY WAY, RELIEVE THE CONTRACTOR FROM ANY OBLIGATION TO PERFORM THE WORK IN COMPLANCE WITH APPLICABLE CODES AND ACENCY RECURRENENTS.
- 6. CONTRACTOR TO LOCATE ALL EXISTING PROPERTY NONUMENTS PRIOR TO CONSTRUCTION, MAY MONUMENTS DISTURBED DURING THE CONSTRUCTION OF THIS PROJECT SMALL BE REPLACED BY A REGISTERED LAND SURVEYOR AT THE CONTRACTOR'S EXPENSE.
- 7, TRAFFIC CONTROL SHALL BE MAINTAINED IN ACCORDANCE WITH COUNTY OF IMPERIAL REQUIREMENTS.
- 8. PRIOR TO FINAL APPROVAL AND ACCEPTANCE OF THE WORK THE DEVELOPER/CONTRACTOR WILL BE REQUIRED TO CLEAN AND REPAIR ADJACENT THE (PUBLIC) ROADWAYS USED OR DAMAGED DURING THE COURSE OF CONSTRUCTION.
- 9. CONTRACTOR IS RESPONSIBLE FOR PROTECTING ALL STORM DRAIN PIPES AND

CONSTRUCTION

<u>Inverses</u> <u>Setupiealos</u> - Union II es Setupion I of Inger Setupia, Mengodes Tema Tangana Setupidence I (1920, II such III setupione) in Setup Inger Des Setupiones (2010) Estate Setupi III es Setupi O'Langana (2010) Setupidence (2010) Alla Setupi III es III es III es III es III es Alla Ventoria (2010) Setupi Setupi III es III es III es III es III es Alla Setupi Setupi (2010) Setupi Setupi III es III Setupi Setupi Setupi Setupi III es IIII es III Setupi Setupi Setupi IIII es IIII Setupi IIII es IIIII es III es III es III es III es IIII es IIIII es IIII es IIIII es IIII es IIII es IIII es IIII es IIII es IIII es IIIII es IIIII es IIIII es IIII es IIII es IIII es IIIII es IIII es II

THE STREET, LEW LOOK - ALL THE INVESTIGATION SHOLE OF ALLED FIRST IN THIS THE STREET, LEW LOOK - ALL THE INVESTIGATION CONTINUES OF ALL THE STREET REPORT PROPERTIES AND ALL THE STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET REPORT TO THE STREET REPORT STREET, STREET, STREET, STREET, STREET REPORT TO THE STREET STREET, STREET, STREET, STREET, STREET REPORT TO THE STREET STREET, STREET,

Inter Accesses To conduct a solutions of the Table Salvard."

COMPLE AVAILABLE AL CALLER DE CERTINE FOI THE FOLL A CONTRACT BULL (THE CENTRE ALLE). A CONTRACT BULL (THE CENTRE). A CONTRACT DESCRITT (FOI DECORD.): A CONTRACT DESCRITT (FOI DECONT.): A CONTRACT DECONTRACT (FOI DECONTRACT.): A CONTRACT DECONTRACT (FOI DECONT.): A CONTRACT DECONTRACT (FOI DECONTRACT DECONTRACT DECONTRACT DECONTRACT DECONTRACT DECONTRACT DECONTRACT.): A CONTRACT DE

Las percent actual de las contents - in connecto seu la content per entremant la sector activitation de la valanciero de la contenta de las content las contentas de las contentas de las contentas de las contents de las contentas de las contentas de las contentas de las contents de las contentas de las contentes contentas de las contentas de las contentas de las contentas de las contentes de las contentas de las contentas de las contentas de las contentes de las contentas de las contentas de las contentas de las contentas de las contentes de las contentas de las contentas de las contentas de las contentes de las contentas de las contentas de las contentas de las contentes de las contentas de las contentas de las contentas de las contentes de las contentas de las contentas de las contentas de las contentes de las contentes de las contentas de las contentas de las contentes de las contentes de las contentas de las contentas de las contentes de las contentes de las contentas de las contentas de las contentes de las contentes de las contentas de las contentas de las contentes de las con

List of the second seco

<u>Lor Complexie</u>... Write in India: Universi Complexie Octaer Bühnen Rochmengert Nor Prevention Approach fo Quality of Manageria on Rockmanner, file Nort Rockmanner (Bollander) of Provident Spull, Listofor Horiz, Stringeland is Nor Nacayo, fiot in Complex of Proceedings (Shull Bardon Horiz, Stringeland is Nor Nacayo, fiot in Complex of Proceedings).

. MPDEM, COMMY COMES AND INCLASIONS . MARKACTURED'S WITTEN RECOMPOSITIONS . SPECIAL, PRENSIONS . SPECIAL, PRENSIONS . PLANS AND TYPEAL COTALS . RECOMPLEX STANDARD MEDITIONTING

L REDRESS JOINED FOLLOWING

Le projet linesient - projets normowite net ne refer and episodet Delle tra in these defines sould be trace for net underlinests Corrent und for projets. All ends of face of the followed projets shell be of the same underchard indercard the matrix;

LWHERL FRANCE AND GARDER (SEMPRI AND STORE OWNY); WITH PPP (C-SED AND C-NE POLYNYLL OSLOBER); WITH PPP (C-SU ANDR); WITH PPP (C-SU ANDR); PPE (FORMUR; WITH EDWARC GARDER); WITH STATES (GARDER); WITH STATES (MOLES AND GARDER); WITH PPP AN AR MULLAR (OWNER); WITH PPP AN AR MULLA

LOR, AS-HALT INCIDENT AND DEPENDENT - THE CONTRACTOR SHALL AS & CONSIDEN TO ADDRIVED SUBSTATION. COMPLATION OF THE PRACT, PROVIDE NO LIDS THAN DRY (1) COMPLATE SEC OF AS-HALT DEPENDENT PERSTA. AS-BALT DRAWNESS SHALL ACADAR NO LIDS THAN A RESIDE OF THE DART LIDENTIA OF ALL RANKE AND SERVE SOMHETS AND THE DARS OF ALL PREVIDENT RANKE COMPLETING.

In our of AL THE THEME UP ROUTE CONCENTER. LET IN SOUTH AND THE CONCENTER OF CONCENTER AND THE AND THE CONCENTER AND

LILIBRACK-N-COMMUNITY SALL OBDAL WE INF THE ALL REALTS EXAMINE FOR the wint to QuENKLT MA HANDWICKS CALLD THE INFOC CONVEX DEMANDS DOMERSHA MY REVOLUTION FOR THE THE CONVEX DEMANDS DOMERSHA MY REVOLUTION FOR THE THE ALL ALL ADAMANCE AND DOMERSHA MY REVOLUTION FOR THE THE THE ALL ADAMANCE AND THE ALL ADAMANCE AND REVOLUTION FOR THE THE ALL ADAMANCE AND THE ALL ADAMANCE AND REVOLUTION FOR THE THE ALL ADAMANCE AND DOMERSHA MY REVOLUTION FOR THE THE THE ALL ADAMANCE AND THE ALL ADAMANCE AND REVOLUTION FOR THE THE ALL ADAMANCE AND THE ALL ADAMANCE AND REVOLUTION FOR THE THE ALL ADAMANCE AND DOMERSHA MY REVOLUTION FOR THE THE ALL ADAMANCE AND THE ALL ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE DOMERSHA ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE ADAMANCE AND REVOLUTION FOR THE ALL ADAMANCE AND REVOLUTION FOR THE ADAMANCE AND REVOLUTION FOR THE ADAMANCE AND REVOLUTION FOR THE ADAMANCE ADAMANC

. DECARTER FEBRI TRON THE STATE OF CALIFORNIA, DAVISON OF INDUSTRIAN, SAFETY, OR THOREY DECIMINATIONS EXECUTIONS & POST DECEY.

DEMONSION FROM FROM IN: STOT OF CURSION, 2014/00/07 OF INFORMATION (20,1706), 2014 (2014), 2014 (2014), 2014 (2014), 2014 INFORMATION (2014), 2014 (2014), 2014 (2014), 2014 INFORMATION (2014), 2014 (2014), 2014 INFORMATION (2014), 2014 (2014), 2014 INFORMATION (2014),

 Конскартирации практивании предактории ображение образование и практивности практивно Практивности практивности практивности практивности практивности практивности практивности практивности практивно Практивности практивно Практивности практивности практивности практивности практивности практивности практивности практивности практивно Практивности практивности практивности практивности практивности практивности практивности практивности практивн Практивности практивности практивности практивности практивности практивности практивно The second strate Court Book Both-Grame, C1 - 202 ECC - 202 8. BALWER AND BARRONS, ED-121 THEY ES-204.

Lit control to the second and second in the termination and make and called from a track based on the same bits called bits of the second called from a track based on the same bits called bits of the second second and the same bits of the same bits of the same bits second and the same bits of the same bits of the same bits is intered and the same bits of control terms were shown and is intered and the same bits of the same bits

201 IARTINGER AND GROUPS - ALL DATIONAL AND GROUPS INTERACT TO BEING THE PROJECT BOARDING, BITCHES AND DOMANDANIS TO INC UNDER MID BEARS TO BEING THE PROJECT BOARDING, DATE OF AND DOMANDANIS TO INC UNDER BEARS OF THE STANDARD SPECIFICATIONS, THASE CITICAL THEORY REPERTING OF THE STANDARD SPECIFICATIONS, THASE CITICAL THEORY REPERTING ON THIS SPECIAL REPORTIONS.

G. ENTINEORIE 18-1.01 THELI 18-7.05, WENT THE FOLLOBING DESERTIONS. SUBDANCE FOR ADDRESSY: BARE SHALL BE COMPARED TO A BELIEVE COMPARISON OF THE LISS THAN BE PRESSON, THE RELATIVE COMPARED OF REBARKAGET WATERAL SHALL BE NO LESS THAN THE PRESENT.

C. CANANCER TEXTILE TEXTILE OF DEPENDENT CONTINUEDATION FOR EXAMPLE AS INCLUSION TOTAL DAMA DARK IN THE DEFAULT AND ACCE TOTAL DOL IN ACCES OF HEALTHY OTTAL DAMA DARK IN THE DEFAULT AND ACCES TOTAL DARK DARK DECOMPACIDAL. ACCESSION OF ANY ADDRESS OF THE DOL ACCESSION OF DECOMPACIDAL. DETAINED ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL. DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL. DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL. DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL. DEFAULT ANY ADDRESS OF THE DOL ACCESSION. DEFAULT ANY ADDRESS OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL. DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL. DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DECOMPACIDAL DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF THE DOL ACCESSION OF THE DEFAULT ANY ADDRESS OF THE DOL ACCESSION OF

RECK COMMENDIA ALS COMPOSICION (FON CONTRE CELLAD SAFAC), HE EXITAD DODA DEPOSICIONES COMPOSICION (FON CONTRE INVERSION), HE CONTRE DODA DEPOSICIONES CONTRE DI A DOTA DO TRA DO LOS DOTADO PARA DEPOSICIONES CONTRE DI A DOTA DO TRA DO LOS DOTADO PARA DE LA DOTADO DE LA DOTADO DA LOS DOTADO RECKO DE SON MARCO LACIS SEGURIDO LOS NOS CONTRECTO SVAL ADITI DE COMPOSITO DI SUB MARCO LACIS SEGURIDO LOS NOS CONTRECTO SVAL ADITI DE COMPOSITO DI SUB MARCO LACIS SEGURIDO LOS NOS CONTRECTOS SVAL ADITI DE COMPOSITO DI SUB MARCO LACIS SEGURIDO LOS NOS CONTRECTOS SVAL ADITI DE COMPOSITO DI SUB MARCO LACIS SEGURIDO LOS NOS CONTRECTOS SVAL ADITI

THE EXCENSE NATIVE SCILLS INCLUDE SCALE CLAY THAT AND DESCRIPTIONED WHEN MAY BEDARE SYTEM. TECHNOLT WHEN DESCRIPTION WITHIN THE LIMITS OF THE MAYD BEARWARE. THE DISANCE SHALL BE RETIRED INACEMENTLY WHEN SUCH A SOL IS DESCRIPTION.

LID DIAMAGE SCHUM FACILITIS - CONTRECTION OF DAMAGE INCLUES, DECKT THE DECKET MICH JEE CONTROL LARGE STUTTER 7.02, LARMAGER AND CHARAGE SCHUM OF CLUB FOR IN THESE SPACE SCHWIG LARDER OF THE STRUCTURE SCHWARE OF THE STRUCTURE SCHWIGE STUTULE SCHWARE OF THE STRUCTURE SCHWARE OF THE STRUCTURE SCHWARE SCHWARE SCHWARE SCHWARE SCHWARE OF THE STRUCTURE AND SPECTRATION THAT AND SCHWARE SCHWARE SCHWARE SCHWARE SCHWARE SCHWARE SCHWARE SCHWARE SCHWARE OF THE STRUCTURE AND SPECTRATION THAT AND SCHWARE SCHWARE

A RANGE OFFICIENT STOCK PRODUCT OF ADDRESS COMPARENT OFFICIENT AND STOCK AND STOCK AND STOCK AND ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND ADDRES

e. Bûnêgardîd carrençût, popu ro-1.21 tanih ro-1.12. ale alardîr (jarrî), samel de rejardîr Gağıştidi and ale popu samel bei negaledi tu mist tar felsibilit and Batunterhinisis rûçarbahaye bet gut for semen and preselre popu

The unit of the second second

D. THE BEDGED HO BOOTLL CHARACTER LITTER, TOR PHE BEDGED HO PHE 2004 BASHLITI HO LEDS THEN IT READS ADDRETTION OF REAL SHALL CHARST OF 3/ PHENOMENON ADDRETTION ADDRETTION OF A DREAM ADDRETTION ADDRETTION ADDRETTION PEDDOTORING, TO BOARD TO BOARD ADDRETTION ADDRETTION ADDRETTION MADEAL. THE EXTERIBUTION FOR A MERICAN E-MALE MALE MAND BECK THE MATTERN. NOT A SHIP COMPONENT FOR A MERICAN E-MALE MALE MAND BECK THE MATTERN. NOT A SHIP COMPONENT FOR A MERICAN E-MALE MALE MAND BECK THE

C. COMPANIES TO PROVIDE THE OF DETAIL OF ALL THE A

2.51.0.000 (J.M.C.S. 1940 SEPAIX - CARE, GATER, RAPE AND BALES CALLO FOR BY THEME DAMAGES SHALL CONTINUE TO THE FOLIOBILE SECTIONS OF THE STANDARD SPECIFICATION, DOLE OTHER SECTION INDEX MOTIONS, AND THESE SPECIA. PROVENDER,

FIGUREDING. A COMPARTY CARRYS AND SECURICS, 73-1.01 THE, 73-1.05, WTH THE FRLIDWIG DESCRIPTION AND ADDITIONAL ALL COMPARTY SHALL CONTRAFT IND LISS THAT 6-1/3 SECS OF THY V, PREMARE DEDUCTION FRIC CARE TOOD SHALL CONTRAFT AND SECS OF THY V, PREMARE DEDUCTION FRIC CARE TOOD SHALL CONTRAFT AND CARE PR. SYNLL INNEA & MICTO-COMPARING NATI DEDREME CARE VAR IN REDOIT MOD SHALL ER, MICTO-FIELD IN SHAT-FIELDED THE COMPARE CARE IN THE REDOIT MOD

C CANCETT TURNED THE DUBITION WILL CARDY SILLAR, COLLECT LOGO TANDY AND CHIEFRET THE CANCEN. COLONDER OF ALL CONDECTS MODE FUNCTION. THE CONTINUES OF SILLAR VIEW THEN TO ROTTANDE THE COLLECT MODE FUNCTION AND SUB-FUNC HIRDRARD TOTI TUTING COMPARISONS MINIMARY AT 2-DAYS MAD 28-DAYS MILLARD TOTI TUTING COMPARISONS MINIMARY AT 2-DAYS MAD 28-DAYS MILLARD TOTI TUTING COMPARISONS MINIMARY AT 2-DAYS MAD 28-DAYS MILLARD TOTI TUTING COMPARISONS MINIMARY AT 2-DAYS MAD 28-DAYS

2.04 Prime: NOT AND SUBJECT OF ADDRESST INSE NO ADVANT CONCRET. Incommunity into the study was analysis from college for in these dramatics sval compare them is concerned weights of the subject program.

A AGERCIATE MARY 78-1.01 THEL 20-1.07. AGERCIATE BARE SHALL BE 1-1/2 MARAN CLASS 2 MARENAL NO RECTOLO MATERIALS MAL BE ALLANDS.

8 Almost Condition Jan-Lin Hard M-Ball, Almost Condition Stall at 3/4" activation (atticut), Title Thread and participation of the stall at 125 MAM 4.5 POlicity in statistic of an accessment atticut actual actual at 125 MAM 4.5 PARAC To a Roberty of an All USB HAN 145 PORMET FOR Linear Policy Policy ParaCont To Attication of the state of policy Policy Policy Date Policy Poli

E 104/2 20013 35-1125

2. ROADWAY AND DRAINAGE SYSTEMS SPECIFICATIONS

A BAT CONTROL 10-101 THE ID-164.

L PHENON ROCHEL 21-141 THM 21-141

C ANTONE 17-121 140 17-124

A memory and delayertage 42-101 that 22-104. Redale post allocater shall be cannot be the second of the second sec C. TRAFFIC STRAFTS AND PAYORING WARDINGS: 64-1.01 THRU 84-3.07. TWATIC INDIFES

L ROADSDE SIGHE: 16-2.01 THU 16-2.01. STREET WHAT SHE STREE, COLORS AND DESIGNS. SWILL HE AS IT STANDARD WITH THE COUNTY OF GAPTINAL. 3. GENERAL REQUIREMENTS FOR DRAMAGE IMPROVEMENTS. I AL DIVING DISCH AD DIVINGUISTATI AN INTERNATION OF IN ACCESSIVE WITH THE ANTIPAL INTERNATION SERVECT (DI THAT'I HORALITY MANAL OF OTHER BIOGRACITY DIVINGUISTATI ANTIPALITY DIVINGUISTI MANAL OF OTHER DIVINGUIST OF OTHER ANTIPALITY BIOLS. MOTHER STATES IN ACCUMENTS IN-D-F CAUNCES FOR THE ANTIPALITY BIOLS. MOTHER STATES IN ACCUMENTS IN-D-F

1 FORE DIMENSION THE DIMENSION CONTRACT STOLEN. STORN INSTRUMENTS SHALL BE DESCRIDE TO CARRY THE TOH-TARK SIX-HEAR STORN INSTRUMENTS. THE SECOND AT THE SECTION TO CARRY FRAMED THE STOR INSTRUMENT STORNESS CONTRACT STORNESS AND ADDRESS TO STORNESS TO STORNESS TO START LARS WITH AT LEARS ONE LY MOREMENT AT LARS CARLY TO TRAINED. ALL ADARTIES SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN TO TRAINED. ALL ADARTS SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN TO TRAINED. ALL ADARTS SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN TO TRAINED. ALL ADARTS SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN TO TRAINED. ALL ADARTS SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN TO TRAINED. AND ADARTS SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN TO TRAINED. AND ADARTS SHALL BE LEARDED TO ADDRESSORDED THE FLOR FROM IN THE START STORNESS TO ADDRESS ADDRESSORDED TO ADDRESSORDED THE FLOR FROM IN THE START STORNESS TO ADDRESS ADDRESSORDED TO ADDRESSORDED THE FLOR FROM IN THE START STORNESS TO ADDRESS ADDRESSORDED TO ADDRESS ADDRESS ADDRESSORDED TO ADDRESS ADDRESSORDED TO ADDRESS ADDRESSORDED TO ADDRESSORDED TO ADDRESS ADDRESSORDED TO ADDRESS ADDRESSORDED TO ADDRESSORDED THE FLOR FROM IN THE START STORNESS ADDRESS ADDRES

3 PEDMANDIT DRAMAGE FACUTESI AND REAT OF BAT, INCLUDING ACCESS, SWILL BE PREMADE FROM DEMECSION TO PORT OF SATENACTION (PERCEN).

These are the second s

l. The module finish floor elements shall be 12° above top of filonting street 2001 lauces modeling is below street long, analyza of above the 100-1104 LANNE UMALIZA PRAVIDITI SI BELIMI SINCLI LUNEL ANAVARI ET ARION, THE TRO-THAN TEREMOLOF SINDI DIDITI SI SINCHI TANCI HI THE ANAVARIMMONE PRAVILISI TO LUSE A S' PRESENJADORI DIDITI AI A SINDIA TRACK HI THE ANALINE OF BITALIDI TURO BOTOMAGINA. DIE LOO-TRAM FREXIMENT SITUMI MONLO BE REZUMENT FOR BIOTRAMIC CALALADORIS.

THE SHALL AND A SHALL BE BOOKDO ON THE PARK HAD NOT THE PARK TO A SHALL AND A SHALL AND

L THE COLLINE SHALL REAF A DRIVES THEN ALD PETCHERING THE RETROLOGY THE BRANCH OF A REAF WHETE TO A PROVAL, MALE THE RETORD IT WAS A DRIVE THE RETURNED OF A REAF WHETE TO A PROVAL, MALE THE RETORD IT WAS A DRIVE. TO READ THE ADDRESS AND A PROVAL, A DRIVES TO THE OWNER, O'R ALL SERVICE RETER SHALL PROVAL THE REAF OWNER AND A DRIVE. THE ADDRESS AND A DRIVES AND A DRIVES THE ADDRESS AND A DRIVES TO A DRIVES AND A DRIVE AND A DRIVE THE ADDRESS AND A DRIVE ADDRESS AND A DRIVES AND A DRIVES AND A DRIVES AND A DRIVE ADDRESS AND A DRIVES AND A DRIVES AND A DRIVES AND A DRIVE ADDRESS AND A DRIVES AND A DRIVES AND A DRIVES AND A DRIVES ADDRESS AND A DRIVES AND A DRIVES AND A DRIVES AND A DRIVES ADDRESS AND A DRIVES AND A DRIVES AND A DRIVES AND A DRIVES ADDRESS AND A DRIVES AND A DRIVES AND A DRIVES AND A DRIVES ADDRESS AND A DRIVES ADDRESS AND A DRIVES AND A D

I HYDROLODY AND HYDROLO DALCLANDING FUR DEDUCTION THE EXCILS SYNTHY DESCIN SWILL BE PERIODIC TO THE SEMIRACION OF THE DIRECTOR OF PARTICULAR PARTICIPANT OF PARTY AND AND AND ANY PERIODIC DALL AND ADDRESS FOR THE SEMIRACE PROFILES AND ADDRESS FOR THE DIRECTOR OF AND ADDRESS FOR THE DIRECTOR OF ADDRESS FOR DIRECTOR OF ADDRE

ID AN AREAS OF SECOND CRUMING SEMANCIE OF REAMENT & REAM

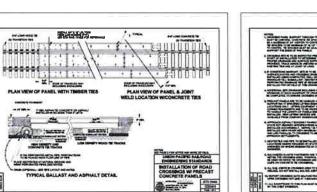
казната и предокладните на потен зайта транстви на салита и транстви на салита и предокладни на потен за потен

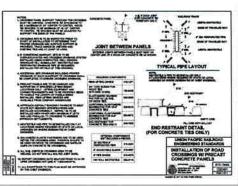
12 A DRAVES AND TORONG IN BERNELL TORA ALL GARGENARDOS IN THE GARAFTY. IT SHALL INCLUES A PROJECT BEORPHOR, PROJECT STITUE INCLUDED DESTROYOU OF DESTRO AND PROVENDS OF GRAVENING, AND GRAVE EVENING REAL TO THE ITS, SAMANTY OF THE REGISTIO OF GRAVENING, AND GRAVE EVENING REAL TO THE ITS, SAMANTY OF THE REGISTIO OF GRAVENING, AND GRAVE EVENING REAL TO THE ITS, SAMANTY OF THE REGISTIO OF GRAVENING, AND GRAVEN AND ADDRESS OF THE ADDRESS OF GRAVEN AND ADD A INTRODUCT MAR.

13 INCORE TO SALL PARTY ANY CONTEMPORTS

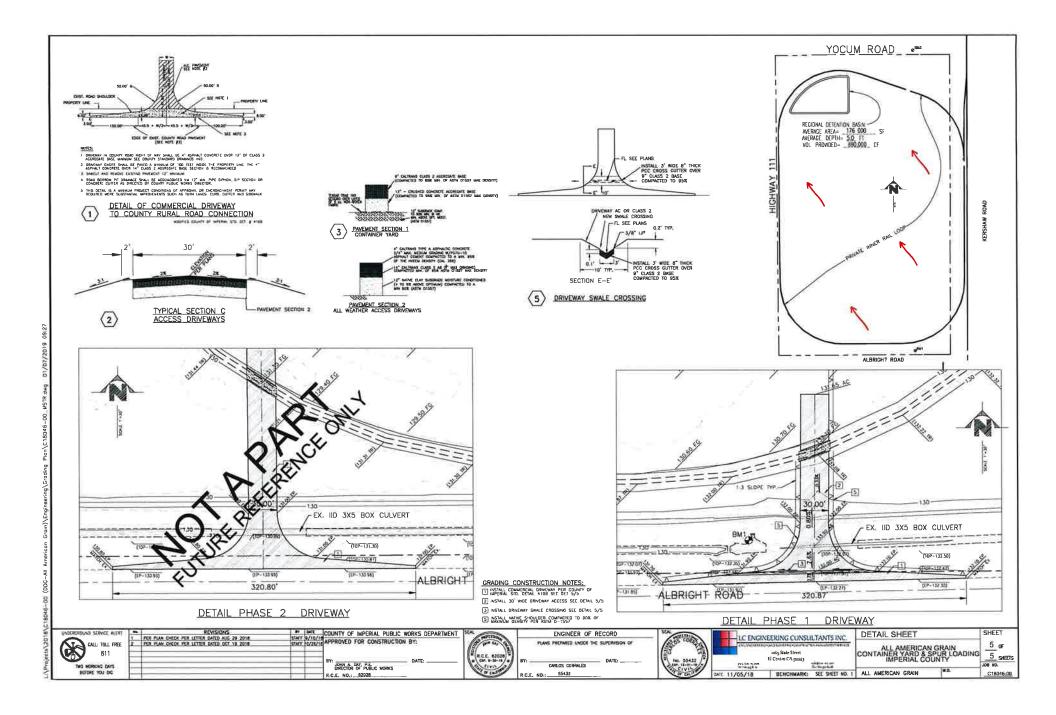
DETURING MEAN DESIGN AND MANTTOWNEE OUTCOME NOT

The series count process or characteristic lices series (control costs), the series count process or characteristic lices series (control costs), series (series (series costs), series (series (series)), series (series (series), series (series), series, series), series (series), series (series), series (series), series (series), series, series), series (series), series (series), series (series), series (series), series, series), series (series), series (series), series (series), series), series (series), series, series), series (series), series (series), series (series), series), series (series), series, series), series (series), series (series), series (series), series), series (series), series), series, series), series, series, series), series, series


I PROPERTY AND IN THE RATE PLATE


DESARCE DES

MAY FOR A LIPE OF TANK AND A LIPE Including California C See the Section 1.
 Section 2.
 Section STREET STREET Withmone and Personal and 13 STORE 13 HeAL HARDL MAY DIAL PHOLEMONE. 14 STORE 13 HeAL HARDL MAY DIAL PHOLEMONE. 14 OF APPROVED INC. IN CONTRACT AND CLUB APPROVED IN A NUMBER 15 OF APPROVED INC. IN CANADAL AND CLUB APPROVED IN A NUMBER 15 OF APPROVED INC. IN CONTRACT AND CLUB APPROVED IN A NUMBER 16 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 16 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 17 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 18 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 18 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 19 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 19 OF APPROVED INC. IN CONTRACT APPROVED IN A NUMBER 19 OF APPROVED IN A NUMBER IN A NUMBER IN A NUMBER IN A NUMBER 19 OF APPROVED IN A NUMBER IN A NUMBER IN A NUMBER IN A NUMBER 20 OF APPROVED IN A NUMBER IN A NUMBER IN A NUMBER IN A NUMBER 20 OF APPROVED IN A NUMBER 20 OF APPROVED IN A NUMBER IN A Fig. 2. A Sector Sector 2. Sector In called the Process of the Complete Case and Process of the Process of the Complete Case and Address of the set of the se UNION PACIFIC RAE ROAD ENGINEERING STANDARD Hard Job, Jones To Children Provide Stand of American PL 29 To A. De Los Blances, Charge 1 To A. Selle To Marine Information Control American Standards (19) 19 To A. De Los Annual (19) 1 DENERAL SPICPTCATCAS NOAD CROSSINGS WITH CONCRETE FANELS Art of the second secon -----An own COD -


					_		_	
	Alter Mark	(1841)k	A state	mont an inter-	-	_	-	1
- CALLER OF				a state and the state		-		
APRIL PARTY	A	11.11	1277	A DESCRIPTION OF THE	2			
	14.2 Mar 100		1	geographs.	244			
	and the second second	tion i	1.5	Column 1				Collection and second
		*****	-	1.4/14090	-	-	-	a Day of the local day and
"red optimation		-		10 Marco -		1.4	-	LEAST A DE TRANSPORTER T
1.00.00	1.25	-94		0.445	-	- A		PREPARE AND A PARE LOS HING NO IN
resected so	1000	1.2		4/9/3/4	- F .			LOATING TO JEAN ON ANT IN BAT
*****	1			1				A MERCENNESS IN REFUSE CONTROLS.
the garage		. 44		-			1.1	· · · · · · · · · · · · · · · · · · ·
No. mark		19	500				n *1	Later of a long party state of the state
- model	- 553	249	-					
				5.0.001	1		1	the second secon
TPARA ED IP PC	1.45		1.004	1000	:		1.2	SUPERIOR AND PERFORMANCE AND
		- 9.	-	0.002071	-			A PROPERTY OF THE APPLICATION OF THE PROPERTY
10000	- 144	-		1.0041.0004.004				
-	1.000		104	CONTRACTOR OF			1.4	A boot of the third the second second
- Training	1	-	in.	des autom	1	T.	1.1	CARTER COMMENTS IN COMPANY AND
	1000	140.00	1.00	and and and	+	-	1.0	
		1000		war	-	-	1	the second rest where the second seco
**************************************			-	22:20:202	-	-	1.1	Fibras Isaasa'aataa madaa ha
	-		-	THE PERSON NEWSFILM	1			and the set of the set of the
COMPANY NAME	-	1	-		<u> </u>	_	1	UNION PACIFIC RAAD
100 million (1970)			114		1	10		ENGINEERING STAND
deal colony in	++ -							GENERUL SPECIFICATION
		-	-11	tria (dae	1.4			ROAD CROSSINGS W CONCRETE PANEL
we pe used's	1 -	100	1.00		1.1		••••••	A REAL PROPERTY AND A REAL PROPERTY

0								
UNDERGROUND SERVICE ALERT	REVISIONS	STATE DUNTY OF IMPERIAL PUBLIC WORKS DEPARTMENT	Ba and	ENGINEER OF RECORD	SOL	I C ENCINEERING CONSULTANTS INC	SPECIFICATIONS	SHEET
CALL: TOLL FREE	2 POR PLAN CHECK PER SETTER DATED OCT 19 2018	FAIT MORE APPROVED FOR CONSTRUCTION BY:	8 1 4 4	PLANS PREPARED UNDER THE SUPERVISION OF	State County	CO. NORTHDOG SADONE-INFT PROMOCOLOGY BALL		4 oF
811			(R.C.E. 62028)			unig State Storet	CONTAINER YARD & SPUR LOADING	G 5 mm
TWO WORKING DAYS		BY: DATE: DATE:	Civis a	BY: DATE:	1 100 03-51-50 /v	Li Centro CA goziĝi se la lin accom fordesar kal	IMPERIAL COUNTY	JOB ND.
BEFORE YOU DKG		R.C.E. NO.I	a curre	R.C.E. NO : 55432	COLUMN T	MTE 11/05/18 BENCHWARK: SEE SHEET NO. 1	ALL AMERICAN GRAIN	C1B046-00

1. GENERAL REQUIREMENTS FOR MATERIALS AND

Matthew Harmon
Michael Rogozen
Tuesday, November 13, 2018
UltraSystems Project No. 6084
Comparison of Criteria Pollutant Emissions from Truck and Train Transport of Agricultural Products from All American Grain in Calipatria to Riverside County Line

1.0 INTRODUCTION

The Imperial County Air Pollution Control District (ICAPCD) has asked All American Grain to compare criteria air pollutant emissions from truck transport of agricultural commodities from its Calipatria facility to Riverside County with those from use of trains for the same mass of transport.¹ This memorandum presents the results of that analysis.

2.0 METHODS

2.1 Definition of Travel Scenario

Per instructions by the ICAPCD, calculations were to be based upon the distance from the Calipatria facility to the southern boundary of Riverside County. It was assumed that trucks would follow State Route 111 (SR-111), which borders the facility on the west, to the county line, which is north of Bombay Beach, CA. The Union Pacific main line follows approximately the same route. The one-way distance from Calipatria to Riverside County is 35 miles for both trucks and trains.

According to All American Grain,² 247 truckloads are required to transport the same mass of agricultural produce as the 210 containers on one unit train. Other assumptions are presented in **Tables 1** and **2**. More information on the analysis and results is in **Attachment 1**.

¹ Email from Matthew Harmon, DuBose Design Group, El Centro, CA to Michael Rogozen, UltraSystems Environmental Inc., Irvine, CA. October 9, 2011.

² Email from Padraig Lawlor, All American Grain, Calipatria, CA to Matthew Harmon, DuBose Design Group, El Centro, CA and Michael Rogozen, UltraSystems Environmental Inc., Irvine, CA. October 27, 2018.

<u>Table 1</u>			
TRUCKING ASSUMPTIONS			

Parameter	Value
Number of trucks per day	247
Containers per truck	1
Engine type (per EMFAC2014)	T6 In-State Small
One-way travel distance	35 miles
Trips per day	2

The "T6 In-State Small" truck category consists of heavy-duty diesel trucks of the size and capacity to haul containers, as defined in the California Air Resources Board's (ARB's) EMFAC2014 mobile source emission factor database.³ This analysis used a subset of the truck category consisting of all such trucks in Imperial County in 2018.

Parameter	Value
Number of trains per day	1
Number of locomotives per train	2
Locomotive type	Diesel-electric
Number of well cars per train	105
Containers per well car	2
Travel distance	35 miles
Travel time	0.583 hour

Table 2 UNIT TRAIN ASSUMPTIONS

Use of GM SD70M locomotives was assumed, although newer, "cleaner" locomotives are in active service, and many older locomotives have been retrofitted with emission controls.

2.2 Emission Calculation Methods

2.2.1 Trucks

Criteria pollutant emission factors for trucks were obtained from the ARB's EMFAC2014 Web Database for Imperial County for calendar year 2018. These are listed in **Table 3**.

Pollutant	Emission Factor (grams/mile)
Reactive organic gases (ROG)	0.1776
Carbon monoxide (CO)	0.6561
Nitrogen oxides (NO _x)	3.7393
Respirable particulate matter (PM10)	0.3107
Fine particulate matter (PM _{2.5})	0.2199

Table 3 2018 TRUCK EMISSION FACTORS

3 EMFAC2014 (v1.0.7) Web Database. California Air Resources Board. (https://www.arb.ca.gov/emfac/2014/). Accessed September 2018.

Memo to Matthew Harmon Page 3 November 13, 2018

Truck miles traveled per day were multiplied by the emission factors in **Table 3** to obtain daily emission values.

2.2.2 Locomotives

Emission factors for locomotives were derived from a U.S. Environmental Protection Agency (USEPA) regulatory support document for locomotive emission standards.⁴ Train emissions for one day were calculated for both container loading at the Calipatria facility and for main line travel to the Riverside County line. It was assumed that trains would spend five hours per day at the All American Grain facility (with two locomotive engines running), alternating between idling and "notch 1"⁵ for moving slowly to a new position on the facility's internal "racetrack."⁶ For the line haul phase of the trip, the emission factors represent a time-weighted average over all the notches except idling. Locomotive emission factors used in the analysis are shown in **Table 4**.

	Emission Factor (pounds per hour)			
Pollutant	Loading			Line Baul
	Idle	Notch 1	Composite	Line Haul
Reactive organic gases (ROG)	0.205	0.041	0.129	1,128
Carbon monoxide (CO)	0.310	0.058	0.235	3.058
Nitrogen oxides (NO _x)	1.434	0.377	1.117	24.267
Respirable particulate matter (PM10)	0.042	0.007	0.031	0.618
Fine particulate matter (PM _{2.5})	0.038	0.006	0.029	0.569

Table 4 LOCOMOTIVE EMISSION FACTORS

3.0 RESULTS

Table 5 summarizes the results of the emissions calculations. The values in the rightmost column are emissions that will be avoided by shipping commodities by train rather than by truck.

Pollutant	Emissions for Travel from Project to Riverside Coun (pounds per day)			
	Truck	Train	Train - Truck	
ROG	6.8	3.4	-3.4	
CO	25.0	5.8	-19.2	
NOx	142.4	38.9	-103.5	
PM10	11.8	1.0	-10.8	
PM2.5	8.4	0.9	-7.5	

<u>Table 5</u> CALCULATION RESULTS

Using the unit trains results in a "savings" of 103.5 pounds per day of NO_x emissions.

⁴ Locomotive Emissions Standards: Regulatory Support Document. United States Environmental Protection Agency, Office of Mobile Sources. April 1998.

⁵ The lowest of eight fixed engine power settings.

⁶ Assumed 70% of time at idle and 30% of time at notch 1.

ATTACHMENT 1 ALL AMERICAN GRAIN BENEFITS ANALYSIS

All American Grain Benefits Analysis

Truck Activity Data	Project to Riverside Co	Comments
# Trucks per Day	247	One-way trip lengths estimated using Google
Round Trip Length	70	Earth's Path Ruler on Hwy 111 and train
VMT per day	17,273	tracks north to Riverside Co

Pollutant	2018 Truck Emission Factors (g/m)	Comments
ROG	0.1776	
СО	0.6561	
NO _X	3.7393	Emission factors represent EMFAC T6 - In-state Small category
PM ₁₀	0.3107	
PM _{2.5}	0.2199	

	Project to Riverside Co Emissions (lbs/day)			
Pollutant	Replaced Truck Emissions	Locomotive Emissions	Locomotive Minus Truck Emissions	
ROG	6.8	3.4	-3.4	
СО	25.0	5.8	-19.2	
NO _X	142.4	38.9	-103.5	
PM ₁₀	11.8	1.0	-10.8	
PM _{2.5}	8.4	0.9	-7.4	

Note: Number of trucks per day represents the number of trucks, that can only carry 20 metric ton containers, the train would be replacing with 210 containers carrying 23.5 metric tons per container.

AIR QUALITY AND GREENHOUSE GAS EMISSIONS STUDY FOR ALL AMERICAN GRAIN CONTAINER STORAGE AND TRANSFER FACILITY

Prepared for:

DuBose Design Group 1065 State Street El Centro, California 92243

Prepared By:

UltraSystems Environmental 16431 Scientific Way Irvine, California 92618-4355

Job No. 6084

November 2018

Air Quality And Greenhouse Gas Emissions Study 🗞

Date:

Date:

This analysis was prepared in accordance with § 15063(d)(3) and Appendix G of the State CEQA Guidelines to determine the potential significant air quality effects on the physical environment that could result from the implementation of the project.

Report Preparers:

Name & Title:

MICHAEL ROGOZEN, Senior Principal Engineer

Signature:

Name & Title:

IOE O'BANNON. Staff Engineer

Signature:

, DB a

November 20, 2018

November 20, 2018

DuBose Design Group All American Grain Container Storage and Transfer Facility Page i November 2018

TABLE	OF	CONTENTS
	-	

1.0	INTRODUCTION					
2.0	Proje	ect Descr	iption	4		
	2.1	Currer	t Operations			
	2.2	Future	operations	4		
	2.3	Constr	uction Activities and Schedule	4		
	2.4	Existir	ng Sensitive Land Uses	5		
3.0	Exist	ing Cond	litions	5		
	3.1	Regior	al Climate/Meteorology	5		
		3.1.1	Temperature and Precipitation	6		
		3.1.2	Humidity	6		
		3.1.3	Wind	6		
		3.1.4	Inversions	7		
	3.2	Regula	atory Setting	7		
		3.2.1	Air Pollutants of Concern			
		3.2.2	Applicable Regulations			
		3.2.3	Air Quality Plans			
		3.2.4	Local Regulations			
	3.3		nal Air Quality			
	3.4	Local A	Air Quality	16		
4.0	Air Q		npacts Analysis			
	4.1		Impact Review Criteria			
	4.2	*	ial County APCD Thresholds of Significance			
		4.2.1	Construction Impacts			
		4.2.2	Operational Impacts			
	4.3		otspots" Thresholds			
	4.4		dology			
	4.5	-	ality Impacts			
		4.5.1	Short-Term Impacts			
		4.5.2	Long-Term Impacts			
		4.5.3	Sensitive Receptors			
		4.5.4	Objectionable Odors			
		4.5.5	Conformity with Air Quality Management Plan	23		
5.0	Gree		Gas Emissions Analysis			
	5.1	Climat	e Change and Greenhouse Gases			
		5.1.1	Potential Environmental Effects			
		5.1.2	California Implications			
	5.2	-	atory Background			
		5.2.1	Federal Climate Change Regulation			
		5.2.2	California Climate Change Regulation			
		5.2.3	Local Significance Thresholds			
	5.3		t Greenhouse Gas Emissions Inventory			
		5.3.1	Direct Source Emissions			
		5.3.2	Total Unmitigated Greenhouse Gas Emissions			

***** TABLE OF CONTENTS *****

	5.4 Impact Analysis 5.4.1 Increase in Greenhouse Gas Emissions		
		Star mereuse in dreemouse dus Emissions	
		5.4.2 Compliance with Greenhouse Gas Reduction Plans	
6.0	Mitig	ation Measures	
	6.1	Mitigation for Air Quality Impacts	
		6.1.1 Construction Phase	
		6.1.2 Operational Phase	
	6.2	Mitigation for Climate Change Impacts	

LIST OF TABLES

Table 3.3-1 - Construction Characteristics	5
Table 3.3-2 - Overall Construction Schedule	
Table 3.2-1: Ambient Air Quality Standards for Criteria Air Pollutants	
Table 3.3-1 - Federal and State Attainment Status for Imperial County	16
Table 3.3-2 - Ambient Criteria Pollutant Concentration Data for Project Vicinity	17
Table 4.2-1 - Thresholds of Significance for Construction Activities	19
Table 4.2-2 - Thresholds of Significance for Project Operations	19
Table 4.5-1 - Maximum Daily Construction Emissions	21
Table 4.5-1 - Maximum Daily Construction Emissions	22
Table 4.5-3 - Daily Project Operational Emissions	22
Table 5.3-1 – Unmitigated Annual GHG Emissions, 2018 and Beyond	32

LIST OF FIGURES

Figure 1.0-1 - Regional Location Map	2
Figure 1.0-2 - Vicinity Map	

ATTACHMENTS

Attachment 1 – Emission Calculation Details

1.0 INTRODUCTION

All American Grain Company, the applicant, operates a grain transfer and storage facility for locally grown agricultural commodities shipped in containers on an 89-acre site at the northeast corner of East Albright Road and State Highway 111, south of Calipatria, California, in Imperial County. A railroad track circles the site within the boundaries and is connected through a siding to a Union Pacific Railroad main line. As part of the project, portions of the interior surface of the lot, which is unpaved, will be paved. Containers will be trucked to the site from local farms and stored in the paved area. They will then be transferred by four mobile loaders to unit trains waiting on the interior track for shipment to the Port of Long Beach and other destinations. The regional location of the development is shown in **Figure 1.0-1**. The site and surrounding properties are shown in **Figure 1.0-2**.

This air quality analysis was conducted within the context of the California Environmental Quality Act (CEQA, California Public Resources Code §§ 21000 et seq.). The methodology follows the CEQA Air Quality Handbook¹ prepared by the Imperial County Air Pollution Control District (ICAPCD) for quantification of emissions and evaluation of potential impacts on air resources.

¹ CEQA Air Quality Handbook: Guidelines for the Implementation of the California Air Quality Act of 1970 as amended. Imperial County Air Pollution Control District. Final - December 12, 2017.

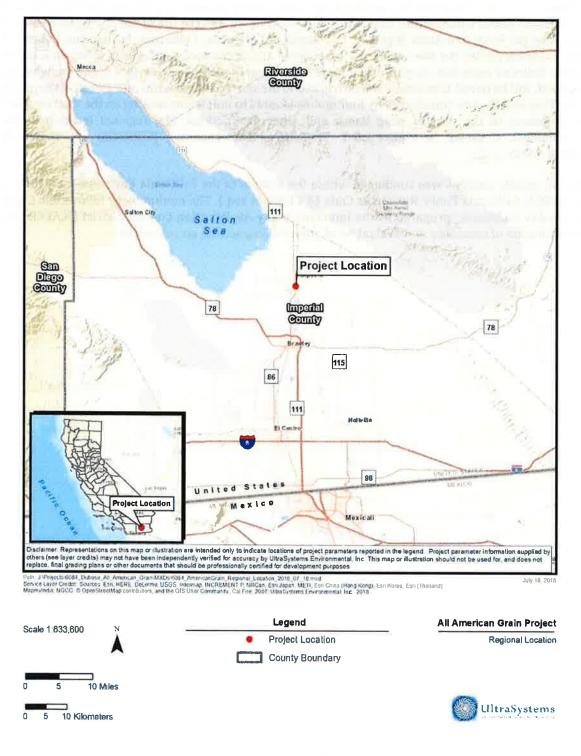
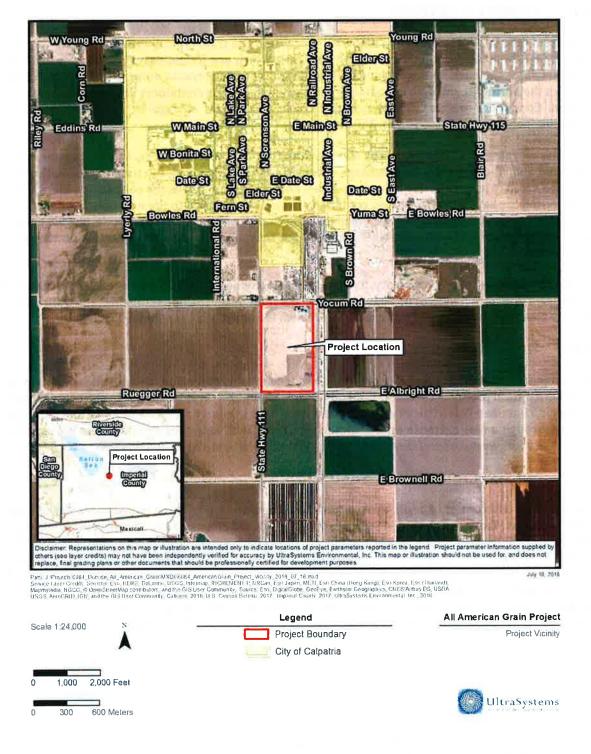



Figure 1.0-1 REGIONAL LOCATION MAP

♦ AIR QUALITY AND GREENHOUSE GAS EMISSIONS STUDY ♦

Figure 1,0-2 VICINITY MAP

2.0 **PROJECT DESCRIPTION**

2.1 CURRENT OPERATIONS

At present,² the facility receives one unit train³ per week. The train typically consists of two General Motors SD70M diesel locomotives and 105 well cars, which are freight cars that carry one or two stacked containers each. In the evening before the train's arrival, trucks enter the site from Yocum Road on the northeast and deliver containers of hay or alfalfa. The containers are stored on unpaved ground. Containers are transferred between trucks, trains and storage by Hyster RE 46-33CH container loaders with Tier 4 (final), 350-HP engines.

The next morning, the train arrives at about 6 a.m. Over the next six hours, empty containers are offloaded and placed in temporary storage. After ten cars are unloaded, the train moves so that ten new well cars are in position for unloading. When unloading is complete, the container loaders begin transferring the hay- or alfalfa-loaded containers from a storage area to the well cars. Loading takes about two hours. Meanwhile, trucks then take on the empty containers and depart the site via Yocum Road. (Other entry and exit points are available, but they are often blocked by trains on the site's inner track.)

All the time that the train is stationary, its diesel-electric engines are idling. During each repositioning of the train, the train moves at three to four miles per hour. After loading is finished, the train leaves the site and rejoins the Union Pacific main line, which is immediately east of the facility.

2.2 FUTURE OPERATIONS

The project consists of adding a second train each week that is dedicated to exporting containers of local agricultural products to the Port of Long Beach. Operations will be similar to the current ones. However, container-laden trucks will come east from SR-111 onto East Albright Road, and enter the facility through a new entrance on the southeast. Trucks with empty or no containers will exit the site at the southwest corner. About 80 to 100 trucks will visit the site each day.

2.3 CONSTRUCTION ACTIVITIES AND SCHEDULE

Construction will consist of adding two paved driveways and up to three paved container storage pads to the site. **Table 3.3-1** quantifies the extent of proposed construction. The driveways will have two compositions. Where they are in the County road right-of-way, they will be comprised of four inches of Caltrans Type B asphalt concrete over 12 inches of Class 2 aggregate base. For a minimum of 100 feet inside the property line, the driveway will consist of four inches of Caltrans Type B asphalt concrete over 12 inches of Caltrans Type B asphalt concrete over 14 inches of Class 2 aggregate base. The container yard pavement will consist of six inches of Caltrans Class 2 aggregate base over 12 inches of crushed recycled concrete, over a mesh, and over 12 inches of compacted native soil. The native soil will be obtained from the project site.

² The project would not include or affect an existing silo operation in the northeast corner of the property. Therefore, that operation will not be discussed.

³ A unit train is a type of freight train in which all the cars contain the same type of load (e.g., coal, chemicals, grain).

City Flammer	Value			
Site Element	Phase 1	Phase 2	Phase 3	
Grading Area		606,316 ft ²		
Access Driveway Paving	9,171 ft ²	10,840 ft ²	None	
Container Yard Paving	195,080 ft ²	189,020 ft ²	202,205 ft ²	

Table 3.3-1 CONSTRUCTION CHARACTERISTICS

Table 3.3-2 shows the overall construction schedule and the main activities in each of three phases. For the purpose of the analysis in this report, it is assumed that Phase 1 will begin August 27, 2018 and that Phase 3 will be completed on August 2, 2020.

Phase End Date To be Constructed Start Date 1 Eastern container storage yard October 19, 2018 Drainage channel August 27, 2018 Eastern access driveway 2 Western container storage yard May 27, 2019 July 19, 2019 Western access driveway 3 Middle container storage yard June 10, 2020 August 2, 2020

Table 3.3-2 OVERALL CONSTRUCTION SCHEDULE

2.4 EXISTING SENSITIVE LAND USES

The area surrounding the site is designated for agricultural land uses. Five rural residences surrounded by agricultural land are located to the northwest across SR 111 and Yocum Road.

3.0 EXISTING CONDITIONS

The project site is located in an unincorporated area of Imperial County; which is in the Salton Sea Air Basin (SSAB). The SSAB includes the Imperial Valley and the central part of Riverside County, including the Coachella Valley. The Imperial Valley is bordered by the Salton Sea to the north, the Anza-Borrego Desert State Park to the west, the Chocolate Mountains to the northeast, and the U.S./Mexican Border to the south. The proposed site is located approximately one-half mile south of the City of Calipatria.

3.1 REGIONAL CLIMATE/METEOROLOGY

Meteorology is the study of weather and climate. Weather refers to the state of the atmosphere at a given time and place regarding temperature, air pressure, humidity, cloudiness, and precipitation. The term "weather" refers to conditions over short periods; conditions over prolonged periods, generally at least 30 to 50 years, are referred to as climate. Climate, in a narrow sense, is usually defined as the "average weather," or more rigorously as the statistical description in terms of the mean and variability of relevant quantities over a period ranging from months to thousands or

millions of years. These quantities are most often surface variables such as temperature, precipitation, and wind.

Climatic conditions in Imperial County are governed by the large-scale sinking and warming of air in the semi-permanent tropical high-pressure center of the Pacific Ocean. The high-pressure ridge blocks out most mid-latitude storms except in winter when the high is weakest and farthest south. The coastal mountains prevent the intrusion of any cool, damp air found in California coastal environs. Because of the weakened storms and barrier, Imperial County experiences clear skies, extremely hot summers, mild winters, and little rainfall. The flat terrain of the valley and the strong temperature differentials created by intense solar heating, produce moderate winds and deep thermal convection.

The combination of subsiding air, protective mountains, and distance from the ocean all combine to limit precipitation severely. Rainfall is highly variable with precipitation from a single heavy storm sometimes exceeding the entire annual total during a later drought condition.

Imperial County enjoys a year-round climate characterized by a temperate fall, winter, and spring and a harsh summer. Humidity often combines with the valley's normal elevated temperatures to produce a moist, tropical atmosphere that frequently seems hotter than the thermometer suggests. The sun shines, on the average, more in the Imperial County that anywhere else in the United States.

3.1.1 Temperature and Precipitation

The nearest National Weather Service Cooperative Observer Program weather station to the project is the station in Brawley, located approximately 8.5 miles south-southwest of the project. At the Brawley⁴ station, average recorded rainfall during the period of record (1910 to 2007) measured 2.65 inches, with 72 percent of precipitation occurring between October and March and 47 percent in just December, January, and February. Monthly average maximum temperatures at this station vary annually by 38.2 degrees Fahrenheit (°F): 107.6°F at the hottest to 69.4°F at the coldest and monthly average minimum temperatures vary by 36.9°F annually, i.e. from 38.9°F to 75.8 °F. In fact, this station shows that the months of June, July, August, and September have monthly maximum temperatures greater than 100°F.

3.1.2 Humidity

Humidity in Imperial County is typically low throughout the year, ranging from 28% in summer to 52% in winter. The large daily oscillation of temperature produces a corresponding large variation in the relative humidity. Nocturnal humidity rises to 50-60% but drop to about 10% during the day. Summer weather patterns are dominated by intense heat-induced low-pressure areas that form over the interior desert.

3.1.3 Wind

The wind direction follows two general patterns. The first occurs from fall through spring, where prevailing winds are from the west and northwest. Most of these winds originate in the Los Angeles Basin. The second pattern consists of occasional periods of high winds. Wind speeds exceeding 31 miles per hour (mph) occur most frequently in April and May. On an annual basis, high winds,

4 Western U.S. Climate Historical Summaries. Western Regional Climate Center. http://www.wrcc.dri.edu/Climsum.html. Accessed July 2018. those exceeding 31 mph, are observed 0.6 percent of the time, where speeds of less than 6.8 miles per hour account for more than one-half of the observed winds. Wind statistics indicate that prevailing winds are from the west-northwest through southwest; however, a secondary flow pattern from the southeast is also evident.

3.1.4 Inversions

Air pollutant concentrations are primarily determined by the amount of pollutant emissions in an area and the degree to which these pollutants are dispersed in the atmosphere. The stability of the atmosphere is one of the key factors affecting pollutant dispersion. Atmospheric stability regulates the amount of vertical and horizontal air exchange, or mixing, that can occur within a given air basin. Horizontal mixing is a result of winds, as discussed above, but vertical mixing also affects the degree of stability in the atmosphere. An interruption of vertical mixing is called an inversion.

In the atmosphere, air temperatures normally decrease as altitude increases. At varying distances above the earth's surface, however, a reversal of this gradient can occur. This condition, termed an inversion, is simply a warm layer of air above a layer of cooler air, and it has the effect of limiting the vertical dispersion of pollutants. The height of the inversion determines the size of the vertical mixing volume trapped below. Inversion strength or intensity is measured by the thickness of the layer and the difference in temperature between the base and the top of the inversion. The strength of the inversion determines how easily it can be broken by winds or solar heating.

Imperial County experiences surface inversions almost every day of the year. Due to strong surface heating, these inversions are usually broken allowing pollutants to disperse more easily. Weak, surface inversions are caused by radiational cooling of air in contact with the cold surface of the earth at night. In valleys and low-lying areas, this condition is intensified by the addition of chilly air flowing down slope from the hills and pooling on the valley floor.

The presence of the Pacific High-Pressure Cell can cause the air to warm to a temperature higher than the air below. This highly stable atmospheric condition, termed a subsidence inversion can act as a nearly impenetrable lid to the vertical mixing of pollutants. The strength of these inversions makes them difficult to disrupt. Consequently, they can persist for one or more days, causing air stagnation and the buildup of pollutants. Highest or worst-case ozone levels are often associated with the presence of this type of inversion.

3.2 REGULATORY SETTING

Federal, state, and local agencies have set ambient air quality standards for certain air pollutants through statutory requirements and have established regulations and various plans and policies to maintain and improve air quality, as described below.

3.2.1 Air Pollutants of Concern⁵

As required by the Federal Clean Air Act (FCAA), the U. S. Environmental Protection Agency (USEPA) has identified criteria pollutants and established National Ambient Air Quality Standards (NAAQS) to protect public health and welfare. NAAQS have been established for ozone, carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide, suspended particulate matter (PM), and lead. Suspended PM includes both PM with an aerodynamic diameter of 10 micrometers or less (respirable PM, or PM₁₀)

5 This section discusses only criteria pollutants. Greenhouse gases are defined and discussed in Section 5.

and PM with an aerodynamic diameter of 2.5 micrometers or less (fine PM, or PM_{2.5}). The California Air Resources Board (ARB) has established separate standards for the state, i.e. the California Ambient Air Quality Standards (CAAQS). The ARB established CAAQS for all the federal pollutants and sulfates, hydrogen sulfide, and visibility-reducing particles.

For some of the pollutants, the identified air quality standards are expressed in more than one averaging time to address the typical exposures found in the environment. For example, CO is expressed as a one-hour averaging time and an eight-hour averaging time. Regulations have set NAAQS and CAAQS limits in parts per million (ppm) or micrograms per cubic meter ($\mu g/m^3$). **Table 3.2-1** summarizes the state and federal ambient air quality standards for all criteria pollutants. Criteria pollutants of concern in Imperial County are ozone and PM, since the standards for other criteria pollutants are either being met or are unclassified in the Basin, and the latest pollutant trends suggest that these standards will not be exceeded in the foreseeable future.

Ozone (O₃) is not emitted directly to the atmosphere but is formed by photochemical reactions between reactive organic gases (ROG), or volatile organic compounds⁶ (VOC), and oxides of nitrogen (NO_X) in the presence of sunlight. The long, hot, humid days of summer are particularly conducive to ozone formation; thus, ozone levels are of concern primarily during May through September. Ozone is a strong chemical oxidant that adversely impacts human health through effects on respiratory function. It can also damage forests and crops. Tropospheric⁷ ozone is formed by a complex series of chemical reactions involving NO_X, the result of combustion processes and evaporative ROGs such as industrial solvents, toluene, xylene, and hexane as well as the various hydrocarbons that are evaporated from the gasoline used by motor vehicles or emitted through the tailpipe following combustion. Additionally, ROGs are emitted by natural sources such as trees and crops. Ozone formation is promoted by strong sunlight, warm temperatures, and winds. High concentrations tend to be a problem in the Imperial County only during the hot summer months when these conditions frequently occur.

Reactive Organic Gases (ROG) are defined as any compound of carbon, excluding CO, carbon dioxide (CO2), carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participate in atmospheric photochemical reactions. It should be noted that there are no State or national ambient air quality standard for ROG because ROGs are not classified as criteria pollutants. They are regulated, however, because a reduction in ROG emissions reduces certain chemical reactions that contribute to the formulation of ozone. ROGs are also transformed into organic aerosols in the atmosphere, which contribute to higher PM10 and lower visibility.

Nitrogen Oxides (NO_x) serve as integral participants in the process of photochemical smog production. The two major forms of NO_x are nitric oxide (NO) and nitrogen dioxide (NO₂).⁸ NO is a colorless, odorless gas formed from atmospheric nitrogen and oxygen when combustion takes place under high temperature and/or high pressure. NO₂ is a reddish-brown irritating gas formed by the combination of NO and oxygen. NO_x is an ozone precursor. A precursor is a directly emitted air contaminant that, when released into the atmosphere, forms, causes to be formed, or contributes to

⁶ Emissions of organic gases are typically reported only as aggregate organics, either as Volatile Organic Compounds (VOC) or as Reactive Organic Gases (ROG). These terms are meant to reflect what specific compounds have been included or excluded from the aggregate estimate. Although EPA defines VOC to exclude both methane and ethane, and CARB defines ROG to exclude only methane, in practice it is assumed that VOC and ROG are essentially synonymous.

⁷ The troposphere is the atmospheric layer closest to the Earth's surface. Ozone produced here is an air pollutant that is harmful to breathe, and it damages crops, trees and other vegetation.

⁸ Another form of NOx, nitrous oxide (N2O), is a greenhouse gas and is discussed below.

the formation of a secondary air contaminant for which an Ambient Air Quality Standard (AAQS) has been adopted, or whose presence in the atmosphere will contribute to the violation of one or more AAQSs. When NO_X and ROG are released in the atmosphere, they can chemically react with one another in the presence of sunlight to form ozone.

Particulate Matter (PM) is a general term used to describe a complex group of airborne solid, liquid, or semi-volatile materials of various size and composition. Primary PM is emitted directly into the atmosphere from both human activities (including agricultural operations, industrial processes, construction and demolition activities, and entrainment of road dust into the air) and non-anthropogenic activities (such as windblown dust and ash resulting from forest fires). Secondary PM is formed in the atmosphere from predominantly gaseous combustion by-product precursors, such as sulfur oxides and NO_X, and ROGs. The overwhelming majority of airborne PM in Imperial County is primary PM. The major source of primary PM is fugitive windblown dust, with other contributions from entrained road dust, farming, and construction activities.

Particle size is a critical characteristic of PM that primarily determines the location of PM deposition along the respiratory system (and associated health effects) as well as the degradation of visibility through light scattering. In the United States, federal and state agencies have established two types of PM air quality standards as shown in **Table 3.2-1**. PM_{10} corresponds to the fraction of PM no greater than 10 microns in aerodynamic diameter and is commonly called respirable particulate matter, while $PM_{2.5}$ refers to the subset of PM_{10} of aerodynamic diameter smaller than 2.5 microns, which is commonly called fine particulate matter.

PM air pollution has undesirable and detrimental environmental effects. PM affects vegetation, both directly (e.g. deposition of nitrates and sulfates may cause direct foliar damage) and indirectly (e.g., coating of plants upon gravitational settling reduces light absorption). PM also accumulates to form regional haze, which reduces visibility due to scattering of light.

 PM_{10} is respirable, with fine and ultrafine particles⁹ reaching the alveoli deep in the lungs, and larger particles depositing principally in the nose and throat area. PM_{10} deposition in the lungs results in irritation that triggers a range of inflammation responses, such as mucus secretion and bronchoconstriction, and exacerbates pulmonary dysfunctions, such as asthma, emphysema, and chronic bronchitis. Sufficiently small particles ($PM_{2.5}$ and ultrafines) may penetrate the bloodstream and impact functions such as blood coagulation, cardiac autonomic control, and mobilization of inflammatory cells from the bone marrow. Individuals susceptible to higher health risks from exposure to PM_{10} airborne pollution include children, the elderly, smokers, and people of all ages with low pulmonary/cardiovascular function. For these individuals in particular, adverse health effects of PM_{10} pollution include coughing, wheezing, shortness of breath, phlegm, bronchitis, and aggravation of lung or heart disease, leading for example to increased risks of hospitalization and mortality from asthma attacks and heart attacks.

Pollutant Transport

As stated above, ozone is a "secondary" pollutant, formed in the atmosphere by reactions between NO_X and ROG. These reactions are driven by sunlight and proceed at varying rates. Transport is the movement of ozone or the pollutants that form ozone from one area (known as the upwind area) to

⁹ Ultrafine particles (UFPs) are nanoscale, less than 100 nanometers. Regulations do not currently exist for this size class of ambient air pollution particles, which are far smaller than the regulated PM10 and PM2.5 particle classes and are believed to have several more aggressive health implications than those classes of larger particulates.

another area (known as the downwind area). Pollutant transport is a very complex phenomenon. Sometimes transport is a straightforward matter of wind blowing from one area to another at ground level, carrying ozone with it, but usually it is not that simple. Transport is three-dimensional; it can take place at the surface, or high above the ground. Meteorologists use the terms "surface" and "aloft" to distinguish these two cases. Often, winds can blow in different directions at different heights above the ground. To complicate matters further, winds can shift during the day, pushing a polluted air mass first one way, then another. Finally, because ozone and ozone forming emissions from an upwind area can mix with locally generated ozone and locally generated emissions, it is often difficult to determine the origin of the emission causing high pollution levels. Political boundaries do not prevent transport of pollutants. Transport over distances of several hundred miles has often been documented in California.

The accurate determination of the impacts of transport requires detailed technical analyses in conjunction with modeling studies. The Imperial County Air Quality Management Plan¹⁰ (AQMP) identifies how the transport of emissions and pollutants from Mexico and other areas (South Coast and San Diego) influences ozone violations within Imperial County. Although the Imperial County is currently in attainment of the 1997 8-hour ozone NAAQS, it is important to note that any future analysis of air emissions impacting Imperial County must take into consideration the influence of transport from three distinct sources, that of the South Coast Air Basin via the Coachella Valley to the north, the San Diego Air Basin to the west and the international city of Mexicali, Mexico to the south.

3.2.2 Applicable Regulations

3.2.2.1 Federal Regulations

The federal Clean Air Act (FCAA), passed in 1970, established the national air pollution control program. The basic elements of the CAA are the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants, hazardous air pollutants standards, state attainment plans, motor vehicle emissions standards, stationary source emissions standards and permits, acid rain control measures, stratospheric ozone protection, and enforcement provisions.

NAAQS are the maximum allowable concentrations of criteria pollutants, over specified averaging periods, to protect human health. The FCAA requires that the U.S. Environmental Protection Agency (USEPA) establish NAAQS and reassess, at least every five years, whether they are adequate to protect public health, based on current scientific evidence. The NAAQS are divided into primary and secondary standards; the former standards are set to protect human health within an adequate margin of safety, and the latter to protect environmental values, such as plant and animal life.

The USEPA has identified nonattainment and attainment areas for each NAAQS. Under amendments to the FCAA, EPA has designated air basins or portions thereof as attainment, nonattainment, or unclassifiable, based on whether the national standards have been achieved.

In addition, the FCAA uses a classification system to design clean-up requirements appropriate for the severity of the pollution and set realistic deadlines for reaching clean-up goals. If an air basin is not in federal attainment for a particular pollutant, the Basin is classified as a marginal, moderate, serious, severe, or extreme nonattainment area, based on the estimated time it would take to reach attainment. Nonattainment areas must take steps towards attainment by a specific timeline.

¹⁰ Final 2009 1997 8-Hour Modified Air Quality Management Plan. Imperial County Air Pollution Control District. July 13, 2010.

Table 3.3-1 shows the federal and state attainment designations and federal classifications for theBasin.

Data collected at permanent monitoring stations are used by the USEPA to classify regions as "attainment" or "nonattainment," depending on whether the regions met the requirements stated in the primary NAAQS. Nonattainment areas are subject to additional restrictions, as required by the USEPA.

The FCAA Amendments in 1990 substantially revised the planning provisions for those areas not currently meeting NAAQS. The Amendments identify specific emission reduction goals, require both a demonstration of reasonable further progress and attainment, and incorporate more stringent sanctions for failure to attain the NAAQS or to meet interim attainment milestones.

3.2.2.2 State Regulations

The State of California began to set California ambient air quality standards (CAAQS) in 1969 under the mandate of the Mulford-Carrell Act. There were no attainment deadlines for the CAAQS originally. However, the State Legislature passed the California Clean Air Act (CCAA) in 1988 to establish air quality goals, planning mechanisms, regulatory strategies, and standards of progress to promote their attainment. The ARB, which became part of the California Environmental Protection Agency (CalEPA) in 1991, is responsible for ensuring implementation of the CCAA, responding to the FCAA, and for regulating emissions from motor vehicles and consumer products.

The CCAA requires attainment of CAAQS by the earliest practicable date. The state standards are generally more stringent than the corresponding federal standards. Attainment plans are required for air basins in violation of the State ozone, PM₁₀, CO, SO₂, or NO₂ standards. Responsibility for achieving state standards is placed on the ARB and local air pollution control districts. District plans for nonattainment areas must be designed to achieve a 5% annual reduction in emissions. Preparation of and adherence to attainment plans are the responsibility of the local air pollution districts or air quality management districts. **Table 3.2-1** illustrates NAAQS and CAAQS for criteria pollutants.¹¹

¹¹ Ambient Air Quality Standards. California Air Resources Board. https://www.arb.ca.gov/research/aaqs/aaqs2.pdf. May 4, 2016. Accessed July 2018.

Air Pollutant	Averaging Time	California Standard	National Standard
Ozone (03)	1 hour 8 hour	0.09 ppm 0.070 ppm	0.070 ppm *
Respirable particulate matter (PM10)	24-hour Mean	50 μg/m³ 20 μg/m³	150 μg/m³ —
Fine particulate matter (PM _{2.5})	24-hour Mean	— 12 μg/m³	35 μg/m³ 12.0 μg/m³ **
Carbon monoxide (CO)	1 hour 8 hour	20 ppm 9.0 ppm	35 ppm 9 ppm
Nitrogen dioxide (NO ₂)	1 hour Mean	0.18 ppm 0.030 ppm	100 ppb 0.053 ppm
Sulfur dioxide (SO2)	1 hour 24 hour	0.25 ppm 0.04 ppm	75 ppb
Lead	30-day Rolling 3-month	1.5 μg/m³ —	 0.15 μg/m³
Sulfates	24 hour	25 μg/m³	
Hydrogen sulfide	1 hour	0.03 ppm	
Vinyl chloride	24 hour	0.01 ppm	No National
Visibility-reducing particles	8 hour	Extinction coefficient of 0.23 per kilometer, visibility of ten miles or more due to particles when relative humidity is less than 70%.	Standards

<u>Table 3.2-1</u> AMBIENT AIR QUALITY STANDARDS FOR CRITERIA AIR POLLUTANTS

* On October 1, 2015, the national 8-hour ozone standard was lowered from 0.075 to 0.070 ppm.

** On December 14, 2012, the national PM_{2.5} standard was lowered from 15 μ g/m³ to 12.0 μ g/m³.

Abbreviations:

ppm = parts per million	ppb = parts per billion	30
μg/m ³ = micrograms per cubic meter	Mean = Annual Arithmetic Mean	

0-day = 30-day average

3.2.3 Air Quality Plans

3.2.3.1 Ozone Plan

On December 3, 2009, the USEPA issued a final ruling determining that the Imperial County "moderate" 8-hour ozone non-attainment area attained the 1997 8-hour NAAQS for ozone. The determination by the USEPA was based upon complete, quality-assured, and certified ambient air

monitoring data for the years 2006 thru 2008. This determination effectively suspended the requirement for the state to submit an attainment demonstration, an RFP plan, contingency measures and other planning requirements for so long as Imperial County continues to attain the 1997 8-hour ozone NAAQS. However, this determination did not constitute a re-designation to attainment; therefore, the classification and designation status for Imperial County remain as a "moderate" non-attainment area of the 1997 8-hour ozone NAAQS. Imperial County was required to submit for EPA approval a 2009 8-Hour Ozone "Modified" Air Quality Management Plan (Modified AQMP), which was approved July 13, 2010.

The Modified AQMP serves as a comprehensive planning document intended to provide guidance to the ICAPCD, the County, and other local agencies on how to continue maintaining the 1997 8-hour ozone NAAQS. The Modified AQMP includes control measures consisting of three components: 1) the ICAPCD's Stationary Source Control Measures; 2) Regional Transportation Control Measures; and 3) the State Strategy. These measures primarily rely on the traditional command and control approach and provide the framework for ICAPCD rules that reduce ROG and NO_x emissions.

3.2.3.2 PM₁₀ Plan

The ICAPCD District Board of Directors adopted the PM_{10} SIP for Imperial County on August 11, 2009.¹² The PM_{10} SIP meets USEPA requirements to demonstrate that the County will attain the PM_{10} standard as expeditiously as practicable. The PM_{10} SIP was required to address and meet the following elements, required under the FCAA of areas classified to be in serious nonattainment of the NAAQS:

- Best available emission inventories;
- A plan that enables attainment of the PM₁₀ federal air quality standards;
- Annual reductions in PM₁₀ or PM₁₀ precursor emissions that are of not less than 5% from the date of SIP submission until attainment;
- Best available control measures and best available control technologies for significant sources and major stationary sources of PM₁₀, to be implemented no later than four years after reclassification of the area as serious;
- Transportation conformity and motor vehicle emission budgets in accord with the attainment plan;
- Reasonable further progress and quantitative milestones; and
- Contingency measures to be implemented (without the need for additional rulemaking actions) if the control measure regulations incorporated in the plan cannot be successfully implemented or fail to give the expected emission reductions.

The PM_{10} SIP updated the emission inventory to incorporate revised cattle emissions, revised windblown dust model results, revised Southern California Association of Governments (SCAG) activity data, and updated entrained and windblown unpaved road dust estimates. The adjustments made to the emission inventory fell in two categories: (i) adjustments to incorporate new methodology and updated information (e.g., throughputs, activity data, etc.), and (ii) adjustments to incorporate emission reductions arising from the implementation of new control measures.

Additionally, the PM₁₀ SIP demonstrates that Imperial County attained the Federal PM₁₀ NAAQS, but for international emissions from Mexico, based on 2006-2008 monitoring data. Attainment was due,

^{12 2009} Imperial County State Implementation Plan for Particulate Matter Less Than 10 Microns in Aerodynamic Diameter. Imperial County Air Pollution Control District. July 10, 2009.

in part, to ICAPCD's November 2005 adoption and subsequent implementation of Regulation VIII fugitive dust rules; those rules were based on the related 2005 Best Available Control Measure (BACM) analysis.

Since the reclassification of Imperial County to serious nonattainment for PM_{10} occurred on August 2004, control of fugitive PM_{10} emissions from the significant source categories that meets BACM stringency identified in the PM_{10} SIP began in January 2006.

Major stationary sources are required to implement Best Available Control Technology (BACT) to control PM_{10} emissions (Rule 207) and they are required to comply with the 20% opacity (Rule 403). In addition, stationary sources will be required to mitigate fugitive dust emissions from access roads, construction activities, handling and transferring of bulk materials, and track-out/carry-out according to the requirements of Regulation VIII.

Because the Imperial County is shown in the PM_{10} SIP to have attained the 24-hour PM_{10} NAAQS but for international transport of Mexicali emissions in 2006-2008, reasonable further progress and milestone requirements are unnecessary, and specifically the 5% yearly emission reductions requirement does not apply to future years. As documented in the PM_{10} SIP, all remaining SIP requirements applicable to the 2009 Imperial County PM_{10} Plan have been successfully addressed.

3.2.3.3 PM_{2.5} Plan

The ICAPCD District Board of Directors adopted the PM_{2.5} SIP for Imperial County on December 2, 2014.¹³ The PM_{2.5} SIP fulfills the requirements of the CAA for those areas classified as "moderate" nonattainment for PM_{2.5}. It incorporates updated emission inventories, and analysis of Reasonable Available Control Measures (RACM), an assessment of Reasonable Further Progress (RFP), and a discussion of contingency measures. Analyses in the PM_{2.5} SIP included assessing emission inventories from Imperial County and Mexicali; evaluating the composition and elemental makeup of samples collected on Calexico violation days; reviewing the meteorology associated with high concentration measurements; and performing directional analysis of the sources potentially impacting the Calexico PM_{2.5} monitor. As is demonstrated in the PM_{2.5} SIP, the primary reason for elevated PM_{2.5} levels in Imperial County is transport from Mexico. Essentially, the PM_{2.5} SIP demonstrated attainment of the 2006 PM_{2.5} NAAQS "but for" transport of international emissions from Mexicali, Mexico.

3.2.4 Local Regulations

3.2.4.1 Air Quality

The ICAPCD also has the authority to adopt and enforce regulations dealing with controls for specific types of sources, emissions of hazardous air pollutants, and New Source Review. The ICAPCD Rules and Regulations are part of the SIP and are separately enforceable by the EPA. The following ICAPCD rules potentially apply to the Project.

Rules 800 (General Requirements for Control of Fine Particulate Matter), **801** (Construction and Earthmoving Activities), **802** (Bulk Materials, **803** (Carry-out and Track-out), **804** (Open Areas), and **805** (Paved and Unpaved Roads) are intended to reduce the amount of PM₁₀ entrained in the ambient

¹³ Imperial County 2013 SIP for the 2006 24-hr PM2.5 Moderate Nonattainment Area. Imperial County Air Pollution Control District. December 2, 2014.

air as a result of emissions generated by anthropogenic fugitive dust sources by requiring actions to prevent, reduce, or mitigate PM_{10} emissions. These rules include opacity limits, control measure requirements, and dust control plan requirements that apply to activities at the Facility.

3.2.4.2 Right-to-Farm Ordinance

In recognition of the role of agriculture in the county, Imperial County has adopted a right-to-farm ordinance. A "right-to-farm" ordinance creates a legal presumption that ongoing, standard farming practices are not a nuisance to adjoining residences. It requires a disclosure to owners and purchasers of property near agricultural land operations, or areas zoned for agricultural purposes. The disclosure advises persons that discomfort and inconvenience from odors, fumes, dust, smoke, and chemicals resulting from conforming and accepted agricultural operations are normal and necessary aspects of living in the agricultural areas of the county.

3.3 REGIONAL AIR QUALITY

Table 3.3-1 shows the area designation status of Imperial County for each criteria pollutant for boththe NAAQS and the CAAQS.

On April 30, 2004, Imperial County was classified as a "marginal" nonattainment area for 8-Hour Ozone NAAQS under the FCAA. On March 13, 2008, the USEPA found that Imperial County failed to meet attainment for the 8-Hour Ozone NAAQS by June 15, 2007 and was reclassified as "moderate" nonattainment. However, on November 17, 2009, EPA announced that Imperial County has met the 1997 federal 8-hour ozone standard—demonstrating improved air quality in the area. The announcement is based on three years of certified clean air monitoring data for the years 2006-2008.

In response to the opinion of the US Court of Appeals for the Ninth Circuit in Sierra Club v. United States Environmental Protection Agency, et al., in August 2004 the USEPA found that the Imperial Valley PM_{10} nonattainment area had failed to attain by the moderate area attainment date of December 31, 1994, and as a result reclassified under the FCAA the Imperial Valley from a moderate to a serious PM_{10} nonattainment area. Also, in August 2004, the USEPA proposed a rule to find that the Imperial area had failed to attain the annual and 24-hour PM_{10} standards by the serious area deadline of December 31, 2001. The USEPA finalized the rule on December 11, 2007, citing as the basis for the rule that six Imperial County monitoring stations were in violation of the 24-hour standard during 1999-2001. The USEPA's final rule action requires the State to submit to the OSEPA by December 11, 2008 (within one year of the rule's publication in the Federal Register) an air quality plan that demonstrates that the County will attain the PM_{10} standard as expeditiously as practicable.

Pollutant	State Designation	Federal Designation (Classification)		
Ozone	Nonattainment	Attainment		
Respirable PM (PM10)	Nonattainment	Nonattainment (Serious) *		
Fine PM (PM _{2.5})	Attainment***	Nonattainment **		
Carbon Monoxide (CO)	Attainment	Unclassifiable/Attainment		
Nitrogen Dioxide (NO2)	Attainment	Unclassifiable/Attainmen		
Sulfur Dioxide	Attainment	Attainment		
Sulfates	Attainment	TTHEOR OF ALL WORKS		
Lead	Attainment	No		
Hydrogen Sulfide	Unclassified	Federal Standard		
Visibility reducing Particles	Unclassified	Stanuaru		

 Table 3.3-1

 FEDERAL AND STATE ATTAINMENT STATUS FOR IMPERIAL COUNTY

Designation for Imperial Valley Planning Area only, which is most of Imperial County save for a small stretch of land on the County's eastern end.

** Designation is only for the urban areas within Imperial County

*** Designation for the whole of Imperial County except the City of Calexico.

Source: Area Designations and Maps – 2013. California Air Resources Board. September 2018.

On November 13, 2009, EPA published Air Quality Designations for the 2006 24-Hour Fine Particle (PM_{2.5}) National Ambient Air Quality Standards¹⁴ wherein Imperial County was listed as designated nonattainment for the 2006 24-hour PM_{2.5} NAAQS. On April 10, 2014, the ARB Board gave final approval to the 2013 Amendments to Area Designations for CAAQSs. For the State PM_{2.5} standard, effective July 1, 2014, the Calexico area was designated nonattainment, while the rest of the SSAB was designated attainment. The Project lies outside the Calexico nonattainment area.

3.4 LOCAL AIR QUALITY

Existing levels of ambient air concentrations and historical trends and projections in the project area are best documented by measurements made by the ICAPCD and CARB. Imperial County began its ambient air monitoring in 1976; however, monitoring of ozone began in 1986 at the El Centro monitoring station. Since that time, monitoring has been performed by the ICAPCD, ARB, and private industry. There are six monitoring sites in Imperial County from Niland to Calexico.

The nearest monitoring station to the project site is in Niland, approximately 7.3 miles north northwest of the site. The Niland station is located at 7711 English Road and only monitors ozone and PM_{10} . The nearest site that monitors $PM_{2.5}$ is in Brawley, approximately 8.8 miles south-southwest of the site. **Table 3.3-2** (Ambient Criteria Pollutant Concentration Data for Project

¹⁴ Air Quality Designations for the 2006 24-Hour Fine Particle (PM_{2.5}) National Ambient Air Quality Standards. United States Environmental Protection Agency. Federal Register. Vol. 74, No. 218. November 13, 2009.

Vicinity) summarizes 2015 through 2017 published monitoring data from the CARB's Aerometric Data Analysis and Management System (ADAM) for the Project vicinity¹⁵.

The monitoring data shows that the Niland Station never exceeded the state 1-hour ozone standard in the three years. The Niland Station only exceeded the National Standard and State Standard in 2015. State and National PM_{10} Standards were exceeded at the Niland Station for every year. It should be noted that for 2015 and 2016, the standards were only exceeded for one measured day each and may qualify for ARB Exceptional Event status. The National $PM_{2.5}$ Standard was exceeded in both 2016 and 2017.

Air Pollutant	Standard/Exceedance	2015	2016	2017
and another the last second last	Max. 1-hour Concentration (ppm)	0.091	0.079	0.072
	Max. 8-hour Concentration (ppm)	0.074	0.066	0.061
Ozone (O3) - Niland	# Days > Federal 8-hour Std. of 0.070 ppm	5	0	0
	# Days > California 1-hour Std. of 0.09 ppm	0	0	0
	# Days > California 8-hour Std. of 0.07 ppm	5	0	0
	Max. 24-hour Concentration (µg/m ³)	250.4	225.7	345.8
Respirable Particulate	#Days > Fed. 24-hour Std. of 150 μg/m ³	1	1	4
Matter (PM10) - Niland	#Days > California 24-hour Std. of 50 μg/m ³	17	14	ND
	Annual Average(µg/m ³)	46.1	40.7	ND
	Max. 24-hour Concentration (µg/m ³)	29.5	57.9	46.1
Fine Particulate Matter	State Annual Average (µg/m³)	6.6	11.3	9.4
(PM _{2.5}) - Brawley	#Days > Fed. 24-hour Std. of 35 μg/m ³	0	2	1
	Federal Annual Average (µg/m ³)	6.5	11.2	9.4

<u>Table 3.3-2</u>
AMBIENT CRITERIA POLLUTANT CONCENTRATION DATA FOR PROJECT VICINITY

Source: California Air Resources Board, "iADAM Air Quality Data Statistics." Internet URL: http://www.arb.ca.gov/adam/ (September 2018)

ND There were insufficient (or no) data available to determine the value.

4.0 AIR QUALITY IMPACTS ANALYSIS

This analysis was prepared in accordance with the ICAPCD CEQA Air Quality Handbook and with Appendix G of the California Environmental Quality Act (CEQA) Guidelines. Air quality impacts are typically divided into short-term and long-term impacts. Short-term impacts are associated with construction activities, such as site grading, excavation and building construction of a project. Long-term impacts are associated with the operation of a project upon its completion.

4.1 CEQA IMPACT REVIEW CRITERIA

In accordance with *State CEQA Guidelines* Appendix G, implementation of the project would result in a potentially significant impact if it were to:

• Conflict with or obstruct implementation of the applicable air quality plan;

¹⁵ ADAM Air Quality Data Statistics. California Air Resources Board. http://www.arb.ca.gov/adam/welcome.html. Accessed September 2018.

- Violate any air quality standard or contribute substantially to an existing or projected air quality violation;
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors);
- Expose sensitive receptors to substantial pollutant concentrations; or
- Create objectionable odors affecting a substantial number of people.

Where available, the significance criteria established by the applicable air quality management district (AQMD) or air pollution control district (APCD) may be relied upon to make the significance determinations. As will be discussed in the next section, the ICAPCD has developed a CEQA Air Quality Handbook to provide a protocol for air quality analyses that are prepared under the requirements of CEQA.

4.2 IMPERIAL COUNTY APCD THRESHOLDS OF SIGNIFICANCE

Under the ICAPCD guidelines, an air quality evaluation must address the following:

- Comparison of calculated project emissions with ICAPCD emission thresholds.
- Consistency with the most recent Clean Air Plan for Imperial County.
- Comparison of predicted ambient pollutant concentrations resulting from the project to state and federal health standards, when applicable.
- The evaluation of special conditions that apply to certain projects.

4.2.1 Construction Impacts

As will be discussed in **Section 4.5.2**, this is a "Tier I" project. In general, projects whose *operational* emissions qualify them as Tier I do not need to quantify their construction emissions; instead they adopt the standard mitigation measures for construction (See **Section 5.0**). The CEQA Guidelines states the "approach of the CEQA analyses for construction particulate matter impacts should be qualitative as opposed to quantitative." Since this is an atypical development project, this analysis quantifies construction emissions. The quantification serves the purpose of determining which construction-related mitigation measures to prescribe. The ICAPCD's thresholds for significance are shown in **Table 4.2-1**.

Pollutant	Threshold
PM10	150 lbs/day
ROG	75 lbs/day
NOx	100 lbs/day
СО	550 lbs/day

Table 4.2-1 THRESHOLDS OF SIGNIFICANCE FOR CONSTRUCTION ACTIVITIES¹⁶

4.2.2 Operational Impacts

To evaluate long-term air quality impacts due to operation of a project, the ICAPCD recommends the significance criteria shown in **Table 4.2-2.**

D. II. to other	Emissions (lbs/day)			
Pollutant	Tier I	Tier II		
Carbon Monoxide (CO)	< 550	≥ 550		
Reactive Organic Gases (ROG)	< 137	≥137		
Nitrogen Oxides (NO _x)	< 137	≥137		
Sulfur Oxides (SOx)	< 150	≥ 150		
Particulate Matter (PM10)	< 150	≥ 150		
Particulate Matter (PM _{2.5})	< 550	≥ 550		
Level of Significance	Less Than Significant	Significant Impact		
Level of Analysis	Initial Study	Comprehensive Air Quality Report		
Environmental Document	Negative Declaration	Mitigated Negative Declaration or Environmental Impact Report		

Table 4.2-2 THRESHOLDS OF SIGNIFICANCE FOR PROJECT OPERATIONS¹⁷

4.3 CO "HOTSPOTS" THRESHOLDS

Exhaust emissions from motor vehicles can potentially cause a direct, localized hotspot impact at or near proposed developments or sensitive receptors. The optimum condition for the occurrence of a CO hotspot would be cool and calm weather at a congested major roadway intersection with sensitive receptors nearby, and where vehicles are idling or moving at a stop-and-go pace.

The significance of localized project impacts depends on whether project-related emissions result in a violation of state and/or federal CO standards. A significant impact would occur if the CO hotspot analysis of vehicular intersection emissions exposes sensitive receptors to concentrations that are in excess of the following thresholds:

- 20 parts per million (ppm) for 1-hour average, and/or
- 9 ppm for 8-hour average.

¹⁶ Imperial County Air Pollution Control District. 2017. CEQA Air Quality Handbook. November, p. 20.

¹⁷ Imperial County Air Pollution Control District. 2017. CEQA Air Quality Handbook. November, p. 10.

The ICAPCD *CEQA Air Quality* Handbook does not specify criteria for significance when ambient CO levels already exceed a state or federal standard. For that case, we used the South Coast Air Quality Management District's specification that project impacts are considered significant if they increase 1-hour CO concentrations by 1.0 ppm or more or 8-hour CO concentrations by 0.45 ppm or more.¹⁸

4.4 METHODOLOGY

Regional and local emissions of criteria air pollutants and precursors, and GHGs during project construction and operations were assessed in accordance with the methodologies described below. ICAPCD suggests that the "approach of the CEQA analyses for construction PM_{10} impacts should be qualitative as opposed to quantitative"¹⁹ but that any projects which are greater than the level of significance for construction may have a significant impact on local and, under certain circumstances, regional air quality. This analysis includes PM_{10} in the quantification.

Due to the type of project, it was determined that emissions from the construction activities related to the project could not be easily estimated using existing models, including the commonly used California Emissions Estimator Model (CalEEMod), as these models are designed for "typical" land development projects. Therefore, this analysis attempts to provide detailed analysis of impacts related to three container pads including off-road equipment used for preparing the subgrade by compacting 12 inches of native soil, application and compacting 12 inches of crushed recycled concrete, and application and compacting 12 inches of Caltrans Class II aggregate; and the construction of two asphalt driveways with two compositions. Construction emissions also included the use of on-road trucks to haul the aggregate and crushed recycled concrete.

Operational emissions were estimated for employees, container loaders, agricultural hauling trucks, and locomotives.

4.5 **AIR QUALITY IMPACTS**

4.5.1 Short-Term Impacts

Project construction activities will generate short-term air quality impacts. Construction emissions can be distinguished as either onsite or offsite. Onsite air pollutant emissions would consist principally of exhaust emissions from off-road heavy-duty construction equipment, as well as fugitive particulate matter from earthwork. Offsite emissions would result from workers commuting to and from the job site, as well as from trucks hauling aggregate and crushed recycled concrete.

Construction of the container yard portion of Phase 1 of the project would include grading, leveling, and compacting native soil to produce a depth of 12 inches of compacted soil; placement of a mesh; importing crushed recycled concrete; distributing, leveling, and compacting to a depth of 12 inches; and importing Class 2 aggregate, distributing, leveling, and compacting to a depth of 6 inches. Additionally Phase 1 would include construction of a driveway that comprised of four inches of Caltrans Type B asphalt concrete over 12 to 14 inches of Class 2 aggregate base. Phase 2 of the project would be constructed the same and begin 9 months later. Phase 3 of the project would begin 9 months later and would include all the aforementioned container yard construction, but no driveway would be constructed. The overall duration of each Phase is expected to be eight months. The estimated

¹⁸ South Coast Air Quality Management District. 1993. CEQA Air Quality Handbook. April.

¹⁹ CEQA Air Quality Handbook: Guidelines for the Implementation of the California Air Quality Act of 1970, and amended. Imperial County Air Pollution Control District, November 2007.

unmitigated emissions are presented in **Table 4.5-1**. Calculation assumptions and results files are provided in **Appendix B**.

Construction Activity	Maximum Emissions (lbs/day)			
construction Activity	ROG	СО	NOx	PM10
Phase 1	6.1	29.9	69.1	335.9
Phase 2	5.7	28.9	62.7	329.1
Phase 3	3.2	16.9	37.7	328.1
ICAPCD Significance Thresholds ^a	75	550	100	150
Significant (Yes or No)	No	No	No	Yes

Table 4.5-1 MAXIMUM DAILY UNMITIGATED CONSTRUCTION EMISSIONS

Source: OB-1 Air Analyses.

^aThe ICAPCD does not have a significance threshold for PM_{2.5} during construction.

As seen in **Table 4.5-1**, the project is expected to generate unmitigated PM₁₀ emissions that would exceed the ICAPCD threshold of 150 pounds per day. These emissions will be reduced in two ways. First, the ICAPCD requires that standard mitigation measures for construction equipment and fugitive PM₁₀ control be implemented at all construction sites, as appropriate and feasible, regardless of the size of construction.²⁰ In addition, please note that implementation of required mitigation measures does not exempt the project from compliance with ICAPCD rules and regulations. The project proponent must comply with all the requirements of the ICAPCD's rules and regulations, specifically those of Regulation VIII. Regulation VIII applies to any activity or man-made condition capable of generating fugitive dust, and requires the use of reasonably available control measures to suppress fugitive dust emissions.

In addition, to ensure that construction would be less than significant, the applicant must follow mitigation measure **MM AQ-1**, which is presented in **Section 6.1.1**

Table 4.5-2 shows estimated construction emissions after implementation **MM AQ-1** and of standard mitigation measures for construction equipment and fugitive PM₁₀ control. Emissions of all criteria pollutants would be below their respective thresholds for significance.

²⁰ Imperial County Air Pollution Control District, CEQA Air Quality Handbook. (November 2007).

Construction Activity	Maximum Emissions (lbs/day)					
	ROG	CO	NOx	PM10		
Phase 1	6.1	29.9	69.1	146.2		
Phase 2	5.7	28.9	62.7	1431		
Phase 3	3.2	16.9	37.7	142.0		
ICAPCD Significance Thresholds ^a	75	550	100	150		
Significant (Yes or No)	No	No	No	No		

<u>Table 4.5-1</u> MAXIMUM DAILY MITIGATED CONSTRUCTION EMISSIONS

Source: OB-1 Air Analyses.

^aThe ICAPCD does not have a significance threshold for PM_{2,5} during construction.

4.5.2 Long-Term Impacts

The project will generate long-term air quality impacts associated with the exhaust emissions from locomotive traffic, agricultural delivery of product from fields using trucks, onsite container loaders, and employee commuting. Emission factors for employee vehicles and agricultural product hauling trucks were obtained from the EMFAC2014 Web Database²¹ for Imperial County in calendar years 2018, 2019, and 2020. Emission factors for the container loaders were based on Tier 4F Standards and from the CalEEMod User's Manual²² Appendix D. Emission factors for locomotives were derived from a USEPA Regulatory Support Document²³ and locomotive fuel rates were derived from *Fuel Efficiency Improvement in Rail Freight Transportation*²⁴.

The estimated emissions for the worst-case Phase 1 year of 2018 are shown in **Table 4.5-3.** Detailed calculations are provided in **Attachment 1**.

Emissions Source	Pollutant (maximum lbs/day)					
	ROG	CO	NOx	PM10	PM2.5	
Locomotive Emissions	3.41	5.83	38.92	1.02	0.94	
Container Loader Emissions	4.32	80.25	9.26	0.46	0.43	
Hauling Truck Emissions	6.78	18.87	100.28	4.81	1.72	
Employee Commute Emissions	0.02	0.47	0.06	0.00	0.00	
Total Operational Emissions	14.5	105.4	148.5	6,3	3.1	
Thresholds for Tier II	137	550	137	150	550	
Tier	I	I	п	I	I	

Table 4.5-3 DAILY PROJECT OPERATIONAL EMISSIONS

Source: Calculated by OB-1 Air Analyses.

²¹ EMFAC2014 Web Database. California Air Resources Board. (https://www.arb.ca.gov/emfac/2014/). Accessed September 2018.

²² CalEEMod User's Guide, Version 2016.3.2. California Air Pollution Control Officers Association. November 2017.

²³ Locomotive Emissions Standards: Regulatory Support Document. United States Environmental Protection Agency, Office of Mobile Sources. April 1998.

^{24 &}quot;Fuel Efficiency Improvement in Rail Freight Transportation," J N Cetenich, FRA-ORD-76-136, December 1975. as presented in Railroad Costs blog http://www.alternatewars.com/BBOW/Logistics/RR_Costs.htm. Accessed September 2018.

As indicated in **Table 4.5-3**, the long-term project operational emissions would not exceed applicable thresholds for ROG, CO, PM_{10} , or $PM_{2.5}$. However, they would exceed the Tier II threshold for NO_X . Most of the NO_X emissions would be from locomotives and exhaust from hauling trucks. None of the ICAPCD-required standard and discretionary operational mitigation measures specified in the ICAPCD *CEQA Air Quality Handbook* are applicable for this project. The ICAPCD realizes that industrial development projects "are by nature much more complex" than typical commercial or residential projects, and has adopted Guidance Policy #5 to help lead agencies evaluate offsite mitigation to help reduce their impacts. Guidance Policy #5 is discussed in **Section 6.1.2** of this document.

4.5.3 Sensitive Receptors

Sensitive receptors are persons who would be more susceptible to air pollution than the general population, such as children, athletes, the elderly, and the chronically ill. Examples of land uses where substantial numbers of sensitive receptors are often found are schools, daycare centers, parks, recreational areas, medical facilities, nursing homes, and convalescent care facilities. Residential areas are also considered to be sensitive to air pollution because residents (including children and the elderly) tend to be at home for extended times, resulting in sustained exposure to pollutants. The closest sensitive receptor currently is a rural residence immediately northwest of the proposed site. The nearest school is Calipatria High School, located at 601 West Main Street, Calipatria, about 1.2 miles north-northwest of the project.

4.5.4 Objectionable Odors

Construction activities for the project would generate airborne odors associated with the operation of construction vehicles (i.e., diesel exhaust) and asphalt paving operations. These emissions would occur during daytime hours only and would be isolated to the immediate vicinity of the construction site and activity. Therefore, they would not affect a substantial number of people. Operational emissions would include locomotive emissions, but the location of the project is remote and will not affect a substantial number of people.

4.5.5 Conformity with Air Quality Management Plan

The ICAPCD *CEQA Air Quality Handbook* calls for a consistency analysis with the regional clean air plans, namely ozone and PM₁₀ attainment demonstration plans, for large residential and commercial developments that are required to develop an EIR. Projects that are projected to exceed ICAPCD thresholds of significance for its operations are considered large developments and are required to demonstrate consistency with regional air quality plans.

With the mitigation measure presented in **Section 6.1.2**, operational emissions from the project would be matched by emission reductions elsewhere in Imperial County. Therefore, analysis for conformity with regional air quality plans is not required for the project.

5.0 GREENHOUSE GAS EMISSIONS ANALYSIS

5.1 CLIMATE CHANGE AND GREENHOUSE GASES

If the earth had no atmosphere, almost all of the energy received from the sun would be re-radiated out into space. Our atmosphere helps retain a major portion of the solar radiation through "the greenhouse effect." Short-wavelength solar radiation passes through the atmosphere and is

absorbed by the earth's surface. The earth re-radiates the heat up into the atmosphere, at a longer wavelength. GHG in the atmosphere absorb the longer-wavelength heat and then radiate it back downward. In general, as concentrations of GHG in the atmosphere increase, global temperatures increase.

For many centuries, atmospheric GHG concentrations were relatively stable. As combustion of fossil fuels for industrial activities and transportation increased, concentrations of CO_2 in the atmosphere increased dramatically. The result has been an observed increase in average global temperature. The current consensus among scientists is that continued increases in atmospheric GHG will not only raise the average global temperature but will also lead to changes in climate. While air temperatures will mainly rise, temperatures may decrease in some areas. Rainfall distribution and storm patterns will be affected. As polar ice melts, sea levels may rise, inundating coastal areas.

GHG is defined under the California Global Warming Solutions Act of 2006 (AB 32) as CO_2 , CH_4 , N_2O , hydrofluorocarbons (HFC), perfluorocarbons (PFC) and sulfur hexafluoride (SF₆). Associated with each GHG species is a "global warming potential" (GWP), which is defined as the ratio of degree of warming to the atmosphere that would result from the emission of one mass unit of a given GHG compared with one equivalent mass unit of CO_2 over a given period of time. By this definition, the GWP of CO_2 is always 1. The GWP of methane and N_2O are 25 and 298, respectively.²⁵ "Carbon dioxide equivalent" (CO_2e) emissions are calculated by weighting each GHG compound's emissions by its GWP and then summing the products.

Carbon dioxide (CO_2) is a clear, colorless, and odorless gas. Fossil fuel combustion is the main human-related source of CO_2 emissions; electricity generation and transportation are first and second in the amount of CO_2 emissions, respectively. Carbon dioxide is the basis of GWP, and thus has a GWP of 1.

Methane (CH₄) is a clear, colorless gas, and is the main component of natural gas. Anthropogenic sources of CH₄ are fossil fuel production, biomass burning, waste management, and mobile and stationary combustion of fossil fuel. Wetlands are responsible for the majority of the natural methane emissions.²⁶ As mentioned above, CH₄, within a 100-year period, is 25 times more effective in trapping heat than is CO₂.

Nitrous oxide (N₂O) is a colorless, clear gas, with a slightly sweet odor. N₂O has both natural and human-related sources, and is removed from the atmosphere mainly by photolysis, or breakdown by sunlight, in the stratosphere. The main human-related sources of N₂O in the United States are agricultural soil management (synthetic nitrogen fertilization), mobile and stationary combustion of fossil fuel, adipic acid production, and nitric acid production.²⁷ Nitrous oxide is also produced from a wide range of biological sources in soil and water. Within a 100-year span, N₂O is 298 times more effective in trapping heat than is $CO_{2,2^8}$

²⁵ Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007.

²⁶ U.S. Environmental Protection Agency, "Methane." Climate Change Web Site. Internet URL:

http://www.epa.gov/methane/. Updated April 1, 2011.

²⁷ U.S. Environmental Protection Agency, "Nitrous Oxide." Climate Change Web Site. Internet URL: http://www.epa.gov/nitrousoxide/. Updated June 22, 2010.

²⁸ Ibid.

5.1.1 Potential Environmental Effects

Worldwide, average temperatures are likely to increase by 3°F to 7°F by the end of the 21st century.²⁹ However, a global temperature increase does not directly translate to a uniform increase in temperature in all locations on the earth. Regional climate changes are dependent on multiple variables, such as topography. One region of the Earth may experience increased temperature, increased incidents of drought, and similar warming effects, whereas another region may experience a relative cooling. According to the International Panel on Climate Change's (IPCC's) Working Group II Report,³⁰ climate change impacts on North America may include diminishing snowpack, increasing evaporation, exacerbated shoreline erosion, exacerbated inundation from sea level rising, increased risk and frequency of wildfire, increased risk of insect outbreaks, increased experiences of heat waves, and rearrangement of ecosystems, as species and ecosystem zones shift northward and to higher elevations.

5.1.2 California Implications

Even though climate change is a global problem and GHGs are global pollutants, the specific potential effects of climate change on California have been studied. The third assessment produced by the California Natural Resources Agency (CNRA)³¹ explores local and statewide vulnerabilities to climate change, highlighting opportunities for taking concrete actions to reduce climate-change impacts. Projected changes for the remainder of this century in California include:

- **Temperatures** By 2050, California is projected to warm by approximately 2.7°F above 2000 averages, a threefold increase in the rate of warming over the last century and springtime warming a critical influence on snowmelt will be particularly pronounced.
- Rainfall Even though model projections continue to show the Mediterranean pattern of wet winters and dry summers with seasonal, year-to-year, and decade-to-decade variability, improved climate models shift towards drier conditions by the mid-to-late 21st century in Central, and most notably, Southern California.
- Wildfire Earlier snowmelt, higher temperatures, and longer dry periods over a longer fire season will directly increase wildfire risk. Indirectly, wildfire risk will also be influenced by potential climate-related changes in vegetation and ignition potential from lightning, with human activities continuing to be the biggest factor in ignition risk. Models are showing that estimated that property damage from wildfire risk could be as much as 35% lower if smart growth policies were adopted and followed than if there is no change in growth policies and patterns.

The third assessment by CNRA not only defines projected vulnerabilities to climatic changes but analyzes potential impacts from adaptation measures used to minimize harm and take advantage of beneficial opportunities that may arise from climate change.

²⁹ Climate Change 2007: Impacts, Adaptation, and Vulnerability. Website http://www.ipcc.ch/ipccreports/ar4-wg2.htm. Accessed March 2013.

³⁰ Ibid.

Our Changing Climate 2012: Vulnerability & Adaptation to the Increasing Risks from Climate Change in California. California Natural Resources Agency. July 2012 / CEC-500-2012-007.

The report highlights important new insights and data, using probabilistic and detailed climate projections and refined topographic, demographic, and land use information. The findings include:

- The state's electricity system is more vulnerable than was previously understood.
- The Sacramento-San Joaquin Delta is sinking, putting levees at growing risk.
- Wind and waves, in addition to faster rising seas, will worsen coastal flooding.
- Animals and plants need connected "migration corridors" to allow them to move to habitats that are more suitable to avoid serious impacts.
- Native freshwater fish are particularly threatened by climate change.
- Minority and low-income communities face the greatest risks from climate change.

5.2 **REGULATORY BACKGROUND**

5.2.1 Federal Climate Change Regulation

The federal government has been involved in climate change issues at least since 1978 when Congress passed the National Climate Program Act (92 Stat. 601), under authority of which the National Research Council prepared a report predicting that additional increases in atmospheric CO₂ would lead to non-negligible changes in climate. At the "Earth Summit" in 1992 in Rio de Janeiro, President George H.W. Bush signed the United Nations Framework Convention on Climate Change (UNFCCC), a nonbinding agreement among 154 nations to reduce atmospheric concentrations of carbon dioxide and other greenhouse gases. The treaty was ratified by the U.S. Senate. However, when the UNFCCC signatories met in 1997 in Kyoto, Japan, and adopted a protocol that assigned mandatory targets for industrialized nations to reduce greenhouse gas emissions, the U.S. Senate expressed its opposition to the treaty. The Kyoto Protocol was not submitted to the Senate for ratification.

The federal government is taking several common-sense steps to address the challenge of climate change. EPA collects several types of GHG emissions data. This data helps policy makers, businesses, and EPA track GHG emissions trends and identify opportunities for reducing emissions and increasing efficiency. USEPA has been collecting a national inventory of GHG emissions since 1990 and in 2009 established mandatory reporting of GHG emissions from large GHG emissions sources.

Current USEPA efforts based on historical website material reflecting the EPA website as it existed on January 19, 2017³² include regulatory initiatives such as EPA's vehicle greenhouse gas rules and Clean Power Plan; partnering with the private sector through voluntary energy and climate programs; and reducing EPA's carbon footprint with the federal greenhouse gas requirements and EPA's Strategic Sustainability Performance Plan. However, the current administration is making an effort to repeal the Clean Power Plan, and reduce or eliminate related initiatives of the previous administration.

5.2.2 California Climate Change Regulation

Since 2005, through legislation, regulations, and executive orders, the State of California has actively pursued a goal of substantially reducing public and private sector GHG emissions in the state. The following are the major actions taken to date.

³² What EPA Is Doing about Climate Change, Environmental Protection Agency.

Executive Order S-3-05 (GHG Emissions Reductions). Executive Order #S-3-05, signed by Governor Arnold Schwarzenegger on June 1, 2005, calls for a reduction in GHG emissions to 1990 levels by 2020 and for an 80% reduction in GHG emissions to below 1990 levels by 2050.

The California Global Warming Solutions Act of 2006 (AB 32). In September 2006, Governor Arnold Schwarzenegger signed AB 32, the California Global Warming Solutions Act of 2006 (Health and Safety Code § 38500 et seq.), into law. AB 32 was intended to effectively end the scientific debate in California over the existence and consequences of global warming. In general, AB 32 directs the California Air Resources Board (CARB) to do the following:

- On or before June 30, 2007, publicly make available a list of discrete early action GHG emission reduction measures that can be implemented prior to the adoption of the statewide GHG limit and the measures required to achieve compliance with the statewide limit.
- By January 1, 2008, determine the statewide levels of GHG emissions in 1990, and adopt a statewide GHG emissions limit that is equivalent to the 1990 level (an approximately 25% reduction in existing statewide GHG emissions).
- On or before January 1, 2010, adopt regulations to implement the early action GHG emission reduction measures.
- On or before January 1, 2011, adopt quantifiable, verifiable, and enforceable emission reduction measures by regulation that will achieve the statewide GHG emissions limit by 2020, to become operative on January 1, 2012, at the latest. The emission reduction measures may include direct emission reduction measures, alternative compliance mechanisms, and potential monetary and non-monetary incentives that reduce GHG emissions from any sources or categories of sources as CARB finds necessary to achieve the statewide GHG emissions limit.
- Monitor compliance with and enforce any emission reduction measure adopted pursuant to AB 32.

On December 11, 2008, the CARB approved the *Climate Change Scoping Plan*³³ pursuant to AB 32. The Scoping Plan recommends a wide range of measures for reducing GHG emissions, including (but not limited to):

- Expanding and strengthening of existing energy efficiency programs.
- Achieving a statewide renewables energy mix of 33 percent.
- Developing a GHG emissions cap-and-trade program.
- Establishing targets for transportation-related GHG emissions for regions throughout the state, and pursuing policies and incentives to meet those targets.

³³ California Air Resources Board, Climate Change Scoping Plan, a Framework for Change, Pursuant to AB32, the California Global Warming Solutions Act of 2006 (December 11, 2008).

- Implementing existing state laws and policies, including California's clean car standards, goods movement measures and the Low Carbon Fuel Standard.
- Targeted fees to fund the state's long-term commitment to administering AB 32.

Executive Order S-01-07 (Low Carbon Fuel Standard). Executive Order #S-01-07 (January 18, 2007) establishes a statewide goal to reduce the carbon intensity of California's transportation fuels by at least 10% by 2020 through establishment of a Low Carbon Fuel Standard. Carbon intensity is the amount of CO2e per unit of fuel energy emitted from each stage of producing, transporting and using the fuel in a motor vehicle. On April 23, 2009 the Air Resources Board adopted a regulation to implement the standard.

Senate Bill 97. Senate Bill 97 was signed by the governor on August 24, 2007. The bill required the Office of Planning and Research (OPR), by July 1, 2009, to prepare, develop and transmit to the Resources Agency guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions, as required by CEQA, including, but not limited to, effects associated with transportation or energy consumption. On April 13, 2009 OPR submitted to the Secretary for Natural Resources its proposed amendments to the State CEQA Guidelines for greenhouse gas emissions. The Resources Agency adopted those guidelines on December 30, 2009, and they became effective on March 18, 2010. The amendments treat GHG emissions as a separate category of impacts; i.e. they are not to be addressed as part of an analysis of air quality impacts.

Section 15064.4, which was added to the CEQA Guidelines, specifies how the significance of impacts from GHGs is to be determined. First, the lead agency should "make a good faith effort" to describe, calculate or estimate the amount of GHG emissions resulting from a project. After that, the lead agency should consider the following factors when assessing the impacts of the GHG emissions on the environment:

- The extent to which the project may increase or reduce GHG emissions, relative to the existing environmental setting;
- Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project; and
- The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional or local plan for the reduction or mitigation of GHG emissions.

The Governor's Office of Planning and Research (OPR) asked the CARB to make recommendations for GHG-related thresholds of significance. On October 24, 2008, the CARB issued a preliminary draft staff proposal for *Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act.*³⁴ After holding two public workshops and receiving comments on the proposal, CARB staff

³⁴ California Air Resources Board. Preliminary Draft Staff Proposal. Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act. Planning and Technical Support Division, Sacramento, California (October 24, 2008).

decided not to proceed with threshold development.³⁵ Quantitative significance thresholds, if any, are to be set by local agencies.

Senate Bill 375. Senate Bill 375 requires coordination of land use and transportation planning to reduce GHG emissions from transportation sources. Regional transportation plans, which are developed by metropolitan transportation organizations such as the Southern California Association of Governments (SCAG), are to include "sustainable community strategies" to reduce GHG emissions.

Title 24. The Energy Efficiency Standards for Residential and Nonresidential Buildings (Title 24, Part 6, of the *California Code of Regulations*) were established in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. Compliance with Title 24 will result in decreases in GHG emissions. The California Energy Commission adopted the 2008 changes to the Building Energy Efficiency Standards on April 23, 2008 with an aim to promote the objectives listed below.³⁶

- Provide California with an adequate, reasonably-priced and environmentally-sound supply of energy.
- Respond to Assembly Bill 32, the Global Warming Solutions Act of 2006, which mandates that California must reduce its greenhouse gas emissions to 1990 levels by 2020.
- Pursue California energy policy that energy efficiency is the resource of first choice for meeting California's energy needs.
- Act on the findings of California's Integrated Energy Policy Report (IEPR) that Standards are the most cost-effective means to achieve energy efficiency, expects the Building Energy Efficiency Standards to continue to be upgraded over time to reduce electricity and peak demand, and recognizes the role of the Standards in reducing energy related to meeting California's water needs and in reducing greenhouse gas emissions.
- Meet the West Coast Governors' Global Warming Initiative commitment to include aggressive energy efficiency measures into updates of state building codes.
- Meet the Executive Order in the Green Building Initiative to improve the energy efficiency of nonresidential buildings through aggressive standards.

The provisions of Title 24, Part 6 apply to all buildings for which an application for a building permit or renewal of an existing permit is required by law. They regulate design and construction of the building envelope, space-conditioning and water-heating systems, indoor and outdoor lighting systems of buildings, and signs located either indoors or outdoors. Title 24, Part 6 specifies mandatory, prescriptive and performance measures, all designed to

³⁵ Personal communication from Douglas Ito, California Air Resources Board, Sacramento, California, to Michael Rogozen, UltraSystems Environmental Inc., Irvine, California. March 29, 2010.

^{36 &}quot;2008 Building Energy Efficiency Standards." California Energy Commission, Sacramento, California. (http://www.energy.ca.gov/title24/2008standards/index.html). These became effective January 1, 2010.

optimize energy use in buildings and decrease overall consumption of energy to construct and operate residential and nonresidential buildings.³⁷ Mandatory measures establish requirements for manufacturing, construction and installation of certain systems; equipment and building components that are installed in buildings.

Recent Developments: On May 22, 2014 the ARB approved the First Update to the Climate Change Scoping Plan Pursuant to AB 32.³⁸ The updated scoping plan evaluates the effectiveness of policies from the original scoping plan and adds recommendations for expanding and improving upon those programs including, but not limited to:

- Leveraging public money to fund technologies including medium and heavy duty Zero Emission Vehicles (ZEV).
- Expanding local, regional, and state transportation plan goals to improve transit efficiency.
- Supporting the High-Speed Rail Authority and Sustainable Freight Strategy.
- Extending Low Carbon Fuel Standards beyond 2020 with more aggressive goals.
- Developing accurate methods for estimating agricultural emissions so that greenhouse gas reduction techniques can be assessed.
- Eliminating disposal of organic matter and promote methane recovery at landfills.
- Instituting the Forest Carbon Plan to model and understand the carbon cycle of forestry.
- Implementing economic incentives for the destruction of short-lived climate pollutants.
- Allowing limited future allowances for Cap-and-Trade to reduce cost spikes.
- Setting interim goals to reach greenhouse gas emissions of 80% of 1990 levels by 2050.

5.2.3 Local Significance Thresholds

It is widely recognized that no single project could generate enough GHG emissions to change the global climate temperature noticeably. However, the combination of GHG emissions from past, present, and future projects could contribute substantially to global climate change. Thus, project specific GHG emissions should be evaluated in terms of whether they would result in a cumulatively significant impact on global climate change.

Since the County of Imperial has not established a threshold of significance for GHGs, the ICAPCD recommends that the project be evaluated based on strategies developed by the Climate Action Team (CAT) in a 2006 Report³⁹ that set the framework for the State's emission reduction strategies that

^{37 2008} Building Energy Efficiency Standards for Residential and Nonresidential Buildings, California Energy Commission, (December 2008).

³⁸ First Update to the Climate Change Scoping Plan. California Air Resources Board.

 ⁽http://www.arb.ca.gov/cc/scopingplan/2013_update/first_update_climate_change_scoping_plan.pdf). May 2014.
 Climate Action Team Report to Governor Schwarzenegger and the Legislature. California Environmental Protection Agency. March 2006.

could be implemented in California to reduce climate change emissions to ensure that the targets of AB 32 are met.

5.3 PROJECT GREENHOUSE GAS EMISSIONS INVENTORY

The project will cause both direct and indirect source emissions of GHG. Direct emission sources are those which produce onsite emissions through the combustion of fossil fuels. Typically, the two main direct emission sources will be use of internal combustion (IC) engines and space heating. Indirect GHG source emissions are those for which the project is responsible, but that occur offsite. For example, the solid waste that is distributed to landfills will decay and emit the GHGs CO₂ and CH₄. GHG are also emitted by combustion of fossil fuels to generate electricity used by the project. Production of the electricity used to convey water to the project and to treat wastewater generated by the project is also an indirect source.

Because of the persistence of GHG in the atmosphere, all the impacts addressed in this section are defined as long-term. Greenhouse gas emissions from construction are amortized over the next 30 years and added to operational emissions for the purpose of estimating annual emissions.

5.3.1 Direct Source Emissions

5.3.1.1 Construction Emissions

The same equipment characteristics and schedule information that were used for the air quality analysis described in **Section 4.5** were used in the GHG analysis. Estimated annual GHG emissions in 2018, 2019, and 2020 would be **94.3**, **72.3**, and **74.0 metric tons (tonnes) CO**₂e, respectively. The total of these values would be **240.5 tonnes of CO**₂e. The annual average over 30 years would be **8.0 tonnes per year**.

5.3.1.2 Operational Emissions

The project will generate operational GHG emissions from employee commuting, locomotive activity, container loader activity, and on-road exhaust emissions from hauling trucks. As Phases 1 through 3 are implemented, estimated annual GHG emissions in 2018, 2019, and 2020 would increase by **443.5**, **443.0**, and **443.3 metric tons (tonnes) CO**₂**e**, respectively. The total of these values, **1,338 tonnes of CO**₂**e**, would be the annual emission rate for subsequent years.

5.3.2 Total Unmitigated Greenhouse Gas Emissions

Table 5.3-1 (Unmitigated Annual GHG Emissions, 2018 and Beyond) gives a detailed breakdown of the results of the GHG emissions analysis.

Table 5.3-1 UNMITIGATED ANNUAL GHG EMISSIONS, 2018 AND BEYOND

Phase/Activity	Total Tonnes				
	CO ₂	CH4	N ₂ O	CO2e	
2018 Phase 1 Increment	434.0	0.134	0.021	443.5	
2019 Phase 2 Increment	433.5	0.134	0.021	443.0	
2020 Phase 3 Increment	433.7	0.134	0.021	443.3	
Cumulative Operational Totals	1,301	0.402	0.063	1,330	
Amortized Construction					
Project Totals					

(Emissions in tonnes)

5.4 IMPACT ANALYSIS

UltraSystems used the following factors from § 15064.4(b) of the CEQA Guidelines to assess the significance of impacts from greenhouse gas emissions on the environment:⁴⁰

- The extent to which the project may increase or reduce greenhouse gas emissions as compared to the existing environmental setting.
- The extent to which the project complies with regulations or requirements adopted to implement a statewide, regional, or local plan for the reduction or mitigation of greenhouse gas emissions.

5.4.1 Increase in Greenhouse Gas Emissions

As seen in **Table 5.3-1** the project will generate about 1,338 tonnes per year of GHG emissions. How much of an <u>increase</u> in GHG emissions this represents is uncertain. In fact, the project has the potential to significantly reduce GHG emissions through the elimination of the need for trucks to deliver their product to the POLB. Because climate change is a global issue, it does not matter where the emissions occur. Whether there would be a net increase in mobile source GHG emissions is also uncertain.

5.4.2 Compliance with Greenhouse Gas Reduction Plans

There are currently no regional or local climate action plans or general or specific plan provisions to reduce GHG emissions in the study area. The only applicable plan is the set of regulations to be developed under AB 32, which has a target of reducing GHG emissions to 1990 levels by 2020. The potential significance of emissions from the project therefore depends upon the extent to which the project furthers or hinders implementation of AB 32.

⁴⁰ CEQA Guidelines §§ 15064.4(b)(1) through 15064.4(b)(3).

The 1,338 tonnes per year of GHG emissions forecast for the project is below an interim threshold that the South Coast Air Quality Management District (SCAQMD) has recommended for various type of development projects.⁴¹ The SCAQMD proposes that if a residential or commercial project generates GHG emissions below 3,000 tonnes CO₂e annually, it could be concluded that the Project's GHG contribution is not "cumulatively considerable" and is therefore less than significant under CEQA. The project's GHG contribution would be determined to be not "cumulatively considerable" and therefore would be less than significant under CEQA.

6.0 MITIGATION MEASURES

6.1 MITIGATION FOR AIR QUALITY IMPACTS

Mitigation for the project's operational emissions, as specified by the ICAPCD's *CEQA Air Quality Handbook* and Guidance Policy #5 is listed below.

6.1.1 Construction Phase

In addition to complying with the ICAPCD's standard mitigation measures for construction, and with applicable District rules, the proponent shall implement mitigation measure **MM AQ-1**:

MM AQ-1 The operator shall limit vehicle speed to less than 15 miles per hour on any and all unpaved surfaces on the project site.

6.1.2 Operational Phase

In lieu of a proponent proposing and administering offsite mitigation measures, as approved by the ICAPCD, to reduce emission levels below significance the ICAPCD adopted Guidance Policy #5⁴² to provide for a proponent to pay in-lieu fees that are placed into an ICAPCD specified development account for appropriate tracking. Projects funded by the in-lieu fees must be emission reductions that are surplus; that adhere to a minimum cost-effectiveness level; not utilized for marketable emission credits; and have a minimum project life of ten years.

In accordance with the ICAPCD *CEQA Air Quality Handbook*, the long-term operational impacts would be less than significant upon implementation of mitigation measure **AQ-2**:

MM AQ-2 The proponent shall pay an in-lieu mitigation fee to be determined and administered by the ICAPCD.

6.2 MITIGATION FOR CLIMATE CHANGE IMPACTS

No mitigations necessary,

⁴¹ Interim CEQA GHG Significance Threshold for Stationary Sources, Rules, and Plans. South Coast Air Quality Management District Board. Adopted December 5, 2008.

⁴² Off-Site Mitigation / In-Lieu Fee. Imperial County Air Pollution Control District. March 30, 2007 (Revised March 4, 2009).

ATTACHMENTS

♦ APPENDICES ♦

ATTACHMENT 1

EMISSION CALCULATION DETAILS

Operational Summary Emissions

Operational Criteria Emissions

Phase/Activity	Pounds per Day					
	ROG	со	NOx	PM ₁₀	PM _{2.5}	
Phase I - Locomotives	3.41	5.83	38.92	1.02	0.94	
Phase 1 - Container Loaders	4.32	80.25	9.26	0.46	0.43	
Phase 1 - Hauling Trucks	6.78	18.87	100,28	4.81	1,72	
Phase 1 - Employees	0.02	0.47	0,06	0.00	0.00	
Phase 1 - Totals	14.5	105.4	148.5	6.3	3.1	
Phase 2 - Locomotives	3.41	5,83	38,92	1.02	0.94	
Phase 2 - Container Loaders	4.32	80,25	9.26	0.46	0_43	
Phase 2 - Hauling Trucks	5.85	16.43	86.65	4.14	1.72	
Phase 2 - Employees	0.01	0.45	0.06	0.00	0,01	
Phase 2 - Totals	13.6	103.0	134.9	5.6	3.1	
Phase 3 - Locomotives	3.41	5.83	38.92	1.02	0.94	
Phase 3 - Container Loaders	4,32	80,25	9,26	0.46	0.43	
Phase 3 - Hauling Trucks	4.26	12.00	62.99	2,96	1.72	
Phase 3 - Employees	0.01	0.43	0.06	0.00	0.01	
Phase 3 - Totals	12.0	98.5	111.2	4.4	3.1	

Note: Criteria emissions are for on-road activity within the ICAPCD jurisdiction only

Operational GHG

Phase/Activity -	Total Tonnes					
	CO2	CH4	N₂O	CO ₂ e		
Phase 1 - Locomotives	32.66	0.0026	0.0008	32,97		
Phase I - Container Loaders	353.77	0.1099	N/A	356.52		
Phase 1 - Hauling Trucks	36.95	0.0203	0.0187	43.02		
Phase 1 - Employees	10.60	0.0010	0.0011	10.96		
Phase 1 - Totals	434.0	0.134	0.021	443.5		
Phase 2 - Locomotives	32.66	0.0026	0.0008	32.97		
Phase 2 - Container Loaders	353.77	0.1099	N/A	356.52		
Phase 2 - Hauling Trucks	36.60	0.0203	0.0187	42.68		
Phase 2 - Employees	10.49	0.0010	0.0011	10.86		
Phase 2 - Totals	433.5	0.134	0.021	443.0		
Phase 3 - Locomotives	32.66	0.0026	0,0008	32.97		
Phase 3 - Container Loaders	353.77	0.1099	N/A	356.52		
Phase 3 - Hauling Trucks	36.95	0.0203	0.0187	43.02		
Phase 3 - Employees	10.36	0.0010	0.0012	10.73		
Phase 3 - Totals	433.7	0.134	0.021	443.3		
Project Totals	1,301	0.401	0.062	1,330		

Note: GHG emissions include all on-road activity including beyond Imperial County.

Locomotive, Truck, & Loader Assumptions

Assumptions per Phase

- 1 train per week
- 2 locomotives per train
- 212 total 1-way mileage to/from POLB
- 35 1-way POLB mileage in Imperial Co
- 60 average speed of long haulers
- 210 trucks per trainload
- 13 average 1-way mileage in Imperial Valley
- 4 container loaders on-site per day

Locomotive Emission Factors

Less motive Tune	Weighted EmFac (lb/hr)					
Locomotive Type	нс	со	NOx	PM		
Line Hauler	0.932	3.058	24.267	0.618		
Switcher - Idle	0.169	0.310	1.434	0.042		
Switcher - Notch 1	0.034	0.058	0.377	0.007		

Applying ARB correction factors

	RHC	PM _{2.5}
Line Hauler	1.128	0.569
Switcher - Idle	0.205	0.038
Switcher - Notch 1	0.041	0.006

Long Haul Activity

- 1 train per week
- 35 one way trip miles within Imperial County
- 0.58 hours of travel within Imperial County
- 212 one way trip miles to POLB
- 16.21 hours of travel to/from POLB

Switch Engine Activity

- 1 train per week
- 1 day to unload empty containers
- 1 day to load full containers
- 2 days train operates as a switcher
- 10 hours per day of activity

Locomotives would spend 70% of the time at idle and 30% at Notch1

Container Loader Activity

- 4 loaders active each day
- 2 days loading/stacking/unloading
- 10 hours per day of activity

Truck N	lileage to POLB
12.5	via CA-91
225.8	via I-10
211.4	via CA 78
16.6	Average
	Truck N 212.5 225.8 211.4 216.6

Truck N	Truck Mileage in Imperial						
51	via CA-91 or I-10						

via CA 78

40

Diesel GHG Emission Factors						
CO ₂	10,206					
CH4	0.80	g/gal				
N ₂ O	0.26					

Source: EPA (2017) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015.

Container Loader

Hyster RE 46-33 CH container loaders with Tier 4 (final), 350-HP Cummins engine

Tier 4F Standards				
CO	2.6			
NMHC	0.14			
NO _x	0.30	g/bhp/hr		
РМ	0.015	6/ 011p/ 111		
* CO ₂	486.0			
* CH4	0.151			

* From Appendix D CalEEMod Manual

Locomotive Emissions

Locomotive Activity

Activity	# of	Hours of Operation		
	Engines	Imperial	POLB	
Long Haul	2	0.6	28.3	
Switching	1	5	N/A	

Criteria

Activity	Pounds per Day					
Activity	ROG	со	NOx	PM10	PM _{2.5}	
Long Haul	2.63	3.57	28.31	0.72	0.66	
Switching - Idle	0.72	2.17	10.04	0.29	0.27	
Switching - Notch 1	0.06	0.09	0.57	0.01	0.01	
Totals	3.4	5.8	38.9	1.0	0.9	

GHG

Activity	Total Tonnes					
Activity	CO ₂ CH ₄ N ₂ O					
Long Haul	30.01	0.0024	0.0008	30.29		
Switching	2.65	0.0002	0.0001	2.68		
Totals	32.7	0.003	0.001	33.0		

Note: Locomotive activity and resultant criteria emissions are based on activity and 1way trip lengths within the jurisdiction of ICAPCD. Resultant GHG emissions are based on the total hours travelled with round trip mileages.

Container Loader Emissions

Loader Activity

	Alumbar		Hours of Operation			
Make	Number	Horsepower	Daily	Annual		
Hyster	4	350	10	520		

Criteria

an e-wall o	and the second states	Pounds per Day							
Make	ROG	со	NOx	PM ₁₀	PM _{2.5}				
Hyster	4.32	80.25	9.26	0.46	0.43				

GHG

	Total Tonnes								
Make	CO ₂	CH₄	N ₂ O	CO2e					
Hyster	353.77	0.1099	N/A	356.52					

Operational On-road Emissions

Truck Activity

Expanded Activity	# Vehicles per Day	Trip Length (one-way)	VMT per day	VMT per year
Ag Products to Project	210	13.1	5,493	1,718,384
РС	'E 735			

Light Duty Vehicle Activity

Expanded Activity	# Vehicles per Day	Trip Length (one-way)	VMT per day	VMT per year
Employees	5	21.5	108	33,632
		TOTAL	108	33,632

Criteria Emissions

Expanded Activity	and the second	Ροι	unds per day	al land	
	ROG	со	NO _x	PM ₁₀	PM2.5
Phase 1 - Ag Products to Project	6.78	18.87	100.28	4.81	1.72
Phase 1 - Employees	0.02	0.47	0.06	0.00	0.00
Phase 2 - Ag Products to Project	5.85	16.43	86.65	4.14	1.72
Phase 2 - Employees	0.01	0.45	0.06	0.00	0.01
Phase 3 - Ag Products to Project	4.26	12.00	62.99	2.96	1.72
Phase 3 - Employees	0.01	0.43	0.06	0.00	0.01

GHG

Expanded Activity	Tonnes per Year							
	CO ₂	CH4	N _z O	CO ₂ e				
Phase 1 - Ag Products to Project	36.95	0.0203	0.0187	43.0				
Phase 1 - Employees	10.60	0.0010	0.0011	11.0				
Phase 2 - Ag Products to Project	36.60	0.0203	0.0187	42.7				
Phase 2 - Employees	10.49	0.0010	0.0011	10.9				
Phase 3 - Ag Products to Project	36.95	0.0203	0.0187	43.0				
Phase 3 - Employees	10.36	0.0010	0.0012	10.7				
Totals	142.0	0.064	0.059	161.3				

Note: On-road activity and resultant criteria emissions are based on activity within the jurisdiction of ICAPCD. Resultant GHG emissions are based on the total on-road mileage.

All American Grain Container Yard

EMFAC2014 (v1.0.7) Emission Rates EMFAC2011 Vehicle Categories Imperial COUNTY

The second	Vehicle Info		Lu st us I				Emis	sion Factor	r (grams/mi	ile)				11.77
		A office called the					PM10	100	1.0	PM2.5		CO,	СН	N ₂ O
Туре	Fuel	VMT	ROG	0	CO NO _X	Exhaust	TW+BW	Total	Exhaust	TW+BW	Total	0,	una	1420
LDA	GAS	2,929,674	0_0747	2.0664	0 2845	0,0014	0 0448	0 0462	0.0013	0 0178	0.0191	288.6	0.0278	0,0294
LDA	DSL	26,370	0,0231	0 21 21	0 1512	0_0156	0 0448	0.0603	0.0149	0_0178	0_0327	257_8	0_6037	0 5554
LDTI	GAS	216,975	0.0925	3 5431	0.3809	0,0033	0_0448	0 0481	0.0030	0.0178	0.0208	340 9	0,0315	0.0433
LDT1	DSL	285	0,1618	1,0545	1_2686	0,1273	0.0448	0 1721	0.1218	0_0178	0.1395	359.9	0,6037	0 5554
LDT2	GAS	991,299	0 0327	1 4479	0.1875	0,0016	0,0448	0 0463	0.0014	0.0178	0 0192	390 1	0.0315	0.0433
LDT2	DSL	1,512	0.0126	0.1077	0.0803	0,0060	0.0448	0 0507	0,0057	0.0178	0,0235	332.3	0.6037	0,5554
Weight	ed Average fo.	r Employees	0.065	1.984	0.266	0.002	0.045	0.046	0.002	0.018	0.019	315.3	0.0289	0.0334
T6 ag	DSL	2,518	0_5596	1 5580	8,2817	0 3974	0.1423	0,5397	0.3802	0.0589	0,4390	1,084 7	0 6037	0 5554

Calendar Year 2019

1	/ehicle Info						Emis	sion Factor	r (grams/m	ile)				
							PM10			PM _{2.5}			CH,	NO
Туре	Fuel	VMT	ROG	CO NO _x	Exhaust	TW+BW	Total	Exhaust	TW+BW	Total	CO2	CH4	N ₂ O	
LDA	GAS	3,002,449	0,0699	1.9582	0,2686	0 0015	0 0448	0.0462	0.0014	0.0178	0.0191	280.0	0 0278	0 0294
LDA	DSL	28,824	0.0203	0,1952	0 1238	0,0134	0 0448	0,0582	0 01 28	0 0178	0.0306	250.0	0 6037	0 5554
LDTI	GAS	213,148	0.0775	3.1270	0 3358	0.0031	0 0448	0.0478	0.0028	0 0178	0.0206	332 7	0 0315	0 0433
LDTI	DSL	260	0.1447	0 9784	1 1821	0 1145	0 0448	0.1592	0.1095	0 0178	0.1273	353.2	0 6037	0 5554
LDT2	GAS	1,003,681	0.0279	1:2919	0 1620	0.0016	0 0448	0.0463	0 0015	0 0178	0.0192	378 8	0 0315	0 0433
LDT2	DSL	1,650	0.0120	0 1032	0 0678	0,0055	0 0448	0.0502	0 0052	0.0178	0.0230	324 9	0 6037	0.5554
Weighte	ed Average for	Employees	0.061	1.884	0.251	0.002	0.046	0.047	0.002	0.018	0.020	311.9	0.0294	0.0341
T6 ag	DSL	2,518	0 4834	1.3572	7 1556	0 3419	0 1 4 2 3	0 4842	0 3271	0 0589	0 3860	1,088 4	0 6037	0 5554

OB-1 Air Analyses

7 of 44

All American Grain Container Yard

	Vehicle Info						Emis	sion Facto	r (grams/m	ile)			1.77	0000
Туре	Fuel	VMIT	ROG	со	NOx	PI		PM10		PM2.5				
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fuel	VIIII	NOU		NOX	Exhaust	TW+BW	Total	Exhaust	TW+BW	Total	CO3	CH4	N ₂ O
LDA	GAS	3,064,802	0.0662	1.8682	0.2552	0.0015	0.0448	0 0462	0.0014	0.0178	0,0191	271.8	0.0278	0.0294
LDA	DSL	31,086	0.0181	0,1827	0 1036	0,0118	0.0448	0.0565	0.0113	0.0178	0.0290	243 1	0 6037	0.5554
LDT1	GAS	210,289	0.0657	2,7613	0 2975	0.0029	0.0448	0 0476	0.0026	0.0178	0 0204	324.3	0.0315	0.0433
LDT1	DSL	242	0.1376	0.9296	1 1150	0.1088	0.0448	0.1536	0.1041	0_0178	0.1218	347.3	0,6037	0.5554
LDT2	GAS	1,017,315	0.0244	1 1662	0,1418	0.0016	0.0448	0 0463	0.0014	0.0178	0 0192	367.8	0.0315	0 0433
LDT2	DSL	1,775	0.0114	0.0993	0.0579	0.0050	0.0448	0.0498	0.0048	0.0178	0_0226	317.9	0.6037	0.5554
Weight	ed Average for	r Employees	0.058	1.800	0.238	0.002	0.046	0.048	0.002	0.018	0.020	308.1	0.0299	0.0346
T6 ag	DSL	2,518	0.3515	0 9913	5 2023	0 2447	0.1423	0 3870	0.2341	0.0589	0.2930	1,098.6	0.6037	0.5554

Calendar Year 2020

Notest - Criteria and CO 2 factors come from 2014 EMFAC 2014 (v1.0.7) and represent Estimated Annual Emission Rates for Imperial County

- CH₄ and N₂O factors come from Local Government Operations Protocol: For the quantification and reporting of greenhouse gas emissions inventories. Version 1, 1, California Air Resources Board, California Climate Action Registry, ICLEI - Local Governments for Sustainability, and The Climate Registry. May 2010

8 of 44

General Assumptions

Local Travel Distances

Source of Ag Products	1-way mileage				
Imperial Valley	13.1				

Notes - Imperial Valley mileage calculated by taking an average of the maximum mileage in each of the major and secondary cardinal directions

Employees

	Source	1-way mileage			
50%	Brawley	15			
50%	50% El Centro				
	21.5				

ong Haul			
Notch	Fuel Rate (gal/hr)	Average % in Mode	Fuel Rate Portion (gal/hr)
DB	25	38.0%	9.50
Idle	5.5	12.5%	0.69
1	7.5	6.5%	0.49
2	25	6.5%	1.63
3	41	5.2%	2.13
4	57	4.4%	2.51
5	79	3.8%	3.00
6	108	3.9%	4.21
7	146	3.0%	4.38
8	168	16.2%	27.22
		Weighted gal/hr	55.8

Fuel Rate for Locomotives

Switcher

Notch	Fuel Rate (gal/hr)	Average % In Mode	Fuel Rate Portion (gal/hr)
DB	25	0.0%	0.00
Idle	5.5	59.8%	3.29
1	7.5	12.4%	0.93
2	25	12.3%	3.08
3	41	5.8%	2.38
4	57	3.6%	2.05
5	79	3.6%	2.84
6	108	1.5%	1.62
7	146	0.2%	0.29
8	168	0.8%	1.34
		Weighted gal/hr	17.8

* "Fuel Efficiency Improvement in Rail Freight Transportation," J N Cetenich, FRA-ORD-76-136, Dec, 1975. as presented in Railroad Costs blog http://www.alternatewars.com/BBOW/Logistics/RR_Costs.htm

Emission Factors - Line Haul Locomotives

991.05	Power in Notch		Emission Facto	r (g/bhp-hr)	
Notch	(bhp)	НС	со	NO _x	PM
DB	70	6.89	9.90	50.49	2.82
Idle	14	14.71	27.86	85.35	4.67
1	164	1.06	1.47	12.88	0.45
2	372	0.47	0.95	11.27	0.37
3	764	0.36	0.93	10.81	0.37
4	1,118	0.27	1.15	11.20	0.26
5	1,568	0.25	1.41	11.34	0.22
6	2,093	0.24	1.57	11.16	0.23
7	2,818	0.25	1.46	11.03	0.20
8	3,336	0.25	1.22	10.65	0.21

Notch-Specific In-Use Horsepower and Horsepower-Based Emission Factors

Hourly Notch Specific Emission Rates

		Emissions (lb/hr)							
Notch	нс	со	NO _x	PM	SO2				
DB	1.062	1.525	7.779	0.435	0.02				
Idle	0.456	0.863	2.645	0.145	0.00				
1	0.381	0.532	4.655	0.163	0.04				
2	0.386	0.777	9.248	0.305	0.09				
3	0.606	1.560	18.204	0.620	0.18				
4	0.677	2.825	27.606	0.640	0.26				
5	0.858	4.875	39.197	0.744	0.37				
6	1.099	7.227	51.500	1.072	0.49				
7	1.528	9.072	68.523	1.239	0.66				
8	1.826	8.943	78.345	1.575	0.78				

Air Quality/Climate Change Calculations All American Grain Container Yard

Notch	Average % In	25201-04.14	Emissions	While in Mod	e (lb/hr)	
Noten	Mode	нс	со	NOx	PM	SO2
DB	38.0%	0.404	0.579	2.956	0.165	0.006
Idle	12.5%	0.057	0.108	0.331	0.018	0.000
1	6.5%	0.025	0.035	0.303	0.011	0.003
2	6.5%	0.025	0.051	0.601	0.020	0.006
3	5.2%	0.032	0.081	0.947	0.032	0.009
4	4.4%	0.030	0.124	1.215	0.028	0.012
5	3.8%	0.033	0.185	1.489	0.028	0.014
6	3.9%	0.043	0.282	2.008	0.042	0.019
7	3.0%	0.046	0.272	2.056	0.037	0.020
8	16.2%	0.296	1.449	12.692	0.255	0.127
	Weighted lb/hr	0.932	3.058	24.267	0.618	0.216

Time-in-Notch and Weighted Average Emission Rates

* Locomotive Emissions Standards: Regulatory Support Document. United States Environmental Protection Agency, Office of Mobile Sources. April 1998.

XIER ST	Power in Notch	ower in Notch Emission Factor (g/b				
Notch	(bhp)	нс	со	NOx	PM	
DB	67	3.98	8.49	40.20	1.05	
Idle	14	9.18	16.81	77.70	2.26	
1	83	1.49	2.56	16.63	0.29	
2	249	0.66	1.51	12.26	0.37	
3	487	0.43	0.83	13.09	0.34	
4	735	0.37	0.57	14.27	0.26	
5	1,002	0.38	0.53	15.10	0.24	
6	1,268	0.40	0.67	15.88	0.29	
7	1,570	0.44	1.26	16.37	0.26	
8	1,843	0.47	2.97	16.15	0.29	

Emission Factors - Switch Engines

Notch-Specific In-Use Horsepower and Horsepower-Based Emission Factors

Hourly Notch Specific Emission Rates

Need		Emissions (lb/hr)								
Notch	нс	со	NO _x	PM	SO2					
DB	0.587	1.255	5.937	0.156	0.02					
Idle	0.283	0.519	2.398	0.070	0.00					
1	0.273	0.468	3.044	0.054	0.02					
2	0.364	0.831	6.732	0.201	0.06					
3	0.458	0.895	14.050	0.361	0.11					
4	0.594	0.918	23.123	0.416	0.17					
5	0.839	1.163	33.356	0.523	0.24					
6	1.118	1.864	44.382	0.801	0.30					
7	1.523	4.350	56.671	0.888	0.37					
8	1.910	12.081	65.605	1.165	0.43					

Air Quality/Climate Change Calculations All American Grain Container Yard

Notch	Average % in		Emissions While in Mode (lb/hr)						
NOLCH	Mode	НС	со	NOx	PM	SO2			
DB	0.0%	0.000	0.000	0.000	0.000	0.000			
Idle	59.8%	0.169	0.310	1.434	0.042	0.002			
1	12.4%	0.034	0.058	0.377	0.007	0.002			
2	12.3%	0.045	0.102	0.828	0.025	0.007			
3	5.8%	0.027	0.052	0.815	0.021	0.007			
4	3.6%	0.021	0.033	0.832	0.015	0.006			
5	3.6%	0.030	0.042	1.201	0.019	0.008			
6	1.5%	0.017	0.028	0.666	0.012	0.004			
7	0.2%	0.003	0.009	0.113	0.002	0.001			
8	0.8%	0.015	0.097	0.525	0.009	0.003			
	Weighted lb/hr	0.361	0.731	6.792	0.151	0.042			

Time-in-Notch and Weighted Average Emission Rates

* Locomotive Emissions Standards: Regulatory Support Document. United States Environmental Protection Agency, Office of Mobile Sources. April 1998,

355

All American Grain Container Yard

	Rated Power		Power In	Emission Factor (g/bhp-hr)			
Model	(bhp)	Notch	Notch (bhp)	нс	со	NOx	PM
		DB	70	6.89	9.90	53.65	2,82
		I	14	14,71	27.86	90.68	4.67
		1	164	1,06	1.47	13.69	0,45
		2	372	0.47	0.95	11.98	0.37
Overall average	2254	3	764	0.36	0.93	11.49	0.37
of 17 line haul locomotives	3256	4	1,118	0.27	1.15	11.90	0.26
		5	1,568	0.25	1.41	12,05	0.22
		6	2,093	0.24	1.57	11.86	0.23
		7	2,818	0.25	1.46	11.72	0.20
		8	3,336	0.25	1,22	11.32	0.21

Line Haul Locomotive Emission Factors EPA Regulatory Support Document

Locomotive Emissions Standards: Regulatory Support Document. United States Environmental Protection Agency, Office of Mobile Sources, April 1998,

15 of 44

Revised October 2018

 $\frac{1}{2}$

All American Grain Container Yard

Model	Rated Power	Notch	Power In		Emission Fac	tor (g/bhp-hi	1)
Incaci	(bhp)	Notch	Notch (bhp)	нс	со	NOx	PM
		DB	67	3.98	8.49	40.20	1.05
		I	14	9.18	16.81	77.70	2.26
		1	83	1.49	2.56	16.63	0.29
		2	249	0.66	1.51	12,26	0.37
Average switch	1750	3	487	0.43	0.83	13.09	0.34
locomotive	1750	4	735	0.37	0.57	14.27	0.26
		5	1002	0.38	0,53	15.10	0.24
		6	1268	0.40	0.67	15.88	0,29
		7	1570	0.44	1.26	16.37	0.26
		8	1843	0,47	2.97	16.15	0.29

Switching Locomotive Emission Factors EPA Regulatory Support Document

Locomotive Emissions Standards: Regulatory Support Document. United States Environmental Protection Agency, Office of Mobile Sources. April 1998.

16 of 44

Phase 1	GHG	Construction	Summary
---------	-----	--------------	---------

	는 입지 요구 정도가 없	GH	IG Emissio	ns (tonnes)	Sec. 1
Activity	Category	CO ₂	CH4	N ₂ O	CO2e
	Offroad	7.41	0.0023	N/A	7.47
CP1 - Subgrade Prep - Access Driveway	Employees	0.57	0.0001	0.0001	0.59
Birrenay	CP1 Total	8.0	0.002	0.000	8.1
	Offroad	27.11	0.0084	N/A	27.32
CP2 - Subgrade Prep - Container Storage Yard	Employees	2.20	0.0002	0.0002	2.27
	CP2 Total	29.3	0.009	0.000	29.6
	Offroad	31.85	0.0099	N/A	32.09
CP3 - Crushed Rock - Container	Haulers	16.34	0.0090	0.0083	19.03
Storage Yard	Employees	1.95	0.0002	0.0002	2.02
	CP3 Total	50.1	0.019	0.008	53.1
1	Offroad	28.23	0.0088	N/A	28.45
CP4 - Class II Ag Base - Storage	Haulers	5.45	0.0030	0.0028	6.34
Yard & Access Driveway	Employees	1.95	0.0002	0.0002	2.02
	CP4 Total	35.6	0.012	0.003	36.8
	Offroad	3.09	0.0010	N/A	3.11
CP5 - Paving - Access Driveway	Employees	0.38	0.0000	0.0000	0.39
	CP5 Total	3.5	0.001	0.000	3.5
Gra	nd Total for Construction	90.9	0.031	0.009	94 .3
	Constr	ruction Amo	ortized over	30 Years	3.1

Activity	Category	G	HG Emissio	issions (tonnes)		
	Category	CO2	CH4	N ₂ O	CO2e	
	Offroad	7.28	0.0023	N/A	7.34	
CP1 - Subgrade Prep - Access Driveway	Employees	0.57	0.0001	0.0001	0.59	
	CP1 Total	7.9	0.002	0.000	7.9	
	Offroad	26.64	0.0084	N/A	26.85	
CP2 - Subgrade Prep - Container Storage Yard	Employees	2.17	0.0002	0.0002	2.25	
	CP2 Total	28.8	0.009	N2O N/A 0.0001 0.0002 N/A 0.0002 0.0000	29.1	
	Offroad	31.53	0.0099	N/A	31.78	
CP3 - Crushed Rock - Container	Haulers	0.00	0.0000	0.0000	0.00	
Storage Yard	Employees	0.00	0.0000	0.0000	0.00	
	CP3 Total	31.5	0.010	0.000	31.8	
	Offroad	27.92	0.0088	N/A	28.14	
CP4 - Class II Ag Base - Storage	Haulers	0.00	0.0000	0.0000	0.00	
Yard & Access Driveway	Employees	1.93	0.0002	0.0002	2.00	
	CP4 Total	29.8	0.009	0.000	30.1	
	Offroad	3.03	0.0010	N/A	3.06	
CP5 - Paving - Access Driveway	Employees	0.38	0.0000	0.0000	0.39	
	CP5 Total	3.4	0.001	0.000	3.4	
Grav	nd Total for Construction	71.6	0.022	0.000	72.3	
	Constr	uction Amo	rtized over 3	30 Years	2.4	

Phase 2 GHG Emissions Summary

	6. to	Gł	ns (tonnes)		
Activity	Category	CO2	CH ₄	N ₂ O	CO ₂ e
	Offroad	26.05	0.0084	N/A	26.26
CP2 - Subgrade Prep - Container Storage Yard	Employees	2.15	0.0002	0.0002	2.22
otoruge i alla	CP2 Total	28.2	0.009	0.000	28.5
	Offroad	30.61	0.0099	N/A	30.86
CP3 - Crushed Rock - Container Storage Yard	Haulers	10.90	0.0060	0.0055	12.69
	Employees	1.91	0.0002	0.0002	1.98
	CP3 Total	43.4	0.016	02 0.0002 09 0.000 09 N/A 00 0.0055 002 0.0002 16 0.006 088 N/A 030 0.0028 002 0.0002 12 0.003	45.5
	Offroad	27.14	0.0088	N/A	27.36
CP4 - Class II Ag Base - Storage	Haulers	5.45	0.0030	0.0028	6.34
Yard & Access Driveway	Employees	1.91	0.0002	0.0002	1.98
	CP4 Total	34.5	0.012	0.003	35.7
Grav	nd Total for Construction	71.6	0.025	0.006	74.0
	Constr	uction Amo	ortized over .	30 Years	2.5

Phase 3 GHG Emissions Summary

Phase Activity	Category	Criterla Emissions (max lbs/d)						
Filase Activity	ence of the second	ROG	со	NOx	PM ₁₀	PM _{2.1}		
	Off-road	5.29	25.15	58.30	2.52	2.32		
	Haulers	0.70	1.95	10.38	0.50	0.18		
Phase 1 East Side	Employees	0.09	2.82	0.38	0.00	0.06		
(2018)	Road Dust			÷	332.86	1.68		
	Grading Fugitive			-	0.41	0.04		
	Phase 1 Max Daily	6.1	29.9	69.1	335.9	4.2		
	Off-road	4.98	24.53	53.63	2.28	2.10		
	Haulers	0.59	1.65	8.69	0.42	0.17		
Phase 2 West Side	Employees	0.09	2.68	0.36	0.00	0.06		
(2019)	Road Dust			×	326.42	1.65		
	Grading Fugitive				0.41	0.04		
	Phase 2 Max Daily	5.7	28.9	62.7	329.1	4.0		
	Off-road	2.73	14.13	31.19	1.34	1.24		
	Haulers	0.43	1.20	6.32	0.30	0.17		
Phase 3 Center	Employees	0.05	1.54	0.20	0.00	0.04		
(2020)	Road Dust	02225	+	R	326.42	1.65		
	Grading Fugitive	-		~	0.41	0.04		
	Phase 3 Max Daily	3.2	16.9	37.7	328.1	3.1		

Construction Unmitigated Emissions Summary

		Criteria Emissions (max lbs/d)						
Phase Activity	Category	ROG	со	NOx	PM ₁₀	PM ₂		
	Off-road	5.29	25.15	58.30	2.52	2.3		
	Haulers	0.70	1.95	10.38	0.50	0.1		
Phase 1	Employees	0.09	2.82	0.38	0.00	0.0		
East Side (2018)	Road Dust				143.13	0.7		
	Grading Fugitive	-			0.41	0.0		
	Phase 1 Max Daily	6.1	29.9	69.1	146.2	3		
	Off-road	4.98	24.53	53.63	2.28	2.1		
	Haulers	0.59	1.65	8.69	0.42	0.1		
Phase 2	Employees	0.09	2.68	0.36	0.00	0.0		
West Side (2019)	Road Dust	-			140.36	0.7		
	Grading Fugitive				0.41	0.0		
	Phase 2 Max Daily	5.7	28.9	62.7	143.1	3.		
	Off-road	2.73	14.13	31.19	1.34	1.2		
	Haulers	0.43	1.20	6.32	0.30	0.1		
Phase 3	Employees	0.05	1.54	0.20	0.00	0.0		
Center (2020)	* Road Dust	i ees		्राज	140.36	0.7		
	Grading Fugitive				0.41	0.0		
	Phase 3 Max Daily	3.2	16.9	37.7	142.0	2.		

Construction Mitigated Emissions Summary

Phase 1 Construction Employee Commute

Activity	Total Work Days	Trips per day	Round Trip (mi)	VMT per day	Total VMT (mi)
CP1 - Subgrade Prep - Access Driveway	7	6	43	258	1,806
CP2 - Subgrade Prep - Container Storage Yard	18	9	43	387	6,966
CPI + CP2	18	15		645	11
CP3 - Crushed Rock - Container Storage Yard	18	8	43	344	6,192
CP4 - Class II Ag Base - Storage Yard & Access Driveway	18	8	43	344	6,192
CP5 - Paving - Access Driveway	7	4	43	172	1,204
CP4 + CP5	18	12		516	9,288
Max & Totals	18	15		645	31,648

Construction Employee Vehicle Activity

Construction Employee Criteria Emissions

Activity	Pounds per Day					
Activity	ROG	со	NO _x	PM ₁₀	PM _{2.5}	
CP1 - Subgrade Prep - Access Driveway	0.037	1.128	0.151	0.001	0.025	
CP2 - Subgrade Prep - Container Storage Yard	0.056	1.692	0.227	0.001	0.038	
CP1 + CP2	0.093	2.821	0.378	0.002	0.064	
CP3 - Crushed Rock - Container Storage Yard	0.050	1.504	0.201	0.001	0.034	
CP4 - Class II Ag Base - Storage Yard & Access Driveway	0.050	1.504	0.201	0.001	0.034	
CP5 - Paving - Access Driveway	0.025	0.752	0.101	0.001	0.017	
CP4 + CP5	0.074	2.257	0.302	0.002	0.051	
Maximum Pounds per Day	0.09	2.82	0.38	0.00	0.06	

and the mail and the second se	a A bar a bar a bar	381.30		
Activity	CO2	CH ₄	N ₂ O	CO ₂ e
CP1 - Subgrade Prep - Access Driveway	0.57	0.0001	0.0001	0.59
CP2 - Subgrade Prep - Container Storage Yard	2.20	0.0002	0.0002	2.27
CP3 - Crushed Rock - Container Storage Yard	1.95	0.0002	0.0002	2.02
CP4 - Class II Ag Base - Storage Yard & Access Driveway	1.95	0.0002	0.0002	2.02
CP5 - Paving - Access Driveway	0.38	0.0000	0.0000	0.39
Totals	7.0	0.001	0.001	7.3

Construction Employee GHG Emissions

Phase 2 Construction Employee Commute

Activity	Total Work Days	Trips per day	Round Trip (mi)	VMT per day	Total VMT (mi)
CP1 - Subgrade Prep - Access Driveway	7	6	43	258	1,806
CP2 - Subgrade Prep - Container Storage Yard	18	9	43	387	6,966
CP1 + CP2	18	15		645	
CP3 - Crushed Rock - Container Storage Yard	18	8	43	344	6,192
CP4 - Class II Ag Base - Storage Yard & Access Driveway	18	8	43	344	6,192
CP5 - Paving - Access Driveway	7	4	43	172	1,204
CP4 + CP5	18	12		516	
		Ma:	x & Totals	645	22,360

Construction Employee Vehicle Activity

Construction Employee Criteria Emissions

Activity	Pounds per Day					
	ROG	со	NO _x	PM ₁₀	PM2.5	
CP1 - Subgrade Prep - Access Driveway	0.035	1.072	0.143	0.001	0,026	
CP2 - Subgrade Prep - Container Storage Yard	0_052	1.607	0.214	0.001	0.039	
CP1 + CP2	0.087	2.679	0 357	0.002	0.065	
CP3 - Crushed Rock - Container Storage Yard	0.087	2.679	0.357	0.002	0,065	
CP4 - Class II Ag Base - Storage Yard & Access Driveway	0.046	1,429	0,190	0.001	0,035	
CP5 - Paving - Access Driveway	0_023	0.714	0.095	0.001	0.017	
CP4 + CP5	0.070	2,143	0,285	0.002	0.052	
- Maximum Pounds per Day	0.09	2.68	0.36	0.00	0.06	

Construction Employee GHG Emissions

Activity		Total Tonnes				
	CO2	CH4	N ₂ O	CO2e		
CP1 - Subgrade Prep - Access Driveway	0.56	0.0001	0.0001	0,58		
CP2 - Subgrade Prep - Container Storage Yard	2.17	0.0002	0.0002	2.25		
CP3 - Crushed Rock - Container Storage Yard	0.00	0.0000	0,0000	0,00		
CP4 - Class II Ag Base - Storage Yard & Access Driveway	1.93	0.0002	0.0002	2.00		
CP5 - Paving - Access Driveway	0.38	0.0000	0.0000	0.39		
Totals	5.0	0.000	0.001	5.2		

Phase 3 Construction Employee Commute

Construction Employee Vehicle Activity

Activity	Total Work Days	Trips per day	Round Trip (mi)	VMT per day	Total VMT (mi)
CP2 - Subgrade Prep - Container Storage Yard	18	9	43	387	6,966
CP3 - Crushed Rock - Container Storage Yard	18	8	43	344	6,192
CP4 - Class II Ag Base - Storage Yard & Access Driveway	18	8	43	344	6,192
			Totals	1,075	19,350

Construction Employee Criteria Emissions

EDUTINE THICK	Pounds per Day						
Activity	ROG	со	NO _x	PM ₁₀	PM _{2.5}		
CP2 - Subgrade Prep - Container Storage Yard	0.050	1.536	0.203	0.001	0.040		
CP3 - Crushed Rock - Container Storage Yard	0.044	1.365	0.181	0.001	0.035		
CP4 - Class II Ag Base - Storage Yard & Access Driveway	0.044	1.365	0.181	0.001	0.035		
Maximum Pounds per Day	0.05	1.54	0.20	0.00	0.04		

Construction Employee GHG Emissions

and the second se	Total Tonnes							
Activity	CO2	CH4	N ₂ O	CO ₂ e				
CP2 - Subgrade Prep - Container Storage Yard	2.15	0.0002	0.0002	2.22				
CP3 - Crushed Rock - Container Storage Yard	1.91	0.0002	0.0002	1.98				
CP4 - Class II Ag Base - Storage Yard & Access Driveway	1.91	0.0002	0.0002	1.98				
Totals	6.0	0.001	0.001	6.2				

All American Grain Container Yard

Entrained Road Dust

Entrained road dust emissions are generated by vehicles traveling on both paved and unpaved roads. These equations are based on the paved and unpaved roads emission factors found in Section 5.3 of Appendix A, CalEEMod Users Guide, version 2016.3.2 and AP-42 Sections 13.2.1 and 13.2.2.

Emission F	actors -	Paved F	Roads
------------	----------	---------	-------

EF PM _{2.5} = Constant	$[k^*(sL^{a,91})^*(W^{1,02})]^*(I - P - 4N) = 0.01163$ 0.00286	lbs PM ₁₀ /VMT lbs PM _{2 5} /VMT		
Constant	Description	Value		
k =	PM_{10} particle size multiplier for particle size range and units of interest	0.0022		

Emission Factors - Unpaved Roads

EF PM ₁₀ = EF PM ₂₅ =	$(k * (s \ 12)^{l} * (S \ 30)^{0.5} (M \ 0.5)^{0.2} - C) * (1 - P \ 365) =$	0.7178	lbs PM ₁₀ /VMT
Constant	Description	0.0715 Value	lbs PM _{2 5} /VMT
<i>k</i> =	PM 10 particle size multiplier for particle size range and units of interest	1.8	

* Data from Western Regional Climate Center. Brawley Period of Record General Climate Summary -Precipitation. https://wrcc.dri.edu.cgi-bin.cliMAIN.pl?ca1048

26 of 44

.

All American Grain Container Yard

			2010 E	nu ameu k	Joau Dus	t Emissions					
Phase/Category		Max VMT/d		Paved Roads (lbs/d)		Unpaved Roads (lbs/d)		Total Roads (lbs/d)		Mitigated (lbs/d)	
		(paved)	(unpaved)	PM ₁₀	PM2.5	PM ₁₀	PM2.5	PM ₁₀	PM2.8	PM ₁₀	PM _{2.5}
CP1 - Subgrade Prep -	Employee	129	129	1.50	0_37	92,60	0.11	94,10	0.48	40,46	0,20
Access Driveway	Total	129	129	1.5	0.4	92.6	0.1	94.1	0.5	40.5	0.2
CP2 - Subgrade Prep - Container Storage Yard	Employee	194	194	2.25	0.55	138_89	0,16	141,15	0.71	60,69	0.31
	Total	194	194	2.3	0.6	138.9	0.2	141.1	0.7	60.7	0.3
CP1 + CP2 TOTAL		323	323	3.8	0.9	231.5	0.3	235.2	1.2	101.2	0.5
CP3 - Crushed Rock - Container Storage Yard	Employee	172	172	2.00	0.49	123,46	0,14	125,46	0.63	53,95	0,27
	Haulers	284	284	3,31	0.81	204.09	0,24	207,40	1.05	89.18	0.45
	Total	456	456	5.3	1.3	327.6	0.4	332.9	1.7	143.1	0.7
CP4 - Class II Ag Base - Storage Yard & Access Driveway	Employee	172	172	2,00	0.49	123.46	0,14	125,46	0,63	53.95	0.27
	Haulers	149	149	1.73	0_43	106.84	0.12	108.57	0,55	46,69	0.24
	Total	321	321	3.7	0.9	230.3	0.3	234.0	1.2	100.6	0.5
CP5 - Paving - Access Driveway	Employee	86	86	1.00	0,25	61.73	0.07	62,73	0.32	26,97	0,14
	Total	86	86	1.00	0.2	61.7	0.1	62.7	0.3	27.0	0.1
CP1 + CP2 TOTAL		407	407	4.73	1.2	292.0	0.3	296.8	1.5	127.6	0.6
Max Daily Emissions		456	456	5.31	1.3	327.6	0.4	332.9	1.7	143.1	0.7

2018 Entrained Road Dust Emissions

OB-1 Air Analyses

27 of 44

All American Grain Container Yard

				nerunicu		t emission:	2				
Phase/Category		Max VMT/d		Paved Roads (lbs/d)		Unpaved Roads (lbs/d)		Total Roads (ibs/d)		Mitigated (lbs/d)	
		(paved)	(unpaved)	PM ₁₀	PM _{2.8}	PM ₁₀	PM2.5	PM ₁₀	PMZE	PM ₁₀	PM _{2.5}
CP1 - Subgrade Prep -	Employee	129	129	1.50	0.37	92.60	0,11	94,10	0.48	40.46	0.20
Access Driveway	TOTAL	129	129	1.5	0.4	92.6	0.1	94.1	0.5	40.5	0.2
CP2 - Subgrade Prep - Container Storage Yard	Employee	194	194	2,25	0.55	138,89	0.16	141,15	0,71	60.69	0.31
	TOTAL	194	194	2.3	0.6	138.9	0.2	141.1	0.7	60.7	0,3
CP1 + CP2 TOTAL		323	323	3.8	0.9	231.5	0.3	235.2	1.2	101.2	0.5
CP1 Coult ID I	Employee	172	172	2,00	0.49	123.46	0.14	125,46	0,63	53.95	0,27
CP3 - Crushed Rock - Container Storage Yard	Haulers	275	275	3,20	0.79	197,75	0,23	200.95	1.02	86.41	0.44
	TOTAL	447	447	5.2	1.3	321.2	0.4	326.4	1.6	140.4	0.7
CP4 - Class II Ag Base - Storage Yard & Access Driveway	Employee	172	172	2,00	0_49	123.46	0,14	125.46	0.63	53.95	0.27
	Haulers	146	146	1.69	0.42	104,54	0.12	106.24	0.54	45,68	0.23
	TOTAL	318	318	3.7	0.9	228.0	0.3	231.7	1.2	99.6	0.5
CP5 - Paving - Access Driveway	Employee	86	86	1.00	0.25	61,73	0.07	62,73	0,32	26.97	0.14
	TOTAL	86	86	1.00	0.25	61.73	0.07	62.73	0.32	26.97	0.14
CP1 + CP2 TOTAL		404	404	4.70	1.15	289.74	0.34	294.43	1.49	126.61	0.64
Max Daily Emissions		447	447	5.21	1.28	321.21	0.37	326.42	1.65	140.36	0.71

2019 Entrained Road Dust Emissions

OB-1 Air Analyses

£.

5

28 of 44

-

All American Grain Container Yard

			2020 E	ntraineu r	Coau Dus	t Emission:	5				
Phase (Cobe		Max	vīvīī/d	Paved Road	ds (lbs/d)	Unpaved Roa	ads (lbs/d)	Total Roads (lbs/d)		MitIgated	i (ibs/d)
Phase/Category		(paved) (unpaved)	PM ₁₀	PM2.5	PM10	PM _{2.5}	PM ₁₀	PM2.8	PM10	PM _{2.8}	
CP2 - Subgrade Prep - Container Storage Yard	Employee	194	194	2_25	0_55	138.89	0,16	141.15	0.71	60,69	0,31
	TOTAL	194	194	2.3	0.6	138.9	0.2	141.1	0.7	60.7	0.3
	Employee	172	172	2,00	0.49	123.46	0,14	125_46	0.63	53,95	0.27
CP3 - Crushed Rock - Container Storage Yard	Haulers	275	275	3,20	0,79	197.75	0,23	200_95	1,02	86,41	0.44
container Storage Tatu	TOTAL	447	447	5.2	1.3	321.2	0.4	326.4	1.6	140.4	0.7
	Employee	172	172	2.00	0.49	123,46	0,14	125_46	0,63	53.95	0.27
CP4 - Class II Ag Base - Container Storage Yard	Haulers	138	138	1,60	0,39	98,87	0.11	100,48	0.51	43,21	0.22
	TOTAL	310	310	3.6	0.9	222.3	0.3	225.9	1.1	97.2	0.5
Max Daily Emissions		447	447	5.2	1.3	321.2	0.4	326.4	1.6	140.4	0.7

2020 Entrained Road Dust Emissions

Notes: Mitigation of 57% for traffic speed restriction

Per ICAPCD, vehicular travel in Imperial County is 50% on unpaved roads.

29 of 44

All American Grain Container Yard

Equipment List & Number of Workers Phases 1 & 2

Construction Phase Activity

CP1 - Subgrade Prep - Access Driveway	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Grading, leveling, and compacting native soils in preparation	Rubber Tired Dozers	1				
for Class II aggregate base.	Graders	1				
	Excavators	1	4	5	1	6
	Rollers	1				
CP2 - Subgrade Prep - Container Storage Yard	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Grading, leveling, and compacting native soils in preparation	Rubber Tired Dozers	1				
for 3" crushed rock aggregate.	Graders	2	1 / 1			
	Excavators	1	6	7.5	1.5	9
	Rollers	2				
CP3 - Crushed Rock - Container Storage Yard	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Applying, leveling, and compacting 3" crushed rock	Rubber Tired Loader	2			0.5	8
agggregate.	Graders	2	6	7,5		
	Rollers	2				
CP4 - Class II Ag Base - Storage Yard & Access Driveway	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Applying, leveling, and compacting Class II aggregate base.	Rubber Tired Loader	2				
	Graders	2	6	7.5	0.5	8
	Rollers	2				
CP5 - Paving - Access Driveway	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Applying and compacting asphalt concrete.	Pavers	1				
	Rollers	i	3	3.75	0.25	4
	Tractors/Loaders/Backhoes	1				

OB-1 Air Analyses

30 of 44

All American Grain Container Yard

Equipment List & Number of Workers Phase 3

Construction Phase Activity

CP2 - Subgrade Prep - Container Storage Yard	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Grading, leveling, and compacting native soils in preparation	Rubber Tired Dozers	1				
for 3" crushed rock aggregate.	Graders 2		6	7.5	1.5	9
	Excavators	1	0	7.5	1,5	9
	Rollers	2				
CP3 - Crushed Rock - Container Storage Yard	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Applying, leveling, and compacting 3" crushed rock	Rubber Tired Loader	2			0.5	8
agggregate.	Graders	2	6 7.5			
	Rollers	2				
CP4 - Class II Ag Base - Container Storage Yard	Off-road	Number	# Equip	# Emp	Extra	Total Emp
Applying, leveling, and compacting Class II aggregate base.	Rubber Tired Loader	2				
Ē	Graders	2	6	6 7,5 0.5		8
The second se	Rollers	2				

OB-1 Air Analyses

31 of 44

Date	Week #	CP1	CP2	CP3	CP4	CP5
/27/18 /28/18						
/29/18	1					
/30/18	1	7				
31/18						
/1/18	_					
/2/18						
/3/18						
/4/18 /5/18			18			
/6/18	2		10.1013	10 A. 10 A.		
/7/18	2					
/8/18	1 1					
/9/18						
10/18						
11/18						
12/18						
13/18	3		-			
14/18						
15/18 16/18						
17/18	-					
18/18						
19/18						
20/18	4					
21/18						
22/18				18		
23/18				10		
24/18						
25/18 26/18						
27/18	5					
28/18						
29/18	1 1					
30/18						
/1/18						
/2/18						
/3/18 /4/18	6					
)/5/18						
/6/18						
/7/18		120				
/8/18						
/9/18						
10/18					18	
11/18	7				10	7
12/18 13/18						
13/18						
15/18						
16/18						
17/18	8					
18/18						
19/18						

Assumed Phase 1 Construction Schedule

Date	Week #	CP1	CP2	CP3	CP4	CP5
7/19/19 7/20/19 7/21/19 7/22/19 7/23/19 7/23/19 7/24/19 7/25/19	Ĩ	7				
7/26/19 7/27/19 7/28/19 7/29/19 7/30/19 7/31/19 8/1/19	2		18			
8/2/19 8/3/19 8/4/19 8/5/19 8/6/19 8/7/19 8/8/19	3					
8/9/19 8/10/19 8/11/19 8/12/19 8/13/19 8/14/19 8/15/19	4			18		
8/16/19 8/17/19 8/18/19 8/19/19 8/20/19 8/21/19 8/22/19	5					
8/23/19 8/24/19 8/25/19 8/26/19 8/27/19 8/28/19 8/28/19 8/29/19	6					
8/30/19 8/31/19 9/1/19 9/2/19 9/3/19 9/4/19 9/5/19	7				18	7
9/6/19 9/7/19 9/8/19 9/9/19 9/10/19	8					

Assumed Phase 2 Construction Schedule

Date	Week #	CP2	CP3	CP
6/10/20				
6/11/20				
/12/20				
6/13/20	1			
/14/20				
/15/20				
16/20				
17/20				
/18/20		18		
19/20		10		
20/20	2			
21/20				
2/20				
23/20				
24/20		1		
25/20				
26/20				
/27/20	3			
28/20				
/29/20	1			
/30/20				
7/1/20			-	
/2/20				
/3/20				
4/20	4			
/5/20				
6/20				
/7/20			18	
/8/20				
7/9/20				
9/20 10/20				
1/20	5			
	5			
2/20				
/13/20 /14/20				
/15/20 /16/20				_
17/20	6			
/18/20	6			
/19/20 /20/20				
20/20				
/22/20				
/23/20				
24/20	7			18
5/20	7			10
6/20				
.7/20				
28/20 29/20				
30/20				
1/20	8			
	-			
8/1/20				

Assumed Phase 3 Construction Schedule

All American Grain Container Yard

Work Areas

	Phase 1 - East	Side					
	Area	ft ²	acres				
Site Prep &	Site Surfacing	195,080	4.48				
Grading	Access Driveway	9,171	0.21				
	TOTAL	204,251	4.69	Cubic Yards		Total # of Truck Trips	
e:11	Area	ft ²	acres	Ag Base	Crushed Rock	Ag Base	Crushed Rock
Fill	Site Surfacing	195,080	4.48	3,612,6	7,225	301.0	602.1
	Area	ft²	acres	Ag Base	Crushed Rock	Ag Base	Crushed Rock
Paving	Access Driveway	9,171	0.21	169.8	340	14.2	28,3
			Total	3,782	7,565	315	630

Phase 2 - West Side

	Area	ft ²	acres				
Site Prep &	Site Surfacing	189,020	4.34				
Grading	Access Driveway	10,840	0.25				
	TOTAL	199,860	4.59	Cubic Yards		Total # of Truck Trips	
	Area	ft ²	acres	Ag Base	Crushed Rock	Ag Base	Crushed Rock
Fill	Site Surfacing	189,020	4,34	3,500.4	7,001	291.7	583.4
	Area	ft ²	acres	Ag Base	Crushed Rock	Ag Base	Crushed Rock
Paving	Access Driveway	10,840	0.25	200.7	401	16.7	33,5
			Total	3,701	7,402	308	617

	Phase 3 - Ce	nter						
Site Prep &	Area	ft ²	acres					
Grading	Site Surfacing	189,020	4.34	Cub	ic Yards	Total # of Truck Trips		
e:11	Area	ft ²	acres	Ag Base	Crushed Rock	Ag Base	Crushed Rock	
Fill	Site Surfacing	189,020	4.34	3,500.4	7,001	291.7	583.4	
			Total	3,500	7,001	292	583	

OB-I Air Analyses

35 of 44

Hauling Truck Activity

Hauling Truck Activity

Project Phase/Construction Phase	Days per Phase	Total Trips	Round Trip (mi)	VMT per day	Total VMT (mi)
Phase I/CP3 - Crushed Rock - Container Storage Yard	18	602	17	569	10,236
Phase I/CP4 - Class II Ag Base - Storage Yard & Access Driveway	18	315	17	298	5,358
Contractive strength providence in the state	Phase 1 Truck Totals			15,594	
Phase 2/CP3 - Crushed Rock - Container Storage Yard	18	583	17	551	9,918
Phase 2/CP4 - Class II Ag Base - Storage Yard & Access Driveway	18	308	17	291	5,243
		14	Phase 2 Tri	uck Totals	15,161
Phase 3/CP3 - Crushed Rock - Container Storage Yard	18	583	17	551	9,918
Phase 3/CP4 - Class II Ag Base - Container Storage Yard	18	292	17	275	4,959
			Phase 3 Tri	uck Totals	14,877

Trip mileage for sand and gravel is based pn product from All American Aggregates, 304 Shank Rd, Brawley (8.5 miles 1-way)

Hauling Truck Criteria Emissions

Project Phase/Construction Phase		Po	unds per Da	ay	
roject mase, construction mase	ROG	со	NOx	PM ₁₀	PM2.5
Phase 1/CP3 - Crushed Rock - Container Storage Yard	0.702	1.953	10,382	0.498	0.178
Phase I/CP4 - Class II Ag Base - Storage Yard & Access Driveway	0.367	1.023	5.435	0.261	0.093
Phase 1 Truck Max Daily	0.70	1.95	10.38	0.50	0.18
Phase 2/CP3 - Crushed Rock - Container Storage Yard	0.587	1.649	8,692	0.415	0.173
Phase 2/CP4 - Class II Ag Base - Storage Yard & Access Driveway	0.310	0.872	4.595	0.220	0.091
Phase 2 Truck Max Daily	0.59	1.65	8.69	0.42	0.17
Phase 3/CP3 - Crushed Rock - Container Storage Yard	0.427	1,204	6.319	0.297	0.173
Phase 3/CP4 - Class II Ag Base - Container Storage Yard	0,214	0.602	3.160	0,149	0.086
Phase 3 Truck Max Daily	0.43	1.20	6.32	0.30	0.17

Hauling Truck GHG Emissions

Project Phase/Construction Phase		Total	Tonnes	a diana
roject mase/ construction mase	CO2	CH4	N ₂ O	COze
Phase 1/CP3 - Crushed Rock - Container Storage Yard	11.10	0.00618	0.00568	12,95
Phase 1/CP4 - Class II Ag Base - Storage Yard & Access Driveway	5.81	0.00323	0.00298	6.78
Phase J Truck Totals	16.9	0.0094	0.0087	19.7
Phase 2/CP3 - Crushed Rock - Container Storage Yard	10.79	0.00599	0,00551	12.59
Phase 2/CP4 - Class II Ag Base - Storage Yard & Access Driveway	5.71	0.00317	0.00291	6.65
Phase 2 Truck Totals	16.5	0.0092	0.0084	19.2
Phase 3/CP3 - Crushed Rock - Container Storage Yard	10,90	0.00599	0.00551	12.69
Phase 3/CP4 - Class II Ag Base - Container Storage Yard	5.45	0.00299	0.00275	6.34
Phase 3 Truck Totals	16.3	0.0090	0.0083	19.0
Project Total	49.76	0.0275	0.0253	58.00

All American Grain Container Yard

Air Quality/Climate Change Calculations

Phase 1 Off-road Equipment Emissions

CP1 - Subgrade Prep - Access Driveway

		Activity							Emissions		GHG Emissions (tonnes)			
quipment Type	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM _{2 s}	CO2	CH4	CO2e
Rubber Tired Dozers	247	0.40	7	8	1	56	1.17	4,38	12.56	0,61	0.56	2.73	0,0009	2.75
Graders	187	0.41	7	8	1	56	0.52	1,91	7,13	0,23	0.21	2.13	0.0007	2.14
Excavators	158	0.38	7	4	1	28	0,14	1,64	1,55	0,08	0.07	0.82	0.0003	0.83
Rollers	80	0,38	7	8	1	56	0_21	1,55	1,99	0,14	0_13	0_67	0.0002	0.68
Off Highway Truck	402	0.38	7	2	1	14	0.19	1.05	2,08	0,08	0.07	1_06	0,0003	1.06
						Totals	2.2	10.5	25.3	1.1	1.0	7.4	0.002	7.5

CP2 - Subgrade Prep - Container Storage Yard

THE WEST		Activity							Criteria Emissions (lbs/d)					GHG Emissions (tonnes)			
Equipment Type	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NO _X	PM10	PM _{2.5}	CO2	CH4	CO ₂ e			
Rubber Tired Dozers	247	0.40	18	8		144	1_17	4.38	12,56	0.61	0.56	7.02	0.0022	7_08			
Graders	187	0.41	18	8	2	144	1_04	3.83	14.26	0.46	0.43	10.94	0.0034	11,02			
Excavators	158	0.38	18	4	1	72	0_14	1.64	1.55	0.08	0.07	2.12	0.0007	2.14			
Rollers	80	0.38	18	8	2	144	0.52	3.87	4.99	0.34	0.32	4.31	0.0013	4,34			
Off Highway Truck	402	0.38	18	2	1	36	0.19	1.05	2.08	0.08	0.07	2.71	0.0008	2.74			
						Totals	3.1	14.8	35.4	1.6	1.4	27.1	0.008	27.3			
					CPI + C	P2 Totals	5,3	25,2	58.3	2.5	2.3	(). 					

OB-1 Air Analyses

37 of 44

All American Grain Container Yard

CP3 - Crushed Rock - Container Storage Yard

			Act	ivity				Criteria	Emissions (GHG Emissions (tonnes)			
Rubber Tired Loader	BHP	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PMID	PM _{2.5}	CO2	CH4	CO ₂ e
Rubber Tired Loader	247	0,40	18	8	2	144	1.16	4.69	14.40	0.49	0.45	13.88	0.0043	13.99
Graders	187	0.41	18	8	2	144	1.04	3,83	14.26	0.46	0.43	10.94	0.0034	11.02
Rollers	80	0,38	18	8	2	144	0.52	3.87	4.99	0.34	0.32	4.31	0.0013	4.34
Off Highway Truck	402	0.38	18	2	1	36	0.19	1,05	2.08	0.08	0.07	2.71	0.0008	2,74
						Totals	2.9	13.4	35,7	1.4	1.3	31.8	0,010	32.1

CP4 - Class II Ag Base - Storage Yard & Access Driveway

	Activity							Criteria	Emissions	GHG Emissions (tonnes)				
Rubber Tired Loader	BHP	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM20	PM2.5	CO2	CH4	CO ₂ e
Rubber Tired Loader	203	0.36	18	8	2	144	0.86	3.47	10.65	0.36	0.33	10.27	0.0032	10.35
Graders	187	0.41	18	8	2	144	1.04	3.83	14.26	0.46	0.43	10.94	0.0034	11.02
Rollers	80	0,38	18	8	2	144	0.52	3.87	4,99	0.34	0.32	4.31	0.0013	4.34
Off Highway Truck	402	0,38	18	2	1	36	0.19	1.05	2.08	0.08	0.07	2.71	0.0008	2.74
						Totals	2.6	12.2	32.0	1.2	1.1	28.2	0.009	28.5

CP5 - Paving - Access Driveway

		3	Act	ivity				Criteria	Emissions (lbs/d)		GHG E
Equipment Type	BHP	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM _{2.5}	co,
Pavers	130	0.42	7	8	1	56	0.33	2,93	3.61	0.18	0.16	1.50
Rollers	80	0,38	7	8	1	56	0.26	1.94	2.49	0.17	0.16	0.84
Tractors/Loaders/Backhoes	97	0.37	7	6	1	42	0.20	1.75	1.97	0.14	0.13	0.74
						Totals	0.8	6.6	8.1	0.5	0.4	3.1
					CP4 + C	P5 Totals	3.4	18.8	40.0	1.7	1.6	
					Phase 1 M	Aax Daily	5.3	25.2	58.3	2.5	2.3	11

GHG Er	nissions (ton	nes)
CO2	CH4	CO2e
1.50	0.0005	1.51
0.84	0,0003	0.84
0.74	0.0002	0.75
3.1	0.001	3.1

Pr	oject Total	
GHG En	nissions (to	nnes)
CO2	CH₄	CO ₂ e
97.7	0.030	98.4

OB-I Air Analyses

38 of 44

All American Grain Container Yard

Air Quality/Climate Change Calculations

Phase 2 Off-road Equipment Emissions

CP1 - Subgrade Prep - Access Driveway

The state of the		Activity							Emissions	GHG Emissions (tonnes)				
Equipment Type	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM ₁₀	PM _{2.8}	CO2	CH4	COze
Rubber Tired Dozers	247	0.40	7	8	l	56	1,13	4.28	12.07	0,59	0,54	2,68	0.0009	2,71
Graders	187	0.41	7	8	1	56	0.49	1.84	6.58	0.21	0.19	2,09	0.0007	2.10
Excavators	158	0,38	7	4	1	28	0.13	1,63	1,34	0_06	0.06	0,81	0.0003	0,82
Rollers	80	0,38	7	8	1	56	0.18	1.53	1.79	0,12	0,11	0,66	0.0002	0.66
Off Highway Truck	402	0,38	7	2	1	14	0.18	1.00	1,80	0,07	0.06	1.04	0.0003	1,05
						Totals	2.1	10.3	23.6	1.0	1.0	7.3	0.002	7.3

CP2 - Subgrade Prep - Container Storage Yard

and the second of the	300		Act	lvity		1.1.1		Criteria	Emissions	(lbs/d)	JUL L	
Equipment Type	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM _{2,5}	
Rubber Tired Dozers	247	0.40	18	8	1	144	1,13	4 28	12.07	0.59	0.54	6
Graders	187	0.41	18	8	2	144	0.97	3.68	13,16	0.42	0.39	10
Excavators	158	0.38	18	4	1	72	0.13	1.63	1.34	0.06	0_06	2
Rollers	80	0.38	18	8	2	144	0.45	3.81	4,48	0.29	0.27	
Off Highway Truck	402	0.38	18	2	1	36	0.18	1.00	1.80	0_07	0.06	2
						Totals	2.9	14.4	32.9	1.4	1.3	2
					CPI + C	P2 Totals	5.0	24.5	53.6	2.3	2.1	

GHG E	0.74 0.0034 10.82 2.09 0.0007 2.10 4.24 0.0013 4.27								
CO2	сн,	CO2e							
6.90	0.0022	6,96							
10,74	0.0034	10.82							
2.09	0.0007	2.10							
4.24	0.0013	4.27							
2,67	0.0008	2,69							
26.6	0.008	26.8							

39 of 44

All American Grain Container Yard

CP3 - Crushed Rock - Container Storage Yard

			Act	ivity				Criterla	Emissions	GHG Emissions (tonnes)				
Rubber Tired Looder	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM _{2.5}	CO2	CH4	CO ₂ e
Rubber Tired Loader	247	0,40	18	8	2	144	1.16	4.69	14.40	0.49	0.45	13.88	0.0043	13.99
Graders	187	0.41	18	8	2	144	0.97	3.68	13.16	0.42	0.39	10.74	0.0034	10.82
Rollers	80	0,38	18	8	2	144	0.45	3.81	4.48	0.29	0.27	4.24	0.0013	4.27
Off Highway Truck	402	0.38	18	2	1	36	0.18	1.00	1.80	0.07	0.06	2.67	0.0008	2.69
						Totals	2.8	13.2	33.8	1.3	1,2	31.5	0.010	31.8

CP4 - Class II Ag Base - Storage Yard & Access Driveway

	1.1.1	Activity							Emissions		GHG Emissions (tonnes)			
Rubber Tired Loader	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM _{2.5}	CO2	CH₄	CO16
Rubber Tired Loader	203	0.36	18	8	2	144	0.86	3.47	10.65	0.36	0.33	10.27	0.0032	10.35
Graders	187	0.41	18	8	2	144	0.97	3.68	13.16	0.42	0.39	10.74	0.0034	10.95
Rollers	80	0,38	18	8	2	144	0.45	3.81	4.48	0.29	0.27	4.24	0.0013	4.27
Off Highway Truck	402	0.38	18	2	1	36	0.18	1.00	1.80	0.07	0.06	2.67	0.0008	2.69
						Totals	2.5	12.0	30.1	1.1	1.1	27.9	0.009	28.1

CP5 - Paving - Access Driveway

	-		Act	ivity		The Party		Criteria	Emissions	(lbs/d)		GHO
Equipment Type	BHP	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM2 5	C
Pavers	130	0.42	7	8	1	56	0.29	2.90	3.12	0.15	0.14	1.48
Rollers	80	0,38	7	8	1	56	0.23	1.91	2.24	0.15	0.14	0.82
Tractors/Loaders/Backhoes	97	0.37	7	6	1	42	0,17	1.73	1.75	0.12	0.11	0.73
						Totals	0.7	6.5	7.1	0.4	0.4	3.0
					CP4 + C	P5 Totals	3.2	18.5	37.2	1.6	1.4	-
				_	Phase 1 M	Iax Daily	5.0	24.5	53.6	2.3	2.1	

GHG Er	nissions (ton	nes)
CO2	CH₄	CO2e
1.48	0.0005	1.49
0.82	0,0003	0.83
0.73	0,0002	0.74
3.0	0.001	3.1

Pr	oject Tota	l
GHG Er	missions (to	nnes)
CO2	CH₄	COze
96.4	0.030	97.2

OB-1 Air Analyses

40 of 44

All American Grain Container Yard

Phase 3 Off-road Equipment Emissions

CP2 - Subgrade Prep - Container Storage Yard

	1.00	11.1	22.		Criteria	Emissions	GHG E	GHG Emissions (tonnes)						
Equipment Typ e	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NOx	PM10	PM _{2.5}	CO2	CH4	CO _z e
Rubber Tired Dozers	247	0.40	18	8	1	144	1.08	4.13	11,59	0.55	0.51	6.75	0.0022	6.81
Graders	187	0.41	18	8	2	144	0.95	3.63	12,65	0.41	0.37	10,50	0,0034	10.58
Excavators	158	0.38	18	4		72	0.12	1,63	1.21	0.06	0.05	2.04	0,0007	2,06
Rollers	80	0.38	18	8	2	144	0_42	3,79	4_16	0,26	0,24	4,15	0,0013	4,18
Off Highway Truck	402	0_38	18	2	1	36	0_17	0.95	1.58	0.06	0.05	2.61	0,0008	2,63
						Totals	2.7	14.1	31.2	1.3	1.2	26.1	0.008	26.3

CP3 - Crushed Rock - Container Storage Yard

			Act	ivity				Criteria	Emissions	(lbs/d)		GHG Er	missions (to)	nnes)
Equipment Type	внр	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	со	NO _x	PM10	PM _{2,5}	CO2	СН₄	CO₂e
Rubber Tired Loader	247	0.40	18	8	2	144	1.01	4,42	11.92	0_40	0.36	13.36	0.0043	13.47
Graders	187	0.41	18	8	2	144	0.95	3,63	12.65	0.41	0,37	10,50	0.0034	10,58
Rollers	80	0.38	18	8	2	144	0.42	3,79	4.16	0.26	0.24	4.15	0.0013	4.18
Off Highway Truck	402	0.38	18	2	1	36	0.17	0.95	1.58	0.06	0.05	2.61	0.0008	2.63
						Totals	2.5	12.8	30.3	1.1	1.0	30.6	0.010	30.9

41 of 44

All American Grain Container Yard

CP4 - Class II Ag Base - Container Storage Yard

			Act	ivity				Criterla	Emissions (lbs/d)		GHG En	nissions (to	nnes)
Equipment Type	BHP	Load Factor	Length (wkday)	hrs/ day	Number	total hours	ROG	ço	NOx	P.M 10	PM2.	CO2	CH	., co
Rubber Tired Loader	203	0.36	18	8	2	144	0.75	3.27	8.82	0.29	0.27	9.88	0.0032	9.90
Graders	187	0,41	18	8	2	144	0.95	3.63	12.65	0.41	0.37	10.50	0.0034	10.58
Rollers	80	0.38	18	8	2	144	0.42	3,79	4.16	0.26	0.24	4,15	0.0013	4.1
Off Highway Truck	402	0,38	18	2	l	36	0.17	0,95	1.58	0.06	0.05	2.61	0.0008	2.63
					24	Totals	2.3	11.6	27.2	1.0	0.9	27.1	0.009	27.4
					Phase 1 M	Aax Daily	2.7	14.1	31.2	1.3	1.2			

	Project Total
SHG	Emissions (tonnes)

, CO₂e 9.96 10_58 4.18 2.63 27.4

nissions (to	11.05)
CHa	CO ₂ e
0.027	84.5
	CH4

OB-1 Air Analyses

42 of 44

All American Grain Container Yard

2018 Offroad Emission Factors

		Load			Emission Factor (g/bhp-hr)								
Equipment Type	BHP	Factor	ROG	CO	NOx	PM ₁₀	PM2,5	CO2	CH4				
Excavator	158	0,38	0 273	3 093	2 924	0,142	0 130	490.7	0 153				
Grader	187	0.41	0 384	1 416	5 271	0.171	0_158	495_4	0 154				
Off-Highway Truck	402	0,38	0 287	1 560	3 090	0.113	0 104	493.5	0 1 5 3				
Paver	130	0.42	0.339	3 039	3 747	0 183	0.168	491_3	0 153				
Roller	80	0.38	0,481	3 610	4_650	0.320	0 294	492.2	0.153				
Rubber Tired Dozer	247	0.40	0 669	2 512	7 208	0 350	0.322	493_6	0 154				
Rubber Tired Loader	203	0 36	0,333	1.346	4 131	0 140	0.129	487.9	0_152				
Tractors/Loaders/Backhoes	97	0 37	0,420	3,692	4.154	0 294	0.271	494_1	0.154				

2019 Offroad Emission Factors

	·	Load	Emission Factor (g/bhp-hr)									
Equipment Type	ВНР	Factor	ROG	co	NOx	PM10	PM2.5	CO2	CH4			
Excavator	158	0 38	0,246	3.082	2,533	0 122	0112	482 7	0,153			
Grader	187	0.41	0,360	1.359	4 866	0 156	0_144	486.3	0,154			
Off-Highway Truck	402	0.38	0.263	1.483	2 669	0 097	0.089	485.4	0,153			
Paver	130	0 42	0.299	3 013	3.245	0.159	0 146	483.4	0 153			
Roller	80	0.38	0,423	3.557	4.179	0,275	0 253	484_3	0 153			
Rubber Tired Dozer	247	0.40	0.651	2 459	6 929	0 338	0.311	485.2	0 154			
Rubber Tired Loader	203	0,36	0 309	1 302	3 745	0.126	0 166	480 1	0.152			
Tractors/Loaders/Backhoes	97	0.37	0.368	3 638	3 693	0.247	0 227	485.9	0 1 5 4			

2020 Offroad Emission Factors

		Load	Emission Factor (g/bhp-hr)									
Equipment Type	BHP	Factor	ROG	co	NOx	PM ₁₀	PM _{2.5}	CO2	CH₄			
Excavator	158	0 38	0 23 1	3 086	2 278	0.110	0_102	472 3	0 153			
Grader	187	0.41	0.352	1,342	4.678	0.150	0 138	475 3	0 54			
Off-Highway Truck	402	0.38	0.246	1.414	2 347	0 086	0 079	474 6	0 153			
Roller	80	0.38	0 388	3.531	3 882	0 247	0.228	473.9	0.153			
Rubber Tired Dozer	247	0 40	0 619	2 371	6 653	0.318	0 293	474_8	0.154			
Rubber Tired Loader	203	0.36	0 290	1.269	3.421	0114	0 104	469 5	0 1 5 2			

From: CalEEMod Users Guide - Appendix D (October 2017)

OB-1 Air Analyses

43 of 44

All American Grain Container Yard

Air Quality/Climate Change Calculations

Grading Fugitive Dust

Fugitive dust emissions from grading equipment passes are estimated using the methodology described in Section 11.9. Western Surface Coal Mining, of the EPA AP-42,

AP-42 estimates the emission factor of PM₁₀ applying a scaling factor to that of PM₁₅. Similarly, the emission factor of PM₂₅ is scaled from that of total suspended particulates (TSP). The equations used to calculate the emission factors for PM₁₅ and TSP and the scaling factor for those of PM₁₀ and PM₂₅ are presented below:

	Emission Fai	ctors (lbs/day)	
EF PM ₁₅ =	$0.051 \times S^{20} \Rightarrow$	2,571	
EF PM _{TSP} =	$0.04 \times S^{2.5} =$	5,373	
<i>S</i> =	mean vehicle speed (nph). The AP-42 default value is	7.1
EF PM ₁₀ =	$EF_{PM15} \times F_{PM10} =$	1,5	
EF PM ₂₅ =	$EF_{PMTSP} \times F_{PMD.5} =$	0.167	
FPMIO =	PM 10 scaling fact	or. The AP-42 default value is	0.6
F PM2 5 -	PM 25 scaling fact	or. The AP-42 default value is	0.031

Emissions

The grading dust emissions are calculated by multiplying the emission factors with the total vehicle miles traveled (VMT) for the grading equipment (i e. grader). The VMT for grader (VMT_G) are estimated based on the dimensions of the grading area and the blade width of the grading equipment.

Emissions (lb) =	$EF \times VMT_{G}$	# of Days	# of Days = 12	
	Pollutant	Emissions		1
		total lbs	ltbs/d	1
	PM10	4.97	0.414	1
	PM25	0.54	0.045	1
where VMT = A_{S} \div W_{b} $\prec~$ ft^{2} per acre – ft per mile =			3.2	
			Phase 1	47
$A_s - acreage disturbed$			Phase 2	46
			Phase 3	4.3
$W_b = Blade$ width of the grading equipment (default based on Caterpillar's 140 Motor Grader.				12